ISMIR 2008 — Session 1d — MIR Platforms

THE PERLHUMDRUM AND PERLLILYPOND TOOLKITS FOR SYMBOLIC
MUSIC INFORMATION RETRIEVAL

Ian Knopke
Goldsmiths Digital Studios
ian.knopke @ gmail.com

ABSTRACT

PerlHumdrum is an alternative toolkit for working with large
numbers of Humdrum scores. While based on the original
Humdrum toolkit, it is a completely new, self-contained im-
plementation that can serve as a replacement, and may be a
better choice for some computing systems. PerlHumdrum is
fully object-oriented, is designed to easily facilitate analy-
sis and processing of multiple humdrum files, and to answer
common musicological questions across entire sets, collec-
tions of music, or even the entire output of single or multiple
composers. Several extended capabilities that are not avail-
able in the original toolkit are also provided, such as transla-
tion of MIDI scores to Humdrum, provisions for construct-
ing graphs, a graphical user interface for non-programmers,
and the ability to generate complete scores or partial musical
examples as standard musical notation using PerILilypond.
These tools are intended primarily for use by music theo-
rists, computational musicologists, and Music Information
Retrieval (MIR) researchers.

1 INTRODUCTION

Humdrum [5, 3, 4] is a computer-based system pioneered
by David Huron for manipulating and querying symbolic
representations of music. Unlike notation-based systems
such as GUIDO or MusicXML, Humdrum is primarily in-
tended as a set of analytical tools to aid music theorists, mu-
sicologists, acousticians, cognitive scientists, and MIR re-
searchers, among others. Also, Humdrum data files are dif-
ferentiated from stored-performance formats such as MIDI,
in that almost all have been encoded by hand from musical
scores; more than 40,000 Humdrum files have been encoded
to date, the majority of which are freely available online
[1,6].

The original motivation for this research was the desire
to use the Humdrum resources in a series of music analysis
projects, coupled with a certain frustration with the lack of
functionality of some of the original tools which were reliant
on older Unix environments and were difficult to make work
under current versions of Linux. Other Humdrum tools,
such as those for entering MIDI information, are associated
with hardware that currently unavailable in most operating

147

systems. Also, many of the problems that the project ex-
plored required writing additional programs that worked di-
rectly with the Humdrum data, such as data collection and
extraction across large numbers of scores, and it was sim-
ply easier to write them fresh in Perl than to try to accom-
plish the same thing based on one of the older Awk tools.
Over time a collection of alternate tools, extensions, and re-
placements began to take shape, and at some point it simply
made sense to collect everything under a single code base
that shared methods for common tasks in a object oriented
framework. In the process, it became possible to rethink
some aspects of the original Humdrum Toolkit, and intro-
duce some new possibilities that are useful when working
on these sorts of problems.

Additionally, from working with various musicologists,
it became clear that a system was needed for automatically
producing musical excerpts in common musical notation, as
a method for displaying search results. This led to the cre-
ation of the PerlLilypond programs, that provide a scriptable
environment for generating notation. The two systems are
designed to complement one another.

The author refers to the two systems as PerlHumdrum
and PerlLilypond. This is primarily to differentiate their
names the original programs. However, within the Perl envi-
ronment, the module names Humdrum and Lilypond are
used. This is partially because of traditional naming con-
ventions in Perl, but also because the author doesn’t see the
necessity of repeatedly inflicting an extra syllable on devel-
opers and users during tasks such as multiple object cre-
ation.

2 OVERVIEW OF HUMDRUM

The overall Humdrum system is comprised of two main parts:
a set of file-based storage formats for time-aligned symbolic
data, and the accompanying collection of UNIX-based tools
for manipulating and querying this data. The PerlHumdrum
system discussed in this paper is designed to simplify oper-
ations on the former, while providing an alternative to the
latter.

Humdrum data files consist of symbols representing mu-
sical or other symbolic information, arranged in time-aligned
columns known as spines. As an example, the first measures

ISMIR 2008 — Session 1d — MIR Platforms

of a Bach chorale and the representative Humdrum excerpt
are shown in Figure 1 and Table 1 respectively.

/() 4 | e N R

[y, : a| | T
4 ddddg

.\/ -'\/r

Figure 1. Uns ist ein Kindlein heut’ gebor’n, J. S. Bach

**kern **kern **kern **kern
*bass *tenor *alto *soprn
*K[f#] *k([f#] *k([f#] *k([f#]
4GG 4d 4g 4b#
=1 =1 =1 =1
4G 4d 4g 8bi#t
. . . 8cc
4F# 4d 4a 4dd
4G 4d 4g 4b
4E 8d 4g 4g

8c#

Table 1. A Humdrum Kern encoding of Figure 1

Humdrum files consist only of ASCII characters, includ-
ing tabs and spaces, and are easy to create, view and edit
in any standard text editor. Each vertical spine represents a
single stave of music from the original score. Where new
events in the original score occur horizontally, moving from
left to right. In the Humdrum version, new events are added
to the bottom of each spine. In many ways, Humdrum en-
codings can be seen as normal scores rotated clockwise by
90 degrees. Items aligned horizontally occur at the same
time, and a single horizontal line of data is known as a
record. Items marked with asterisks (*,**) are metadata
events or interpretations that give instructions as to how data
spines are to behave. For instance, spines can be added, sub-
tracted, or exchanged, among other operations. Interpreta-
tions are also used to indicate key and time signature.

The first item in each column indicates the type of Hum-
drum format in use. In this case the standard Kern format
that is more or less analogous to common-practice music
notation is being employed, with notes encoded as a combi-
nation of numeric value and letter, representing the rhythmic
and pitch values. Measure numbers are preceded by equal
signs and are repeated in all columns. The letter ¢ indicates
middle ¢ (261.63 Hz), with lower octaves being represented

148

by upper-case letters, higher octaves by lower-case letters,
and larger distances from middle ¢ by accumulated letter-
ing. A set of ¢ notes going from lower to higher octaves
would be encoded as “CCC, CC, C, c, cc, ccc”.

While the Ke rn format is the most common type of Hum-
drum encoding, many other types of encodings exist, includ-
ing frequency, scale degrees, melodic and harmonic inter-
vals, solfege symbols, set-theory representations, and even
psychoacoustical representations such as barks or critical
band rates. Spines may be added or removed from a file
as necessary, or manipulated in various other ways. Multi-
ple encoding schemes can also be used in a single file, and
the user can define their own types to accommodate specific
needs.

Coupled with data storage part of Humdrum is the toolkit,
a set of programs for working with Humdrum data files. The
programs encompass a rich set of functionality, including
devices for manipulating and querying, and summarizing
this kind of data. It is difficulties with these tools in par-
ticular that PerlHumdrum is designed to address.

3 PERLHUMDRUM USAGE

The original Humdrum toolkit operates using the standard
UNIX command line paradigm. Commands in Humdrum
generally consist of Awk scripts that take command line
options and an input Humdrum file, and produce another
Humdrum file. Multiple commands can be strung together
using pipes, and intermediate results can be stored as tem-
porary files to undergo further processing. For instance, one
of the simplest of all Humdrum programs is the census
command, used here to obtain a list of overall statistics for
a kern file called bach.krn:

census -k bach.krn

This produces a text file containing various statistics about
the original piece, such as the number of notes, number of
comments, and other basic information.

In PerlHumdrum, the basic ingredient is the Humdrum
object. The equivalent program to the above using PerlHum-
drum is shown below.

use Humdrum;

my S$c=Humdrum->new (’'bach.krn’);
my S$dat=$c->census (k=>1);

Command line options from the original programs are
available as parameters to the PerlHumdrum methods. Great
care has been taken to ensure the best possible compatibility
between the original toolkit and this one; most of the orig-
inal programs have been converted to methods, and great

ISMIR 2008 — Session 1d — MIR Platforms

care has been taken to ensure that all options have been ac-
counted for and behave identically.

Applying this command to multiple files, to get a sum of
notes for instance, is almost as simple:

use Humdrum;
my $sum=0;

foreach my $file(Qfilelist) {
my Sc=Humdrum->new ($file);
my S$dat=$c->census (k=>1);
Ssum+=S$dat->get_datatokens () ;

In the original toolkit, processes could be chained to-
gether by saving the results of each stage as a temporary file
and using it as input to the next, or by using the pipe sym-
bol. The example below demonstrates a short processing
chain that removes the non-note elements from the kern
file “bach.krn” and then performs a similar census opera-
tion.

kern -x bach.krn | census -k

In PerlHumdrum, under normal circumstances, a Humdrum
object is considered immutable; that is, the output of one op-
eration produces another Humdrum object.

The previous set of commands can be translated into a
PerlHumdrum program as follows:

use Humdrum;

my S$c=Humdrum->new (’'bach.krn’);
my S$k=S$c->kern (x=>1);
my Sdat=S$k->census (k=>1);

Here is an even more succinct version:

use Humdrum;

my S$c=Humdrum->new (’'bach.krn’);
my S$dat=$c->kern (x=>1)->census (k=>1);

Obviously, much more complex examples are possible.

4 ADVANTAGES

The PerlHumdrum toolkit has several advantages over the
original Humdrum toolkit.

The primary advantage is that the object oriented paradigm
makes it simple to apply complex data analysis and modifi-
cation operations to multiple files, through the use of loops
or other control structures. While this is possible in the orig-
inal command-line syntax using command-line bash shell
loops and judicious use of piping, the results are often brit-
tle and not well-suited to large-scale analyses of symbolic

149

data as is often required in MIR research. We believe that
these limitations of the current toolkit have limited the uses
of existing Kern repositories in many MIR research areas.

A second, perhaps less-obvious advantage is that the orig-
inal Humdrum toolkit makes complete sequential passes through
entire Humdrum files and then passes that data on to further
commands through pipes. While many operations are possi-
ble in this way, others are extremely difficult. Consider the
situation of trying to analyze all of the cadences in a piece or
set of pieces. Cadences are most easily-identified by work-
ing backwards through a file, finding the resolution in re-
verse (I-V) and then working back until the “start” of the
cadence is detected. Doing such work using only forward
sequential passes, perhaps with an additional operation once
the cadence is located, is extremely difficult. PerlHumdrum
provides several different methods of proceeding through a
Humdrum file, including reverse iteration and ranged itera-
tion. The array of objects is also available to the user, mak-
ing it possible to define any kind of non-sequential operation
the user might like (only even tokens, for instance).

Other advantages are:

e consistent use of OOP principles, instead of “impera-
tive” Awk-style scripts simplifies the addition of new
commands.

e The use of perl provides a common base for other
“data-munging” operations that Perl is commonly used
for. This makes it easy to connect Humdrum oper-
ations to databases, linear algebra libraries, or even
CGI scripts for web pages, to give just a few exam-
ples.

e Unlike the Awk and C basis of the original toolkit,
PerlHumdrum runs natively on many different com-
puting platforms, including Unix, Macintosh, and Win-
dows systems without recompiling.

S PERLLILYPOND

A parallel package, PerlLilypond, has been developed that
can take information from a Humdrum object and convert
it into common practice music notation. As the name sug-
gests, PerlLilypond uses LilyPond [14] as the underlying no-
tation engine.

PerlLilypond has two primary virtues. First, PerlLily-

pond can be easily scripted and called within other pro-

grams. While PerlLilypond can be used to generate entire
scores, and can function as an alternative, non-proprietary
notation system. The intended use is for displaying multiple
excerpts from a collection of Humdrum scores, such as all of
the cadences across a corpus, without individual human in-
tervention and editing. This is extremely difficult to do with
any of the more-familiar commercial notation programs.

ISMIR 2008 — Session 1d — MIR Platforms

Secondly, and perhaps more importantly, PerlLilypond
displays the results of symbolic searches in a form that is
accessible to most musicians. Experience has shown that
many traditional musicologists and theorists without a back-
ground in MIR have difficulties with non-traditional nota-
tion formats. Displaying results in a traditional notation
format makes it much easier for many music researchers
to use this technology, and we feel that the lack of such a
system has probably been the single biggest impedement to
the adoption of these technologies within that community.
Also, MIR researchers themselves, with traditional music
training, may find it much easier and more succinct to dis-
play results in this format.

There are two ways to use PerlLilypond. The easiest is
simply to pass it a PerlHumdrum object, which is the com-
mon output of most Humdrum operations, and PerlLilypond
will do all the work of converting the object into its own
internal format. Thus, the entire process of printing a Hum-
drum score or any Humdrum data can be reduced to the pro-
cedure outlined below.

use Humdrum;
use LilyPond;

my Shumdrumexcerpt=Humdrum->new (' Bach.krn’);

my $1=Lilypond->new ($Shumdrumexcerpt) ;
S1->print();

A second way is to gradually build up an object by adding
notes, staves, and other musical structures sequentially. In
this mode, a PerlLilypond object can be considered a kind of
long pipe that we keep pushing objects into until our excerpt
is finished. Other “container” objects, such as chords or tu-
plets, can be created as needed and added to a stave. No fa-
cility is provided for editing materials inside a PerlLilypond
object once they have been allocated, although references
to the underlying raw arrays is available for end users who
wish to build their own subroutines. This is because such
editing tools are already in PerlHumdrum.

The procedure for creating a short excerpt consisting of
a note, a chord, and a final note is shown below:

my $11=Lilypond->new();
$11->addstave (’ soprano’) ;
$11->addnote (' soprano’, {step=>'d’ });

my $lh=Lilypond::Chord->new;

$1lh->add (Lilypond: :Note->new (
{duration=>81}));

$1lh->add (Lilypond: :Note->new (
{step=>"e’,duration=>8}));

$1lh->add (Lilypond: :Note->new (
{step=>"g’,duration=>8}));

$1l1->addchord ('’ soprano’, $1lh);

150

$11->addnote (' soprano’,
{step=>'g’,duration=>4,dots=>1});
$11->makeexcerpt () ;

First, a new Lilypond object is created and a stave
named soprano is added. Following the addition of the first
note, a Lilypond: :Chord object is created and three
notes are “poured” into it in sequence. The resulting object
is then added to the stave, followed by a final note. Finally,
the makexcerpt method is called, calling the Lilypond bi-
nary, and generating the excerpt in all output formats.

Once a user is finished constructing a PerlLilypond ob-
ject, various commands are available to actually get output
as PNG or postscript output, transparently created by calling
the actual LilyPond binary.

Facilities are also provided for displaying large numbers
of excerpts as PNG graphics on an HTML page. HTML
was chosen as the primary output format for excerpts be-
cause web pages are essentially unlimited in length, can eas-
ily align images, and can be easily viewed in practically any
computing environment. An example of some output gen-
erated directly from a Humdrum file is shown in Figure 2.
Here, a cadence has been automatically detected and marked
with an ‘X’.

0 159.per =22/1 =25/4 =26/6 X,
i =

T ol
>

Figure 2. A simple example of web page output

One especially useful facility of PerlLilypond is the abil-
ity to introduce “hidden” elements that are not seen, but in-
stead act as spacers between other notes. This is extremely
useful for displaying the results of aligned sequences of notes,
such as those that might be produced by musical applica-
tions of various alignment algorithms [17, 9]. At present,
PerlLilypond captures about 60 percent of the capabilities
of LilyPond, including almost everything connected to com-
mon notation. Development is ongoing to add the remaining
alternate notation styles such as percussion notation.

6 EXTENSIONS

PerlHumdrum also provides a number of additional capabil-
ities that are not present in the regular Humdrum toolkit.

6.1 Support for Analyses of Multiple Scores

With the exception of the patt and grep tools, Humdrum
is cumbersome for the analysis of large scores. Such pro-
cedures, in the original toolkit, often involves some tricky

ISMIR 2008 — Session 1d — MIR Platforms

shell scripting, writing the results to a log file, and then
providing an additional program to process these separately.
This is especially difficult if the cumulative results need to
be recorded, or if the results of each analysis needed to be
inserted into a database (for instance). PerlHumdrum pro-
vides several “meta-tools” that make it simple to apply a
referenced procedure or set of procedures to a collection of
files. Figure 3 shows the final results of one such operation,
in which the number of common rule violations in the origi-
nal Bach Chorales have been accumulated as percentages of
files of the original collection ([2, 10]).

50

Percentage of Chorales

ol
. Ill “IIII‘I

Hidden 8ve Uneq, comp. 5th
el Sth Hidden Sth Voice o
4-Part Chorale Writing Rule Violations

verlap

Figure 3. Common rule violations in Bach Chorales

6.2 Graphing Capabilities

In a similar vein as the above, a set of procedures has been
provided to facilitate easy graphing of extracted results. The
most common variety of this is the “scatterplot” diagram,
such as that shown in Figure 4. This provides an easy way
to visualize aspects of entire collections, and such graphs
are of great interest to musicologists ([7, 8, 18]).

T
atiibuted works ©
anonymous works =

Leap Movement

Event Density

Figure 4. Comparing an entire collection

151

6.3 MIDI File Conversion

The original toolkit has the ability to convert Humdrum files
to MIDI format. There is also a limited facility for con-
verting direct MIDI input from a MIDI-in port into Hum-
drum, but this relies on a specific hardware library and only
functions under Microsoft DOS. PerlHumdrum provides a
MakeMidi method that will convert a MIDI file into Hum-
drum notation. MakeMidi is not currently very good at
making assumptions, and relies heavily on the MIDI files
being well-behaved To get good results, MIDI files must
include tempo and key signature, isolate each stave to a
different track, and should probably be heavily quantized.
It currently does not handle more complicated tuplets such
as quintuplets. However, the current capabilities work well
enough for most common music notation scores, and addi-
tional improvements are being implemented.

6.4 Integration with Other MIR Systems

While not technically an aspect of PerlHumdrum, one very
unique aspect of Perl is the Inline facility, which allows pro-
grammers to actually include foreign code directly inside a
Perl source code file. This makes it possible to mix C, Java,
Octave, and many other languages directly into Perl. The
MIR field currently has many different disparate toolkits de-
signed to handle specific problems, but very few complete
systems. Nor do such systems seem likely in the future, as
writing programs in multiple languages is usually extremely
complex. Using Inline and Perl, it is possible to construct
larger programs combined of multiple languages and source
code files, including PerlHumdrum. We have used this fa-
cility in the past, and found it extremely effective, yet it still
remains unknown in the MIR community as a whole.

7 FUTURE WORK

Most of the functionality of the original toolkit has been im-
plemented in PerlHumdrum. However, a few of the more
obscure options of some of the original toolkit programs
are currently unsupported, have undergone changes in func-
tion in this new context, or have unfortunately been recently
demonstrated as somewhat less than robust. Regression test-
ing has helped considerably with these situations, and the
entire toolkit is approaching something close to a real, dis-
tributable replacement for the original.

It is intended that PerlHumdrum be made freely avail-
able as is the original Humdrum toolkit, probably under the
Gnu Public License [13]. The standard method for mak-
ing code available to the Perl community is by distributing
the modules through the CPAN network [15]. This makes it
extremely easy for Perl users to download and install the en-
tire set of modules from within Perl itself. This conversion
has yet to be completed; however, current versions of Perl-

ISMIR 2008 — Session 1d — MIR Platforms

Humdrum are available through direct email contact with
the author.

Several other extensions to PerlHumdrum are currently
planned or in progress, including: conversion classes to other
notation formats such as GUIDO, connections to databases
such as PostGreSQL [16] for large-scale storage of music
fragments, better integration with the Perl MIDI classes, and
the ability to synthesize and play fragments directly using
Timidity.

The PerlLilypond notational facility is still under devel-
opment and has difficulty with some advanced notational
situations. It has not been well-tested on many types of con-
temporary music, primarily because there are fewer exam-
ples of this style of music in the various Humdrum reposito-
ries.

The object-oriented nature of PerlHumdrum makes it nat-
ural to consider building a graphical interface for Humdrum.
This has been attempted before [12, 11, 19], but the results
have never been satisfactory. Development of such a re-
source would also be extremely helpful in aiding the adop-
tion of these tools by musicologists and music theorists.

Finally, the set of operations available in Humdrum are
probably the most comprehensive set of symbolic music op-
erations in the MIR world. We would like to adapt these
tools to operate on other possible file formats. The best can-
didate at this time is the MusicXML format. In fact a rudi-
mentary version of this already exists, and will be completed
as time and necessity permit.

8 ACKNOWLEDGMENTS

The author wishes to express his sincere thanks to Frauke
Jiirgensen for her ongoing and enthusiastic support of this
project; her advice and patience have been invaluable. Ad-
ditionally, I would like to acknowledge the encouragement
of both Craig Stuart Sapp and Don Byrd in these efforts.

9 REFERENCES

[1] CCARH. Humdrum virtual scores, 2006. http://
kern.ccarh.org/.

[2] B. Gingras and I. Knopke. Evaluation of voice-leading
and harmonic rules of j.s. bach’s chorales. In Proceed-
ings of the Conference on Interdisciplinary Musicology,
pages 60—1, March 2005.

[3] D. Huron. The Humdrum Toolkit: Software for music
researchers. Software package, 1993.

[4] D. Huron. Humdrum and Kern: selective feature en-
coding. In E. Selfridge-Field, editor, Beyond MIDI:
The Handbook of Musical Codes, pages 375-401. MIT
Press, Cambridge, MA, 1997.

152

[5] D.Huron. Music information processing using the Hum-
drum Toolkit: Concepts, examples, and lessons. Com-
puter Music Journal, 26(1):15-30, 2002.

[6] David Huron. Humdrum scores, 2006. http://www.
music—cog.ohio-state.edu/Humdrum/.

[7] F. Jirgensen and I. Knopke. A comparison of automated
methods for the analysis of style in fifteenth-century
song intabulations. In Proceedings of the Conference on
Interdisciplinary Musicology, page n.p., 2004.

[8] F. Jiirgensen and 1. Knopke. Automated phrase parsing
and structure analysis in fifteenth-century song intabu-
lations. In Proceedings of the Conference on Interdisci-
plinary Musicology, pages 69-70, March 2005.

[9] J. Kilian and H. Hoos. MusicBLAST - Gapped sequence
alignment for MIR. In Proceedings of the International
Conference on Music Information Retrieval, pages 38—
41, October 2004.

[10] I. Knopke and B. Gingras. New approaches for the anal-
ysis and teaching of chorale harmonizations. Presenta-
tion at the Royal Conservatory of Music Art of Listening
Conference in Toronto, Ontario, Canada, 2005.

[11] Andreas Kornstddt. Score-to-humdrum: A graphical
environment for musicological analysis. Computing in
Musicology, 10:105-22, 1996.

[12] Andreas Kornstdadt. The jring system for computer-
assisted musicological analysis. In Proceedings of the
International Symposium on Music Information Re-
trieval, 2001.

[13] GNU Public License. Homepage, 2006. http://
www.gnu.org/copyleft/gpl.html.

[14] Lilypond. Homepage, 2006.

wisc.edu/condor/.

http://www.cCs.

[15] Comprehensive Perl Archive Network. Cpan, 2006.
http://www.cpan.org.

[16] PostGreSQL. Homepage, 2006.

postgresqgl.org/.

http://www.

[17] L. Smith, R. J. McNab, and I. H. Witten. Sequence-
based melodic comparison: A dynamic-programming
approach. Computing in Musicology, (11):101-18,
1998.

[18] Jan Stevens. Meme hunting with the humdrum toolkit:
Principles, problems, and prospects. Computer Music
Journal, 28(4):68-84, 2004.

[19] M. Taylor. Humdrum graphical user interface. Master’s
thesis, Queen’s University, Belfast, 1996.

