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Abstract 

In this paper, we propose a mixed approach for motion planning that 

decomposes the problem into two levels. At the global level, we build a 

graph whose nodes represent relatively large cells of the Configuration 

Space of the robotic system. Adjacent cells are connected by edges 

weighted by the probability for the local planner to succeed in computing a 

trajectory from a point in one cell to a goal in the other. These probabilities 

are used by a minimum cost path finding algorithm to generate subgoals 

for the local planner. They are updated using a Bayesian rule from the 

results of the execution of planned trajectories at the local level. At the 

global level, no geometric information is stored, thus eliminating the 

expensive transformation of obstacles into the Configuration Space needed 

by usual global methods. We take advantage of the ability of our local 

planner to move close to obstacles so that only a crude discretization of the 

Configuration Space is needed. This makes it possible to apply this 

technique to robotic systems with a large number of degrees of freedom. 

In mobile robot applications, sensors being used by the local planner, this 

method achieves the learning of planning strategies in an unknown 

environment without building a complete geometric model of the world. 

1 . I n t r o d u c t i o n 

1.1. Position of the Problem 

The general problem of motion planning can be stated as follows : 

given an algebraic description of the boundary of the moving objects and 

of the obstacles in Cartesian Space, find a collision free path for the 

moving objects from a set of initial positions to a set of goals. This general 

problem can be decomposed in a variety of sub-problems, according to 

whether the description of the world is planar or three-dimensional, 

whether there is only one moving object or many of them, whether there 

are connected by revolute or prismatic joints to form articulated chains or 

not. Theoretical issues posed by this problem have been thoroughly 

examined by Schwartz and Sharir [Sc]. They propose an algorithm 

answering the general motion planning problem, based on Tarski's 

algorithm for deciding statements in the quantified elementary theory of 

real numbers. Their algorithm, which is not of direct practical application, 

is polynomial in the number of constraints describing the obstacles, but 

exponential in the number of degrees of freedom. Other works suggest the 

inherent exponential complexity of planning. An early result by Reif [Re] 

proves PSPACE hardness of a special instance of the planning problem. 

Other special cases where in turn examined by Hopcroft, Joseph and 

Whitesides [Ho], Spirakis and Yap [Sp] among others. 

Few practical algorithms have nevertheless been proposed for the 

case of highest interest, that of an articulated chain of solids in a three 

dimensional environment. Algorithms developed by Lozano-Perez [Lo] 

Faverjon [Fa84, Fa86]t are based on a representation of obstacles in the 

Configuration Space of the manipulator. The Configuration Space of a 

system is any set of independent parameters that enables to describe the 

position of all points bound to the moving bodies. As a straightforward 

translation of the description of obstacles from Cartesian Space to 

Configuration Space is not possible for manipulators, these algorithms 

rely on a subdivision of configuration parameters in small ranges. This 

provides a grid whose cells are either labelled as free, or intersecting 

Configuration Obstacles, the transform of obstacles in Configuration 

Space. A path is searched as a sequence of nodes in the graph describing 

the connectivity between free regions of Configuration Space. 

Such a description requires a memory space exponential in the 

number of configuration parameters, and again, planning of a path is 

exponential in the number of configuration parameters. This imposes a 

practical limitation on the number of degrees of freedom involved: known 

algorithms limit themselves to planning a global path for the first three 

joints of a manipulator, while a heuristic approach is used for motions of 

the hand. 

On the other hand, local methods have proved to be very powerful 

for computing motion of a manipulator. Local information on the 

environment only is used to compute displacements at any time, without 

keeping track of any landmarks. The so-called Potential Field Method 

relies on a minimization including a term attracting the manipulator 

towards the goal, and repulsive terms that push bodies of the manipulator 

away from the obstacles. In [FT87] we propose an alternative to the 

Potential Field Method for locally computing trajectories. A task is 

expressed by the minimization of the relevant measures of the problem 

written as a function of configuration parameters. Moving objects have a 

simplified local view of the environment as planes separating them from 

the obstacles, that are transformed into linear constraints in Configuration 

Space. 

1.2. Overview of the Approach 

In this paper we propose to uncouple the general problem of path 

planning into a low complexity local planner and a higher complexity 

global planner working on a graph of cells representing relatively large 

sets of configuration parameters. The main idea underlying this approach 
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is that we want to turn the power of local methods to profit so as to deal 
with the high complexity of global planning only at the relevant level of 
description. At the higher level no geometric description of the obstacles is 
used but only weigths indicating the probability for a trajectory computed 
locally not to lead to any 

Given initial and goal configurations, a 
classical minimum cost path finding algorithm in the graph yields a list of 
cells giving the global shape of the path joining the node containing the 
init ial configuration to the node containing the goal. Then the robot, 
starting from its initial position, describes a trajectory computed by the 
local planner, taking as subgoal a point located inside the next cell on the 
path. During the execution of the path, the weights are updated using a 
model of learning from results of motions generated by the local planner. 

The robot eventually reaches the final goal, or there is failure, 
meaning the robot is blocked while aiming at some cell. In this case, we 
put a higher weight to the corresponding transition and compute again a 
global path from current configuration, based on the updated weights. 
This produces a new path avoiding the problematic arc. 

Let us underline that this approach is relevant only in the case it is 
performed using a loose grid in Configuration Space, or we again deal 
with a space of small cells either occupied or free, which is not better than 
the global approach in terms of computational cost Dealing with a loose 
graph is only made possible because of the intrinsic power of the local 
planner that produces long pieces of collision free trajectory. 

Our approach presents other interesting features. First local 
computation can be based on a local model of the visible obstacles 
acquired through proximity sensors such as ultrasonic sensors, or a stereo 
vision system, as a substitute to a complete geometric model of the 
environment. Transitory mobile obstacles wi l l in particular be taken into 
account by the local planner. 

Figure ( la ) shows the trajectory of a mobile robot in an unkown 
environment using this approach. Figure ( l b ) shows the trajectory 
obtained with the same initial and goal positions when we take into 
account the knowledge obtained from the first execution. 

The following sections describe in more details the different parts of 
this approach, namely the Sute Graph, global planning, local planning, 
and the learning process. 

Figure 1. a) Before learning, b) After learning. 

2. The State Graph 

In the sequel the term robot stands for any robotic system regardless 
of its nature (multi-linked manipulator or mobile robot) and of the number 
of moving objects involved. We denote (q1,...,q1) a set of n dimensional 

configuration parameters describing the state of the system. We assume 

that an algorithm to locally compute pieces of trajectories is available. Let 

us first partit ion Configuration Space into cells of the type 

are the 

configuration parameters of the center of cell C,, and & is the width of a 

cell in the k-th direction. Starting with this description we build a graph 

whose nodes stand for the cells themselves. It is called State Graph in the 

sequel. When the robot configuration lies inside a cell C,- it is said to be in 

state Cr Each node has In neighbors, namely the nodes which stand for 

cells of centers , These 

represent rectangular transitions in Configuration Space. 

As opposed to the standard Configuration Space approach, we wil l 

store at this higher level no description of the obstacles as seen in 

Configuration Space. For each oriented transition between two 

neighboring cells C, and C; in the State Graph we only memorize a weight 

that estimates the difficulty the robot has to enter cell C. when coming 

from cell C,-. More precisely we define pij,-. as the probability for the local 

planner to succeed in making the robot enter cell C, from neigboring cell 

Cj, when aiming at some point located inside C,j 

We call path any connected sequence of nodes of the State Graph. 

The probability for a path to provide a successful trajectory is defined as 

the product of probabilities pij along the path. This implies we make an 

hypothesis of independence, namely that the probability of realizing a 

transition is independent of the sequence of nodes we followed so far. In 

practice we attribute to each arc of the graph a weight equal to - log(pij) 

and we minimize the cost for traversed transitions along 

the path from initial cell CQ towards goal cell 

Initially, in absence of any infomation on its environment, the robot 

initializes the graph with given a priori probabilities ofpij=p. Hence the 

path we compute first is a path of minimum length in terms of the number 

of cells traversed from the initial configuration to the goal. Later as 

probabilities vary to reflect the knowledge the robot has of its 

environment, the path we compute realizes a compromise between 

minimum distance and the assurance that we will reach the goal. 

3. On Global Planning 

3.1. Searching for a path 

For searching a path from an initial cell to a goal one, we make use of 

an A* algorithm maximizing the product of probabilities pij along the path. 

This translates into minimizing the cost, for traversed 

transitions along the path from initial cell CQ to goal cell 

algorithm makes it possible to use a heuristic function to guide the search. 

This function gives at each node an estimate of the cost of the optimal path 

from this node to the goal. This algorithm yields the optimal path if the 

heuristic is admissible, this is if the heuristic cost hi for any node i is 

lower than the optimal cost from that node to the goal node. 

The heuristic cost we use for a node C j is the number of cells N,- that 

are traversed by a straight line to the goal, weighted by the average 

probability £ for all transitions of the State Graph. 

This heuristic function is generally not admissible, but gives good 
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results in our experiment*. It can be seen as an estimate of the mininum 
cost we expect if we suppose that the difficulty to move around is about 
the same everywhere. 

It must be also noticed that since all weights are finite in our model 

and the graph is connected, a path is always found by the global planner. 

Thus, the feasibility of a trajectory has to be evaluated from the actual cost 

of the global path. We will see in Section 6 how the heuristic cost function 

can be used for this purpose. 

3.2. Choosing Subgoals on the Path 

As we run the local algorithm, a simple choice of a subgoal is the 

center of the next cell on the path. However, this choice yields a trajectory 

generally close to the drunkards walk because of the discretization. In 

order to avoid this reprehensible behavior, we propose another choice that 

gives a smoother trajectory. The idea is to locally optimize the length of 

the trajectory. So, the subgoal is chosen as the point on the common face 

with next cell that minimizes the sum of : 

• the distance from the current position to this point, 

• and the distance from this point to the center of one of farther cells on 

the path. 

The farther this cell is chosen, the more we anticipate future 

displacements. In the case the robot is blocked, nearer cells are used in 

order to provide new subgoals. An example of a trajectory obtained with 

this method, in absence of any obstacle, is shown in figure 2. 

trajectory with no anticipation trajectory with a one-cell anticipation 

Figure 2 : Compulation of subgoals 

4. On Local Planning 

The local planner takes as input a subgoal in the Configuration Space 

and tries to move the robot to this goal taking into account information on 

the local environment. This information can be obtained by sensing, using 

proximity or vision sensors, or from CAD models of the robot and the 

environment. Note that in our approach, no hypotheses are done 

concerning the local method. The interaction between the global and local 

levels is limited to the sending of subgoals from the global to the local 

planner, and the observation of the successive configurations of the robot 

by the global supervisor to achieve the learning. 

We have described in [FT87] the approach we use for local 

computation of the trajectory of a general manipulator system. It is posed 

as a minimization of a functional of the configuration parameters under 

linear anti-collision constraints. For the standard instance of the path 

planning problem (go from one point to another in Configuration Space) 

we simply minimize the norm of the difference between actual joint 

increments and desired ones, computed as the vector supported by the line 

towards the goal in Configuration Space respecting bounds on maximum 

velocities. A local model of obstacles in Configuration Space, namely an 

intersection of free half-spaces of Configuration Space, is derived from 

tangent planes separating the mobile object from each obstacle in Cartesian 

Space. For each moving solid that lies at a distance d less than an 

influence distance di from an obstacle at current time /, we impose the 

following constraint on the variation of the distance: 

(1) 

where d5 is the security distance at which the robot must stop, £ a positive 

weighting coefficient for adjusting convergence speed, and & the time 

increment. This constraint thus realizes a velocity damper forcing the 

moving solid to stay on its side of the separating plane. The variation of 

the distance can be written . 5q where 5q is the n 

dimensional vector of the variations of configuration parameters, and J the 

jacobian matrix for the robot at point x of the moving object nearest from 

the obstacle (see Figure 3). From inequation (1) we then derive a simple 

linear constraint on joint increments Sq between time t and f+&, which 

writes witii \-}i.n: 

Figure 3 : The Velocity Damper constraint 

In [FT86] we describe this approach with more details and present 

the extension to the case of a robotic system composed of more than one 

manipulator. We also make use of a similar kind of constraint that presents 

more anticipation as far as coordination of movements is concerned : 

moving objects are bound to stay on their side of a separating plane, 

possibly moving that is tangent to both moving bodies, or the moving 

body and a fixed obstacle. Figure 4 illustrates a trajectory obtained using 

this method. 

We use this kind of constraints in the examples that illustrate this 

paper, namely a system composed of one or more mobile robots described 

by discs, in a planar world of polygonal obstacles. Details of the local 

method in this case are given in section 7. 

Note that all local methods may fail at some point because of local 

minima generated by concave arrangements of obstacles. In this case, the 

robot stops without reaching its goal. 
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Figure 4. Avoidance of two 

manipulators. 

1. Initial positions. 

2. Intermediate positions. 

3. Final positions. 

5. Learn ing Global Knowledge f rom Path Execution 

5.1. The Bayesian Approach 

we wi l l use as an estimate of p. When we have no a priori knowledge on 

the environment, we initialize the probability distribution with the uniform 

distribution law, that is . It can be shown 

that in this case, the mean value of p after n events, s of them being 

successful, simply writes: 

(6) 

The proof is given in appendix. Let us make the following remarks. 

• The absence of knowledge that we have modelized by a uniform 

probability distribution law can be interpreted simply from this formula: 

the a priori knowledge is the same as if we have already made two trials, 

one of them being a success, and the other a failure. This interpretation is 

helpful if we want to incorporate a priori knowledge: P0 can be initiated to 

where S0 is the number of successes for n0 hypothetic trials. 

• As the events xk are supposed to be independent, the probability 

distribution law does not depend on the order in which the events 

hapenned, and thus all the memory of a transition is expressed by the pair 

(n, s) where n is the number of events on this transition and s the number 

of successful events. 

5.2. Updat ing Probabil i t ies 

We call py the probability for the robot to enter cell C, coming from 

neigboring cell C,, if it is aiming at some point located inside cell C.. 

When the local planner is realizing such a scheme, two types of events 

may happen: 

or success in entering cell Cj, event of probability pij, 

or failure in entering the cell, event of probability A failure 

occurs either when the robot is blocked in its current cell, or when it is 

forced by the obstacles to enter another neighbor of C, before C . . In the 

following, we ommit the subscripts ij for clarity. 

We want to estimate the probalility p associated to a given transition from 

the events that happen during executions of trajectories. We use the 

Bayesian approach as follows. 

Let us suppose that n events have hapenned so far that concern the 

given transition. The value of 1 in case of success and 

0 in case of failure. We denote Xn the vector and/ the 

probability distribution function. The Bayesian learning model states : 

In this recursive form, formulae (4) and (5) can be used to compute 

the probability distribution law ofp after n events, and its mean value that 

Updating of the transition probabilities is first performed whenever 

the motion supervisor detects a transition in the State Graph. If the 

transition is the one ordered by the global planner, the corresponding 

probability is increased by incrementing the number n of events and the 

number s of successes. Else the robot has been deviated from its way by 

an obstacle, and we decrease the probability of the desired transition. This 

is performed by incrementing only the number of events. In this case, we 

must also modify the path so that it remains connected. This is done by 

adding to the path the current node, and the common neighbor of the 

current node and the next cell on the path (hatched cells in figure 5). 

original path 

added oals 

Figure 5 : Modification of the path when the actual transition is not the 

desired one. 

Updating the transition probabilities is also performed when the robot 

is blocked before reaching its goal. If it is not inside the goal node, we 

decrease the probability of the desired transition and invoke the global 

planner using the updated State Graph. As the probability of the 

problematic transition has been decreased, it wil l eventually be avoided by 

the newly computed path. If a failure occurs inside the goal node, the goal 

is declared not reachable. This event may have several causes: 

- the goal lies inside an obstacle (or another connected component of 

free space). 

- the local method failed to reach the goal because of obstacles inside 

the goal node. 
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In the latter case, a solution would be to move the robot outside the goal 

node by setting a subgoal in a neighbor chosen from local information, 

before aiming again at the goal. This strategy might succeed in making the 

robot pass round the obstacle. But the main problem in fact is to 

distinguish between the two cases above. Elements of answer are given in 

section 6. 

5.3. The Mot ion Planning Algor i thm 

The motion planning algorithm is written below in a C-like language. 

Procedures in bold characters correspond to message exchanges with the 

local planner or the robot controller. 

i 

6. Reasonning on the Global Knowledge 

6.1. Deciding on the Feasibility of a Global Path 

As mentionned in the previous section, the case when die goal cannot 

be reached must be treated with some care. This happens when the robot 

intersects the obstacles in this configuration, or lies in another connected 

component of free space. In both cases, we do not want the robot to roam 

around indefinitely while trying to reach the goal. In practice we impose a 

threshold on the ratio of the optimal cost and the heuristic cost when we 

perform the planning starting from some cell C,: 

The heuristic function can be seen as the expected cost in case of 

uniform distribution of difficulty in the environment Thus, if the actual 

optimal cost is much higher than this estimate, it means that the optimal 

path is much longer than the expected one, or that there exists on the 

optimal path one or more transitions with a low probalility of success. So, 

I the constant k measures the relative length of the detour we tolerate in 

order to have a reasonnable chance to succeed. 

6.2. Teaching by Showing Mode 
i 

A simple way to give information to the system is to teach the robot 

some safe trajectories. While executing these trajectories, the system 

increases the probabilities associated with the traversed transitions. If 

these trajectories are repeated, the corresponding cost wil l become lower 

and lower. Further, the system will use pieces of such trajectories when 

other trajectories w i l l be computed automatically. However, if 

modifications of the environment are detected by the local planner, 

corrections will be made to the specified trajectories. 

6.3. Explorat ion Mode 

In this mode, the mobile has no a priori knowledge of its 

environment. We want it to behave properly after a number of executions 

of trajectories. A straightforward way to proceed is to generate goals 

inside one of the nodes with smallest history. The history of a node C,* is 

simply defined as the sum onj of numbers n.- of events that have so far 

happened for transitions from neighboring nodes C. to C,i The robot wi l l 

thus try to explore first those nodes for which it has least information. 

When the path towards the goal is executed, the history of all 

traversed nodes is updated at the same time as transition probabilities. A 

problem arises when the path is declared not feasible. This does not give 

any relevant information on the difficulty to enter the goal node from a 

neighbor, but we increase its history although the corresponding 

transitions are not updated, so that the robot does not try again and again 

to enter a node that it cannot reach. This conveys an information such as 

"this goal configuration probably lies inside an obstacle or another 

connected component of free space". 

The exploration process ends when all nodes have received an 

history higher than a specified threshold. 

6.4. Detecting Abnormal Situations 

Once the environment has been thoroughly explored, we can make 

use of our knowledge to detect abnormal situations by comparing the 

events that happen to a priori probabilities. As an example, if a new 

obstacle appears in the environment, it can be detected from the failures it 

wil l imply for transitions with a high probability of success. 

6 5 . Adaptation of the Size of the Gr id 

In order to decrease the number of nodes in the graph it may be 

useful to adapt the discretization of the Configuration Space to the 

planning difficulty in the various regions. This can be done by analysing 

the variation of the estimated transition probabilities. Indeed, if we have 

too large cells, the transition probabilities will not converge towards 0 or 1 

because of alternate success and failure. Such transitions are characterized 

more precisely by a great variance for the value of events x*, equal to 

To solve this problem, it is possible to split the corresponding 
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node into several new cells, thus obtaining a finer description of this part 

of the environment at the global level. 

In our work on global planning [Fa84] we proposed to used an 

octree in the Configuration Space to represent Configuration Obstacles and 

free space of dimension 3. The octree is a tree based on a recursive 

subdivision of the 3D space into rectangular cells. The root represents the 

whole space. A cell is decomposed into eight cells whose side is half that 

of their father. This structure can be generalized to higher dimensions, the 

number of sons of a node being 2d in a d-dimensional space. It is called a 

2d-tree. 

Using such a structure proceeds as follows. Exploration starts with a 

regular grid corresponding to a relatively high level in the 2d-tree. When 

an event happens for a given transition, we first look at the variance of the 

value of such events and compare it to a threshold. If the variance is 

smaller than the threshold, the usual updating is performed. Else, the aim 

node is split into its sons and new transitions are initialized as follows. 

- Transitions between sons and neigbors of the father are initialized 

assuming that the events that happened to the former transition are 

uniformly distributed on the 2d-1 new transitions. If the variance of the 

former transition is greater than the threshold, they are initialized with the 

a priori uniform law. 

- Transitions between two sons are initialized with the uniform law. 

This process can similarily be used for solving the problem of dead-locks 

inside the goal node. 

Splitting is performed until the size of a node is smaller than a 

threshold dependent on the ability of the local method to reach a subgoal at 

a distance corresponding to that threshold. 

7- Validating Tool 

7 .1 . Overwiew 

We have implemented a simulation tool for validating our approach. 

It deals with motion planning for one or two discs in the plane cluttered 

with convex polygonal obstacles. A straightforward application is motion 

planning for mobile robots. 

The Configuration Space for a disc is the 2D space of parameters x 

and y corresponding to the position of the center of the disc. The 

Configuration Space is divided into square cells standing for the nodes of 

the State Graph. The size of these cells is set to about the width of the 

corridors in which the robot navigates. 

In the case of two discs, the State Graph is obtained as the cross 

product of the discretized Configuration Spaces of both discs. 

Before giving some results, we describe in detail the local method we 

use in this particular case. 

7.2. The Local Method 

We suppose that the mobile robot is able to build a model of its local 

environment at any time using proximity sensors or vision. In our 

simulation, the local environment is obtained by clipping the polygonal 

obstacles by a disc of visibility. 

The principle of the method for avoiding an obstacle is to slide on 

one of the two common separating tangent lines to the mobile and the 

obstacle. This gives a better behavior of the mobile than the so called 

Potential Field method because of the anticipation it provides. 

More precisely, a convex obstacle gives rise to two separating 

tangent lines. A line represents a candidate displacement from the current 

position to the point of contact with the obstacle. We add the displacement 

in straight line towards the goal to the list of candidate displacements. We 

then prune that list by only considering displacements for which the disc 

does not intersect other obstacles during the motion (see figure 6). 

Figure 6. Displacement Sa is not admissible, 8h is admissible. 

If no admissible displacement exists in the half plane towards the goal, the 

robot is blocked and another global planning is performed after updating 

of the State Graph. Else the displacement we realize is the one that 

minimizes the angular difference with the goal. The robot is moved along 

that direction of a distance dependent on time increment and the all 

computation is performed again. 

7.3. Results 

Figures 7 and 8 illustrate results for one disc. Objects that are 

represented are : obstacles in grey, cells of the grid, the robot in its initial 

(hatched) and final positions. Figure (7a) shows a trajectory executed 

without any knowledge of the environment Small circles are positions at 

which the global planner was called. Figure (7b) shows the second 

attempt whith same initial and goal positions. No failure occurs this 

second time. 

Figure 8 shows, for a more complex environment, the path computed 

by the global planner after learning (8a), and the resulting trajectory (8b). 

The graph that is used is the result of 50 learning trajectories. The 

threshold for the ratio of the optimal cost and the heuristic cost was 3. 

Figure 9 illustates the method in the case of two discs. As rectangular 

transitions only are allowed, probabilities are initiated with the 

corresponding value for the given disc alone. If the width of a cell is about 

the size of a disc, we set a priori a low probability for transitions that 

would make both robots occupy the same square of the grid. If robots are 

much smaller, coordination of the motions of the discs is first left to the 

local planner, making use again of tangent separating lines to both discs. 

In that case cooperation of the two robots in constrained parts of the 

environment, for example crossing in a corridor, is performed by using 

the general learning scheme described in this paper. 
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8. Conclusion 

The method we have presented in this paper is general and can be 

applied to various motion planning problems in Robotics. Learning of 

global strategies is performed very simply from the execution of 

trajectories. The method can be used to explore an unknown environment 

in mobile robot applications. Knowledge of the environment can also be 

given to the system by showing it some safe trajectories. This approach in 

which the search for the global shape of the trajectory is deconnected from 

the fine local motion computations realizes the fusion between the two 

types of methods we have experimented earlier, and we think that some 

other interesting results wi l l probably appear in the future, based on 

similar ideas. 

Appendix : Computation of a Transition Probability 

Similar equations can be derived in the case of a failure, which proves the 
announced result. 
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