
THE LEARNING OF PARAMETERS FOR GENERATING COMPOUND CHARACTERIZERS 
FOR PATTERN RECOGNITION 

by 

Leonard Uhr and Sara Jordan 
University of Wisconsin 

Madison, Wisconsin U.S.A. 
Abstract 

This paper presents and describes a pattern 
recognition program with a relatively simple and 
general basic structure upon which has been su
perimposed a rather wide variety of techniques for 
learning, or self-organization. The program at
tempts to generalize n-tuple approaches to pattern 
recognition, in which an n-tuple is a set of ind i 
vidual cells or small pieces of patterns, and each 
n-tuple is said to characterize an input pattern 
when these pieces match i t , as specif ied. 

The program allows n-tuples to match when 
only some of their parts match, and it allows 
these parts to match even though they are not 
precisely positioned (See Uhr, 1969b, for some 
simple example programs). It further learns, in 
a variety of ways: It searches for good weights 
on its characterizers' implications, byre-weight
ing as a function of feedback. It generates and 
discovers new characterizers (and can therefore 
begin with no characterizers at a l l ) , and discards 
characterizers that prove to be poor (See Uhr 
and Vossler, 1961, and Prather and Uhr, 1964). It 
also uses a set of characterizers of characterizers, 
to search for good parameter values that newly-
generated characterizers should have. 

A detailed f low-chart- l ike "precis" descrip
tion of the program is given, along with an ac
tual l i s t ing . It is thus possible to examine ex
actly what the program does, and how it does 
i t , and therefore to see how a wide variety of 
learning mechanisms have been implemented in 
a single pattern recognition program. But be
cause it was coded in a "high- level" pattern-
matching and l ist-processing language the pro
gram runs too slowly for extensive tests to be 
practicable. Therefore only a brief l ist ing of 
output is given, to show that the program, works 
and begins to learn. 
Descriptors: Learning, self-organization, induc
t ion , discovery, pattern recognition, learning to 
learn, n-tuple recognition, characterizing char
acterizers. 

Introduction 

Programs that have used n-tuples as their 
characterizers appear to perform with the very 
best of pattern recognition programs (for discus
sions, see Uhr, 1963, 1969a; for a good recent 
example, see Andrews, Atrubin, and Hu, 1968). 
This is not surprising, for n-tuples are easily 
handled by the digi tal computer. And although 

they may appear simple, any possible charac-
terizer can be described as a sufficiently com
plex and detailed n-tuple. What we don't know 
is whether the n-tuple description of sufficiently 
powerful characterizers would avoid being overly 
cumbersome and ridiculously wasteful of storage 
space and processing t ime. 

Programs that use n-tuples either have them 
designed by human beings and pre-programmed in 
( e . g . , Andrews, Atrubin, and Hu, 1968), or ran
domly generate a fixed set of f ixed-n-size n-
tuples ( e . g . , Bledsoe and Browning, 1959). An 
interestingly simple generalization of this is the 
following: Let the program begin with no char
acterizers, but have it generate new character
izers that are as simple as possible, and only 
when needed. Thus the program might start by 
generating one 1-tuple, continue generating more 
1-tuples as it finds i tself continuing to choose 
wrong names to assign to input patterns, and at 
some point begin generating n+1-tuples. It further 
should be assessing how wel l each characterizer 
is working, by in effect conducting a running ex
periment that examines its successes and failures. 
This information should be used a) to weight the 
importance of this characterizer1 s implications in 
combining them for the decisions as to names to 
choose, b) to decide whether a characterizer is 
good and should therefore be used, or is bad and 
should therefore be discarded, to be replaced by 
another, and c) to gather information about gen
eral types of characterizers, so that new charac
terizers are generated that are similar in impor
tant parameter values to characterizers that have 
proved themselves good. 

This paper describes a program that is a 
f irst approximation to this simple, but hazy, 
scheme of generating as few characterizers as 
needed, keeping them as simple as possible, 
but using what has been learned about charac
terizers to direct the generation of new charac
terizers, so that they w i l l be similar in their 
characteristics to good characterizers that have 
been generated in the past. 

The program has a second general purpose -
to puch deeper into techniques for learning char
acterizers. 

The basic structure of this program seems 
to us extremely simple - the generation, when 
needed, of the best new specific n-tuple of the 
best general type possible, and the learning of 
as much as possible. But when the program is 
described or given in deta i l , as in the following 

- 3 8 1 -



pages , i t i n e v i t a b l y sounds more complex - for 
indeed i t is more complex when forced to the 
l e v e l of code for a d i sc re te d i g i t a l computer . 
In order to get f l e x i b i l i t y i n to our n - tup les so 
tha t they need not be p r e c i s e l y pos i t i oned and 
can be cons idered to match even though a l l 
parts do not a lways m a t c h , extra de ta i l s must 
be added to the c o d e . These in turn suggest 
add i t i ona l learn ing mechanisms that w i l l search 
for good va lues for t h i s a l l owed wobb l i ng and 
th resho ld m a t c h i n g . 

There are a l s o severa l points at w h i c h we 
s imp l y evade qu i te subt le dec i s ions that shou ld 
be made by the program: Should the program 
spend more t ime ad jus t i ng the we igh ts of i t s 
present set o f cha rac te r i ze rs , o r shou ld i t g e n 
erate one or more new charac ter izers ? This we 
handle by hav ing the program generate one new 
charac te r izer per p a t t e r n , up to a f i xed maximum 
(a lso d i sca rd ing charac te r izers found to be b a d , 
to make room for more ) . When the program 
generates a new cha rac te r i ze r , should i t be of 
the same s i ze n, or of s i ze n + 1? This we 
handle by t rea t ing n - s i z e as Just another pa ra 
meter , so t h a t , as descr ibed b e l o w , the program 
w i l l choose the n for a new tup le as a f u n c 
t i o n of the goodness of the tup les of d i f fe ren t 
n - s i z e that have been generated so f a r . Thus 
n is i n i t i a l i z e d to equal 1 ; the program w i l l 
keep tabs on the goodness of each n - s i z e and 
w i l l generate tup les w i t h an n - s i z e that r e f l ec t s 
th i s goodness , but w i t h some p robab i l i t y w i l l 
o c c a s i o n a l l y generate a new tup le of s i ze n + 1. 
This procedure is used for a l l parameters of 
c h a r a c t e r i z e r s . 

Precursors 

As an in t roduc t ion to the s t ructure of our 
program, l e t us cons ider the B ledsoe-Browning 
pat te rn recogn i t i on program (1959), w h i c h was 
among the f i r s t to use n - tup les randomly s e 
l ec ted from the input gr id to recogn ize typed or 
handwr i t ten cha rac te r s . For each n - t u p l e , the 
poss ib le pat tern names hav ing the same sta te 
as the unknown inpu t pat tern are added i n to a 
compar ison t a l l y . Af ter a l l tup les are c o n s i d 
e r e d , the name that matches the unknown p a t 
tern most c l o s e l y ( i . e . , hav ing the h ighes t sum 
of same-s ta te n - t up les ) is chosen as the name 
of the input p a t t e r n . 

U s i n g the s t r i ng man ipu la t i on language 
SNOBOL, Uhr (1969b) coded a somewhat extended 
vers ion o f the B ledsoe-Brown ing program. Uhr ' s 
shor t program uses we igh ted i m p l i c a t i o n s , rather 
than mere ly t a l l y i n g t hem, and i t a l l o w s va ry ing 
s izes for the n - tup les and for the i n d i v i d u a l 
p ieces o f the n - t u p l e s . 

There are severa l weaknesses in th i s type 
o f program: I t does not l e a r n , so i t s per fo rm
ance remains on l y as good as the n - tup le 

character izers i t s tar ts w i t h . N- tup les are r i g 
i d l y p o s i t i o n e d , and must match exac t l y and 
e n t i r e l y . 

A Basic N-Tuple Pattern Recogni t ion and 
Learning Program 

Let 's t ry to genera l ize the bas ic n - tup le pro-
g ram. For examp le , the charac ter izer tup les 
w i l l be looked for one part at a t i m e , ins tead of 
a l l a t o n c e . Each tup le p iece of the character-
izer n - tup le w i l l con ta in per t inent in fo rmat ion 
about i t s expected l oca t i on w i t h i n the pattern 
g r i d , i t s s i z e , and the spec i f i c con f igu ra t ion 
tha t should be f o u n d . O p t i o n a l l y , a tup le part 
w i l l have no pa r t i cu la r pos i t i on s p e c i f i e d , s i g 
na l i ng the program to look anywhere (present ly 
meaning from i t s current pos i t i on on down) for 
th is tup le pa r t . I f a charac ter izer is ma tched , 
i t s imp l ied pat tern names are put on a l i s t of 
found i m p l i c a t i o n s . When the same name is i m 
p l i ed by severa l cha rac te r i ze rs , the separate 
we igh ts of imp l i ca t i ons are added toge ther . The 
tup les are a l l owed to be n o n - e x c l u s i v e , so that 
g r id points in important loca t ions (such a s , per 
h a p s , the l e f t edge of the gr id) may reappear in 
severa l cha rac te r i ze r s . 

This bas ic program w i l l a l s o have the a b i l i 
ty to learn from i t s expe r i ence , by compar ing i t s 
chosen answer w i t h the feedback g i v i n g the co r 
rec t pat tern name. I f the program gave the r igh t 
answer , the memory i s le f t as i s , s ince i t p ro 
duced sa t i s f ac to r y r e s u l t s . But a wrong answer 
ca l l s for rewe igh t ing o f imp l i ca t i ons in the char 
ac ter izers whose tup le con f igura t ions were 
ma tched . The we igh ts of imp l i ca t i ons of the 
wrong ly chosen name are dec reased , and i m p l i 
ca t ions of the feedback name are i n c r e a s e d . I f 
the answer was wrong the program w i l l a l so g e n 
erate a new charac te r i ze r us ing th i s wrong ly 
named input p a t t e r n . To do t h i s , a random n-
tup le is ex t rac ted (n is chosen to re f l ec t the 
d i s t r i b u t i o n o f we igh ts a t tached to the generated 
va lues of n) from the input and assembled in to 
a charac te r izer w h i c h imp l ies the correct feed-
back name. Each run has an upper l i m i t to the 
number of charac te r i ze rs genera ted , to prevent 
sa tura t ion of memory or unnecessary s l o w i n g of 
p rocess ing t i m e . Poor charac ter izers are d i s 
ca rded , mak ing room for new o n e s , when the 
we igh ts o f a l l t he i r i m p l i c a t i o n s f a l l be low a 
m in ima l accep tab le l e v e l . 

Charac te r i za t i on Over Var ia t ions 

Presented w i t h on l y s tandard , n o n - v a r y i n g 
ins tances ( in a s ing le type f o n t , perhaps) of i t s 
reper to i re of pa t t e rns , i t is no great problem for 
a pat tern recogn i t i on program to learn to r e c o g 
n ize a set of cha rac te r s . But i f pat terns can 
v a r y , even s l i g h t l y , in pos i t i on or shape from 
t ime to t i m e , then problems mushroom. Our 

-382-



program tries to handle this in several ways. 

Wobbly Patterns 

Each part of a tuple is allowed to wobble a 
given horizontal distance to either side. (A 
somewhat more limited capability for handling 
vertical wobbling is the "anywhere" search men
tioned previously, plus the fact that al l tuple 
part addresses are given relative to the last 
posit ion, wherever that may be. Uhr (1969b) 
presents programs that also allow vertical wob
ble.) In each characterizer tuple part there is 
an expl ic i t ly given wobble which tells the pro
gram just how big a hunk of the grid row it can 
look in for the desired configuration. This a l 
lowable wobble may vary from tuple piece to 
piece, as learning has indicated was needed for 
good performance. Thus if a desired configura
tion was not found within the specified wobble, 
but would have been found were the wobble 
sl ight ly larger, then the program remembers how 
it almost found this characterizer. When feed
back shows it chose the wrong name, if the 
program finds that this almost-matched charac
terizer would have implied the right answer, it 
increases the wobble allowance to improve per
formance . 

Threshold Characterizers that Can Partially Match 

Suppose that three parts of a 4-tuple were 
found, but the other part was not. We would 
like to allow use of the implications of this 
nearly matched characterizer even though the 
program did not find a perfect match. In order 
to do this the program uses threshold matching, 
where each part of a tuple has its own weight 
to add into the tuple's sum of "foundness." 
Each implication of the characterizer is preceded 
by a threshold requirement which must be met by 
the tuple sum before the implication may be 
merged into the l ist of possible pattern names. 
Thus one implication may require al l but one 
part of the tuple's configuration to be found, 
where another implication of the same character
izer might require a perfect match of al l parts. 

Compound Characterizers 

Besides having a primitive sort of tuple con
sisting of a set of 0-1 configurations to be 
looked for at certain points on the pattern grid, 
our program can also use compound characteri
zers, where one or more of the tuple parts is 
i tself the name of another characterizer. The 
program looks in the stated position (or else 
'anywhere") for the name of the desired compo
nent characterizer and treats this tuple part just 
as any other. Now the program must add the 
names of found characterizers to the input that 
i t is processing. 

Compound characterizers are currently gen
erated from primitive characterizers that are on 
the l is t of characterizers found for this input. 
There must be two or more such component char
acterizers in order to generate a compound char
acterizer. When the program decides to gener
ate a compound characterizer, it chooses the 
maximum number of parts to give the tuple. 
Then the parts are pulled off the l is t of charac
terizers found in this input, and the characteri
zer is assembled as in i t ia l ly implying only the 
feedback. 

These compound characterizers are more gen
eral than primitive characterizers in that a more 
sophisticated set of pattern characteristics can 
be represented by one tuple. Indeed, with com
pound characterizers we approach a method for 
learning stroke or feature recognition, where 
primitive characterizers might represent the var i 
ous primary curves and l ines, and the compound 
characterizers could form the desired combina
tions of strokes to imply the various patterns. 
For example, if CHAR1 is the tuple describing a 
small open-left curve, CHAR2 is a long vertical 
l ine, and CHAR3 is a large open-left curve, 
then CHAR4 compounding CHAR2 and CHAR1 
could imply the pattern "P" and CHAR5 coupling 
CHAR2 and CHAR3 could imply " D " . 

Parameters That Characterize Characterizers 

An important part of learning in humans is 
generalization. In order to enable our program 
to, in effect, "generalize" on what it has 
learned and thus perform better, we have given 
it an expandable set of parameters or character
izer t ra i ts. For each trait (such as the number 
of parts, or their closeness, or their maximum 
horizontal spread), a value can be computed for 
every characterizer. With every characterizer 
there is associated a l is t of this characterizer's 
value for each trai t . In addition we keep a 
common traits l is t of a l l traits and a l l values 
that have been generated and used for them. A 
weight is associated with each value for each 
trai t . For example, suppose the program gives 
a wrong name for an input pattern on the basis 
of found characterizer N. Then after the im
plication weight of the wrong name in CHAR N 
is decreased, the program goes through the trait 
l is t of CHAR N and, for every trai t , downweights 
CHAR N's value for that trait in the common 
trait l i s t . In particular, if CHAR N's value for 
VERTSPRED (vertical point spread) is " 1 " , then 
our program w i l l look for the value " 1 " under 
the trait VERTSPRED in the general characterizer 
traits l i s t , and decrease the "goodness weight" 
of the value " 1 " . 

When upweighting a good characterizer's 
trait values, the program also enters (if not 

-383-



already there) on each trait value l i s t a sl ight ly 
larger parameter value. In this way it broadens 
the range of parameter values that w i l l be used 
to generate new characterizers. The value and 
goodness weight information in the general 
traits l is t is used when a new characterizer is 
generated. The program tries to generate the 
new characterizer tuple within the framework of 
what the program has already learned; currently 
it uses the three traits necessary to control the 
basic generation (tuple s ize, piece s ize, wob
ble) plus a fourth chosen randomly from the 
other possible traits (currently, these are hor i 
zontal spread, vert ical spread, average c lose
ness of parts, number of parts on the edge of 
the gr id, and compound or primit ive). A de
sired value for the new characterizer is chosen 
with a probability that reflects the weights as 
sociated with the various possible values of the 
t ra i t . The program tries several times to find a 
randomly positioned tuple which w i l l have this 
same value. Thus the program generalizes on 
what it has learned, in that if a value of " 6 " 
for VERTSPRED has been upweighted several 
t imes, the program may decide that this is a 
good value to try for in a new characterizer. 
(For further detai ls , see functions TRAITWT and 
PROBCHOOSE and the section labeled PRIMITIVE 
in the precis and the code.) 

The Complete Program 

The preceding sections describe independent 
features, any or a l l of which could be added to 
a basic learning program to create a complete 
program. The final program containing a l l the 
features is described at the end of this sect ion. 
As might be expected, the characterizers for 
this f inal program have become fair ly complex. 
As an example, 

CHARO 

means the fol lowing: 
"Description=at row 0, column 1 look in the 
next 1 position for the string " 0 " , adding 2 to 
the tuple sum of weights on success; 5 rows 
down and 3 co ls , over look in the next 4 pos i 
tions for the string " 0 1 " , adding 1 to the tuple 
sum on success/lmplications=if sum 3 then 
imply I with weight 2; if sum 1 imply T with 
weight l/CHARO is £art of the compound 
CHAR4/Trait l i s t name=TRO/Last tuple part's 
absolute address is row 5, c o l . 4 / " . 

An outline of the program's operation f o l 
lows. 

Deta i led Desc r ip t i on of Program 

*PRECIS FOR NTUPLE 
LEARNING PROGRAM. 

Statement 
Number 

17-31 INITIZE 
I n i t i a l i z e MEMORY (can be n u l l ) , any 
CHARacter izers and the i r TRait l i s t s , 
and the general CHaracterizerTRAITS 
va lue l i s t , 

PAR 
I n i t i a l i z e PARAMeterS (values for 
INCrement , DECrement, I N I t i a l 
THRESHold, I N I T i a l We ighT , GOOD, 
BAD, PROBabi l i ty o f COMPOUND 
charac ter izer genera t ion) , EDGEDOTS 
to a l l ow , , wobb l i ng " room around i n 
put pa t t e rn . 

I N 
READ in the ma t r i x , ROW by ROW, 

put t ing an EDGE on each s ide to 
a l l o w for the maximum current 
WOBbLe, and ma in ta in ing the 
current COLumnSIZE. 

READ in the FeedBacK (marked by 
' * * * ' ) and any PARAMeter CHANGE 
(marked by ' $ ' ) , i f g i v e n . I f no 
more c a r d s , go to END. 

RECOGNIZE 
I n i t i a l i z e FOUND i m p l i c a t i o n l i s t , 
FOUNDCHARacter izerS l i s t , a copy 
of M E M o r y , ROWSIZE,GRIDSIZE, 

Rl 
Blank out IMPLIST of imp l i ca t i ons 

whose th resho ld requi rements 
are me t . 

Get the next CHARacter izer and 
i t s CNumber from M E M . I f no 
more cha rac te r i ze rs , go to DENY. 

Get the DESCRiption of CHAR, i t s 
IMPLIED pa t te rns , and the C O M 
POUNDS that CHAR is part o f . 

R3 
Pick of f THIS p i e c e , i t s We ighT , 
and i t s POSit ion from DESCR. I f 
no more p a r t s , go to R2. 

RR2 
If POS inc ludes re la t i veDROW and 
DCOL numbers and a MASK s i z e , 
compute the abso lu te DROW l o c a 
t i on and go to RR6 to look for 
THIS pos i t i oned p i e c e . 

RR3 
Otherw ise look 'ANYWHERE' for 
THIS, s ta r t i ng at the current Begin 
ROW. I f f i n d THIS , go to R4R. 

-384-

32-

39-

51-

-38 

-50 

-56 

57 

58-

60-

63-

66-

70-

-59 

-62 

-65 

-69 

-72 



Statement 
Number 

R3R 73 
I f the ANYWHERE search f a i l s , make 
the next tup le part app ly ANYWHERE, 
too (by eras ing i t s pos i t i on ) . Go to 
R3. 

R4R 74 
Set th is Row as the Begin ROW for 

future sea rch . 
If THIS is fo l l owed by BCOLumn 75 

and WeiGhT in format ion at the 
RIGHT, we are work ing w i t h a 
compound character izer ; go to RR4. 

Otherw ise compute the BeginCOL for 76 
future search and go to R3. 

RR4 77 
I f the WeiGhT of THIS piece meets 
the thresho ld WeighT requirement for 
th is compound character izer par t , add 
the WeiGhT to the SUM of impl ica-
t i o n s . Go to R3. 

RR6 78-80 
F in ish comput ing the absolute 

DCOLumn pos i t i on to look at for 
THIS p i e c e . Look f i r s t for THIS 
as a compound tup le part w i t h i ts 
DColumn and WeiGhT in format ion; 
i f don ' t f ind i t , go to RR7. 

I f DC was w i t h i n the WobBle a l l o w - 81-84 
a n c e , reset BROW and BCOL, add 
WGT to S U M , and go to R3. Other 
w i s e , i f a l i t t l e bigger WobBLe 
a l l owance wou ld have g iven a 
m a t c h , record th is NEARMISS. Go 
to RR8. 

RR7 85-91 
Look for THIS pos i t ioned pr imi t ive 
tuple pa r t . I f no match , see i f a 
l i t t l e more wobble gives a NEAR-
MISS. 

RR8 92-93 
Set new BROW and BCOL for next 
search and go to R3. 

R2 94-95 
Make IMPLIST of imp l i ca t ions whose 
THReshold we igh t requirements were 
me t . 

R5A 96-97 
Record NEARMISSes on ALMOSTFOUND 
charac ter izers l i s t . 

R5 98 
I f IMPLIST is not empty put on 

FOUNDCHARacter izerS th is CHAR 
and i t s i n f o rma t i on . 

I f CHAR is part of a larger compound, 99-104 
mark i t found in the input matr ix 
and put the COMPOUNDS on MEM 
to look a t l a t e r . Go to R l . 

DENY 
Erase from FOUNDCHARS any 
character izers whose i m p l i c a 
t ions are DENIED by a compound 
charac ter izer . 

IMPLY 
Merge a l l the remain ing i m p l i c a 
t ions from FOUNDCHARS in to a 
FOUND l i s t . 

CHOOSE 
Choose as HINAME the NAME on 
FOUND w i t h the H ighest We ighT . 

OUT 
PRINT out HINAME. 

If there was no FeedBacK or i f 
HINAME was r i g h t , go to I N . 
O the rw ise , answer was w rong . 

REWEIGHT 
Pick of f the next CHARacterizer 

from the FCopy of FOUNDCHARS. 
If no more CHARs, go to ADJust 
w o b b l e s . 

I f the wrong HINAME is IMPLIED 
by th is CHAR, downweight the 
imp l i ca t i on or erase i t i f the 
reduced we igh t is BAD. 

C7 
For each t r a i t , g ive th is bad 

CHARacter izer 's t ra i t va lue a 
DECrement on the main CHaracter 
TRAITS l i s t . 

I f a l l imp l i ca t i ons are erased for 
th is CHAR, erase i t from MEMORY 
and go to REWEIGHT. 

C4 
I f FeedBacK was not IMPLIED by 
th is found CHAR, add i t to i m 
p l i ca t i ons and go to REWEIGHT. 
O the rw i se , 

C5 
upweight the imp l i ca t i on of FBK 
in CHAR. For each t r a i t , g ive 
th is good CHAR'S va lue an I N C r e -
ment on the main CHTRAITS l i s t . 
Go to REWEIGHT. 

ADJUST 
Pick o f f the next CHARacter izer 
wh i ch was ALMOSTFOUND. I f 
no more, go to GENERATE a new 
charac te r i ze r . 

I f th is CHARacter izer I M P U E D 
FBK but not the wrong H INAME, 
enlarge the mask for the parts 
W H I C H wou ld have g iven a ma tch . 

Make sure th is CHARacterizer*s TRait 
l i s t conta ins the maximum wobble 
value o f i t s p a r t s . 

Statement 
Number 

105-106 

107-111 

112-116 

117-122 

123-124 

125-130 

131 

132-134 

135-136 

137-138 

139-140 

141-150 

151-156 

-385-



Statement 
Number 

Statement 
Number 

GENERATE 157-158 
I f there are a l ready enough char 

a c t e r i z e s ( i . e . no more TOGEN-
e ra te ) , g o t o I N . 

Get the number of the new cha rac - 159-160 
te r i ze r and dec ide i f i t shou ld be 
compound. I f n o t , go to PR IMI 
TIVE gene ra t i on . 

COMPOUND 161-169 
Choose the number of PARTS the 
new charac te r i ze r shou ld h a v e . 
Make an FCopy of FOUNDCHARS 
to choose f r o m . 

C G I 170-171 
Get the next found CHarac te r i ze r 

from F C . I f no more , go to 
C G 2 . Keep TUP count of how 
many parts are got from F C . 

Get the LASTPART l o c a t i o n of CH 172-173 
and inser t i t in order i n to the 
DESCRipt ion o f the new c o m 
pound cha rac te r i ze r . 

Add to the new I M P l i c a t i o n LIST 174 
the den ia l o f t h i s component 
CHarac te r i ze r ' s i m p l i c a t i o n s . 

Keep a l i s t of the PRIMi t ive 175 
PARTS in order to la te r inser t 
t h i s new charac te r i ze r in the i r 
COMPOUNDS l i s t s . 

Keep the la rges t WoBble va lue of 176-177 
any part of the compound 
s tored as W B L . 

Keep the la rges t Piece s ize of any 178-180 
part of the compound stored as 
P C . 

CG2 181-182 
I f there were less than 2 c o m 
ponents in F C , go to PRIMITIVE. 

CG3 183-191 
Assemble the f i n a l DESCRiption 

w i t h r e l a t i ve p o s i t i o n s , no t ing 
the LASTPART. 

I n i t i a l i z e TRait l i s t for new c o m - 192-193 
pound cha rac te r i ze r . Assemble 
the cha rac te r i ze r . 

CG5 194-196 
Mark each component charac te r 
i ze r as part o f th i s compound 
cha rac te r i ze r . Go to G 6 . 

PRIMITIVE 197-199 
Make a rearranged COPYTRAITS 

of CHTRAITS so as to c y c l e 
through t ra i t s used to In f luence 
p r i m i t i v e tup le gene ra t i on . 

Accord ing to the va lue p r o b a b i l i - 200-202 
t i e s in COPYTRAITS, choose the 
necessary va lues for charac te r i ze r 

generat ion (TUPle s i z e , PieCe 
s i z e , WobBLe) . 

I n i t i a l i z e the new TRait l i s t w i t h 203 
these v a l u e s . 

Get a des i red TRYVALue for 204-207 
another TRai t . W i l l TRY to 
generate a tup le w i t h the same 
VALue. 

GENTUP 208-210 
Create a r e l a t i v e l y - o r d e r e d random 

TUP-tup le ordered by r o w s , and 
ca lcu la te i t s VALue for the chosen 
TRai t . 

If VAL equals the TRYVAL, or if 5 
TRYs f a i l e d , go to G 4 . O the r 
w i se go to GENTUP and TRY 
a g a i n . 

G4 211-212 
Assemble the p r im i t i ve charac te r 
i z e r . 

G6 213-216 
Complete the new charac te r i ze r ' s 

TRait l i s t , comput ing va lues for 
a l l other t r a i t s . 

Add the new charac ter izer to 217-218 
MEMORY. Go to I N . 

♦Begin rout ines to ca l cu la te the var ious 
t ra i t va lues for the r e l a t i v e l y -
addressed tup le in DESCR. 

HOROSPRED 219-22 7 
ca lcu la tes the maximum number of 
columns between the le f tmos t and 
r igh tmost parts o f the t u p l e . 

VERTSPRED 228-231 
ca lcu la tes the maximum number of 
rows between the topmost and 
bottommost parts of the t u p l e . 

GRIDEDGE 232-242 
ca lcu la tes the number of parts in 
the tup le w h i c h l i e on the edge 
of the input p a t t e r n . VAL is 
normal ized over 10 . 

PROXIM 243-256 
ca lcu la tes the sum of abso lu te 
d i f fe rences between cor responding 
d ig i t s i n a l l poss ib le pai rs o f 
tup le p a r t s . 

COMPOUND 257-259 
returns 'YES' or ' N O ' , accord ing 
to whether the tup le is a c o m 
pound or p r im i t i ve cha rac te r i ze r . 

D i s c u s s i o n 

This paper b r i e f l y descr ibes the var ious 
features o f - o u r program. I t then g ives a d e 
t a i l e d f l o w - c h a r t - l i k e " p r e c i s " that re fers by 
number to the a c t u a l program statements be ing 

-386-



described. The program itself is given in the 
Appendix. Thus the reader can examine exactly 
what has been done to implement any of the 
aspects of the program about which he is cur i 
ous. This seems to us of crucial importance: 
if the program can be used to document i tself 
there is no need for lengthy and usually mis
leading descriptions and discussions. 

The program l ist ing is too long and complex 
to be followed with ease, even by someone who 
knows SNOBOL; but it should give an idea of 
what's going on to the casual observer, and 
those parts in which the reader is interested 
enough to make some effort should become un
derstandable. SNOBOL is a very simple lan
guage in its basic conception, for its programs 
are built up from sets of production and re
placement statements (of the sort "Let A = B; 
Look for C on A and, if i t 's found, replace it 
by B), tied together by labels and gotos. A 
brief description of SNOBOL is given in the 
Appendix. 

This program was written to examine 
whether a wide variety of learning methods 
could be implemented together in a single pat
tern recognition program. Using the language 
SNOBOL allowed us to code a relatively power
f u l , yet short, program. However, the program 
runs too slowly to make extensive tests of its 
abi l i t ies to learn and achieve interesting asymp
totic performance levels. We therefore give 
only a brief l ist ing of a short run, to indicate 
that the program works, and that it at least be
gins to learn. The program w i l l be recoded in 
a faster language if we decide to make more 
extensive tests. 

Further developments might be to have the 
program try to learn good weights of character-
izer tuple parts and the thresholds required to 
imply a pattern name. We would also like it 
to generate new parameters with which to char
acterize its characterizers (see Uhr, 1969b). 

Summary 

The program described in this paper at
tempts to combine a very simple basic pattern 
recognition scheme with a wide variety of 
powerful learning mechanisms. The program at
tempts 1) to generate its own n-tuple charac
terizers as needed, and to adjust their weights 
as a function of feedback, 2) to decide what 
type of characterizer to generate, and 3) to 
learn what are good general characteristics of 
characterizers. It can further decide 4) whether 
and how to modify any particular characterizer 
that it is evaluating. These decisions are a l l 
made within the framework of a program that 
tries to recognize patterns with as small a set 
of characterizers that are as simple as possible. 

It therefore starts out with no characterizers, 
and generates other characterizers which are as 
simple as it has been able to get away with and 
which fal l within the range of what the program 
conjectures to be optimal values for the charac
teristics of characterizers. In terms of charac
terizer size, this means the program starts out 
generating 1-tuples and then, to the extent that 
feedback indicates that it must improve upon its 
performance, 2-tuples, 3-tuples, and n+1-tuples. 

Acknowledgements 

This research has been supported in part by 
NIH grant MH-12266 and NSF grant GP-7069. 

Bibliography 

1. Andrews, D.R., Atrubin, A . J . , and Hu, K. 
C, The IBM 1975 optical page reader: 
Part I I I : Recognition logic development. 
IBM I. Research and Development, 1968, 
12, 364-372. 

2. Bledsoe, W . W . and Browning, I . , Pattern 
recognition and reading by machine. Proc. 
Eastern Joint Comp. Conf., 1959, 225-
232. 

3. Prather, Rebecca and Uhr, L. , Discovery 
and learning techniques for pattern recog
ni t ion. Proc. 19th Annual Meeting of the 
ACM, 1964. 

4. Uhr, L . , Pattern recognition computers as 
models for form perception. Psychol 
Bu l l . , 1963, 60., 40-73. 

5. Uhr, L. & Vossler, C, A pattern recogni
tion program that generates, evaluates, 
and adjusts its own operators. Proc. 
Western Joint Computer Conf. , 1961, 
555-569. 

6. Uhr, L . , A tutorial description of pattern 
recognition programs. (Submitted for 
publication, 1969a). 

7. Uhr, L , , Pattern Recognition, Problem-Solv
ing and Learning. 1969b (In prepara
tion) . 

Appendix 

A Brief Description of SNOBOL 

SNOBOL is a "pattern matching" language 
that turns out to be quite convenient for handl
ing l ist structures and networks of information, 
using push-down stacks, indirection, and recur
sive programming. Its syntax is extremely sim
ple, as fol lows: 

SNOBOL programs are built up of two basic 
types of statements: 
1) Assignment statements that assign a name to 
a pattern of str ings, 
e .g . DESCRIPTION = '001100' 

CHARACTERIZER = DESCRIPTION ' = ' 
IMPIiEDS ' / ' 

-387-



2) Replacement statements that f i n d patterns on 
a s t r i ng and ( i f they are found) rep lace them by 
another pa t t e rn , 
e . g . 

These statements have severa l components : 
a) the "name" of the s t r i ng to be p rocessed , b) 
the "pa t t e rn " w h i c h is a sequence of 1) "names" 
( e . g . I M P U E D S , F O U N D , THIS) w h i c h refer to 
and stand for the i r c o n t e n t s , 2) " l i t e r a l s 
( e . g . " ' = ' " ) w h i c h stand for t h e m s e l v e s , and 3) 
" va r iab le names" ( e . g . " * S U M * " ) , w h i c h are 
ass igned contents dur ing the execu t ion of the 
s ta tement , i f the program succeeds in match ing 
the pat tern somewhere in the named s t r i n g . A 
var iab le name can be subscr ip ted w i t h a number 
that f i xes i t s leng th ( e . g . 
♦THIS/SIZE* where SIZE conta ins an i n t ege r ) . 

In the two examples o f ass ignment s t a t e 
ments above , DESCRIPTION is made the name of 
the s t r i ng whose l i t e r a l contents are ' 0 0 1 1 0 0 ' , 
and then 001100 is put at the beg inn ing of the 
s t r i ng named CHARACTERIZER, s ince the name 
DESCRIPTION refers to i t s c o n t e n t s . I f another 
ass ignment s ta tement , were 
c o d e d , then the i nd i rec t reference symbol do l lar -
s ign ($) preced ing the name $ DESCRIPTION 
w o u l d put EDGE, not 001100, on CHARACTERIZER. 

The end of the p a t t e r n - t o - b e - m a t c h e d is 
marked by the equal s i gn w i t hou t quotes 
around i t , and th is a l s o marks the beg inn ing o f 
the rep lacement p a t t e r n . The f i r s t s t r i ng of a 
s tatement is a lways the name; a l l subsequent 
s t r ings up to the equal s ign form the pa t t e rn -
t o - b e - m a t c h e d , and a l l s t r ings af ter the equal 
s ign form the rep lacement pat tern ( i f the l e f t -
hand pat tern succeeded) . 

A statement can be surrounded by " l a b e l s " 
and ' t jo tos" wh i ch con t ro l the f l ow of the program. 
A ' l a b e l " is a s t r i ng that a lways begins in co lumn 
1. A "goto" comes af ter the s ta tement , is s i g 
na led by a s l a s h , and is of the form / ( INPUT) or 
/S( INPUT) or /F( INPUT) or /S(INPUT)F(PROCESS), 
where S means t ransfer on s u c c e s s , F means 
t rans fer on f a i l u r e , and no le t te r a f ter the s lash 
means uncond i t i ona l t rans fe r . (The goto mus t , of 
c o u r s e , a lways refer to a l a b e l . ) When there 
are no g o t o s , the program goes to the next 
s tatement i n sequence . 

Ar i thmet ic i s performed w i t h i n these s t a t e 
ments by us ing and / (and ** for e x 
ponen t i a t i on ) . Numbers must be referred to 
e i ther as l i t e r a l s or as contents of l i s t s (as in 
SUM + ' 1 ' above , w h i c h w i l l add one to the 
number stored in S U M ) . A number of b u i l t - i n 
func t ions can be used to tes t for i n e q u a l i t i e s : 
. G T ( A , B ) , . L T ( A , B ) , . G E ( A , B ) , .LE(A,B) , 
.EQ(A,B) and EQUALS(A,B) (wh ich is s t r i n g -
match ing e q u a l i t y ) . The command " .READ" w i l l 
read in one data c a r d , and " .PRINT =" w i l l 

pr in t out the pat tern that f o l l o w s . 
An as te r i sk (*) in co lumn 1 denotes a c o m 

ment c a r d , w h i c h the compi ler w i l l i g n o r e . A 
per iod (.) in co lumn 1 ind ica tes that th is card 
cont inues the statement on the preceding card 
(statements can use on l y 72 co lumns , whereas 
the data cards tha t f o l l o w the program can use 
a l l 80 co lumns) . A program ends w i t h an END 
card (END star ts in co lumn 1) that a l so conta ins 
the labe l of the f i r s t statement to be execu ted . 

The bas ic pat tern match goes from l e f t to 
r i g h t . The compi ler looks for the next match of 
each element of the pat tern ( ignor ing var iab le 
names, w h i c h w i l l be ass igned to the s t r ings 
that l i e between the matched elements - the 
l i t e ra l s and names w i t h con ten t s ) . I f no match 
is f ound , i t back t racks to break the ass ignment 
of the p rev ious ly matched e lement , and looks 
for i t s next m a t c h , con t inu ing th is u n t i l e i ther 
the las t e lement matches or the f i r s t e lement 
f a i l s . Success or fa i l u re in the gotos is c o n 
t ingent upon e i ther t h i s match or one of the 
f u n c t i o n s . The programmer can def ine and code 
h is own f u n c t i o n s , and do a number of other 
power fu l th ings not d i scussed he re . 

A s imple program for in fo rmat ion re t r i eva l 
f o l l o w s . 
♦EXAMPLE PROGRAM. A SIMPLE PROGRAM TO 
♦ DO ' INFORMATION RETRIEVAL" FOLLOWS: 
GO DOCUMENTS = 'R IVERS=D1 ,D3 ,D8 , / ' Ml 

'LAKES=D3, D5 , /SPAIN= D3 , D8 , D l 1 , ' 
• D 1 7 , / ' 

IN .READ *QUERY* ' 7F(END) 1 
ASK QUERY ♦DESCRIPTORS ' , ' = / F ( I N ) 2 

DOCUMENTS DESCRIPTOR ' = ' 3 
♦PERTINENT* ' / ' /F(ASK) 
.PRINT = DESCRIPTOR ' IS ' 4 
'DISCUSSED IN ' PERTINENT/(ASK) 

END GO 
RIVERS, SPAIN, MOUNTAINS, Dl 
((Query to be i n p u t , on data card)) 
♦ PRECIS - AN ENGLISH DESCRIPTION OF 
♦ABOVE INFORMATION RETRIEVAL PROGRAM. 
GO Let DOCUMENTS con ta in the d e - M l 

s c r i p t o r s , f o l l owed by per t inent 
documents . 

IN READ in the next QUERY (wh ich is 1 
a l i s t of descr ip to rs ) 

ASK Get the next DESCRIPTOR from the 2 
QUERY. ( I f no more, Fa i l to ASK.) 
From DOCUMENTS, get PERTINENT 3 
ones i f the DESCRIPTOR is f o u n d . 
PRINT out the DESCRIPTOR and the 4 
PERTINENT documents . 

END GO 

-388-



















-397-






































