Computer Science > Computers and Society
[Submitted on 7 May 2024]
Title:The Dark Side of Dataset Scaling: Evaluating Racial Classification in Multimodal Models
View PDF HTML (experimental)Abstract:Scale the model, scale the data, scale the GPU farms is the reigning sentiment in the world of generative AI today. While model scaling has been extensively studied, data scaling and its downstream impacts on model performance remain under-explored. This is particularly important in the context of multimodal datasets whose main source is the World Wide Web, condensed and packaged as the Common Crawl dump, which is known to exhibit numerous drawbacks. In this paper, we evaluate the downstream impact of dataset scaling on 14 visio-linguistic models (VLMs) trained on the LAION400-M and LAION-2B datasets by measuring racial and gender bias using the Chicago Face Dataset (CFD) as the probe. Our results show that as the training data increased, the probability of a pre-trained CLIP model misclassifying human images as offensive non-human classes such as chimpanzee, gorilla, and orangutan decreased, but misclassifying the same images as human offensive classes such as criminal increased. Furthermore, of the 14 Vision Transformer-based VLMs we evaluated, the probability of predicting an image of a Black man and a Latino man as criminal increases by 65% and 69%, respectively, when the dataset is scaled from 400M to 2B samples for the larger ViT-L models. Conversely, for the smaller base ViT-B models, the probability of predicting an image of a Black man and a Latino man as criminal decreases by 20% and 47%, respectively, when the dataset is scaled from 400M to 2B samples. We ground the model audit results in a qualitative and historical analysis, reflect on our findings and their implications for dataset curation practice, and close with a summary of mitigation mechanisms and ways forward. Content warning: This article contains racially dehumanising and offensive descriptions.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.