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Abstract—Self managing systems are collective systems ca-of pheromen information as in ant colony optimization tech-
pable of accomplishing difficult task in dynamic and varied njques. Rather we have used a direct information exchange
environment without any guidance and control. Some particular scheme among the neighbors. The main inspiration behind

examples of this kind of systems are swarms and self organizing thi K is th ti behavi fh bei .
maps. These algorithms are being used to solve a great deal of IS work 1S [he cooperaling behavior of human Deings in

complex problems like clustering, classification, optimization etc. Order to get rid of a complex situation. While working in a
In this paper we have tried to develop an algorithm to solve group human beings use to communicate to their neighboring
such problems easily and in a computationally efficient way. Our people to inform them about their current situation and also
algorithm is based on a simulation of the cooperative behavior of collect information from their neighbors. Then from all the
a human work group. Like other multi agent systems we also have . . . s . .

multiple agents each of which are connected to its topological avallgble informations the m_d'v'dua_l decides h'_s or her best
neighbors. But instead of using any existing popular learning POssible move. We used this fact in our algorithm to solve
rules like competitive learning etc. here we have developed a some engineering problems and studied the results in order to

simple decision theory based learning process in which each agentcompare its efficiency with other algorithms.
can communicate to its neighbors in order to help them to make

an useful decision. This paper also contains some experimental II. MOTIVATION

results that we have achieved when we applied our algorithm to . . . . .

some image processing applications. Later we have discussed the This algorithm is motivated by the behavior of a group of
scope of our algorithm in many different areas of computation. people searching for some object of interest in a completely

unknown search space. Let us consider the scenario of a large
forest area with a harmful creature hiding somewhere in it.
Meta heuristics are high level strategies which guide @uppose a group of people wishes to discover its whereabouts.
underlying subordinate heuristic to efficiently produce higBince nobody knows the exact location of the creature, the
quality solutions and increase their performance. These heusstire area of the forest needs to be thoroughly searched. In
tics which were commonly referred to as modern heuristicgder to accomplish this, they will first divide themselves into
attempt to combine intelligently different concepts for exsmaller search parties, and allocate a separate region of the
ploring and exploiting the search space in order to find nefarest to each party, taking care to cover every part of the
optimal solutions. There are several flavors of Meta-heuristidsrest. Each party will search for the creature in the region
Some are intelligent extensions of local search that attemptaimund its own location. Once one of the parties finds some
avoid getting trapped in local minima by exploring the solutiotrace of the beast, it informs all parties nearest to itself. Then,
space. Examples of such meta-heuristics include Tabu Searchurn,these secondary parties inform yet others - tertiary
[1], GRASP [2] and Simulated Annealing [ 3 ]. Others, sucparties -that are in their vicinity, as well as proceed to move
as Ant Colony Optimization [8] and Genetic Algorithms [4}towards the primary party in order to help it.
are population based and tend to identify high quality areas inNext, suppose there is more than one harmful creature
the search space by sampling or recombination respectivéliding in the jungle, each in a different place, In the process
Some other self managing systems are self organizing maps [the search, suppose two of the parties find two of them.
10 ] which follow competitive learning algorithms like hebbiarSuppose a third party, located in the closeneighborhood of
learning algorithm [9]. both of them, has got information from both of the parties.
Our algorithm can be seen as a hybridization and modificihis party has now to decide which way to move. It will
tion of some of the popular self managing systems. We calkcide its move according to the relative urgency at each
it hybridization and modification because we have taken tlo¢ the two places and the relative distances it will need to
idea of neighborhood connection from self organizing mapsavel to catch up with either party. This situation highlights
like Growing Neural Gas [11, 12, 13] and we have used thbe increased complexity of the problem when multiple calls
idea of cooperation from ant colony optimization. However tharrive simultaneously from different locations. Even with the
modification lies in the fact that we did not use the approadimplifying assumption that a party can communicate only

I. INTRODUCTION



with its immediate neighbors, this possibility of multipleof evaluationis shown in the sequence of figures Fig.2, Fig.3

simultaneous calls, and the resulting conflicting demands fand Fig.4. Fig.2 shows the sample data set. Fig.3 shows the

action needs to be addressed. attribute functionf; and Fig.4 shows the sparsely evaluated
In this paper, we simulate this behavior of a group to findttractiveness function.

out the state of the overall system at different time instantsWe shall now discuss our algorithm in the context of the two

and find some surprising and interesting results. We find thatriants of attractiveness estimation procedure given above.

this behavior of a group may yield a good optimal solution i@ur proposed algorithm has some common steps for every

reasonably less time for especially those problems where thaiant.

search space is completely unknown. In the following sectionsi) Initialization: In this step the population of agents is

we shall go through this simulation and its results and also  puilt and their initial locations are defined.

describe some of its applications. 2) Attractiveness Estimation: During this process each

Il PROPOSED ALGORITHM la(\)gz:zrtlitoﬁ:‘e to estimate the attractiveness of their current

Our algorithm consists of a population of agents, each3) Communication: During this process each agent com-

member of which is connected to, and only to, its topological  municates to its topological neighbors to inform about

neighbors. These agents explore the search space for a near the attractiveness of their current location.

optimal solution to a given problem. While thus searching, 4) Decision making and random walk: During this process

they may Continuously communicate with their neighbors to each agent decides about their next movement and

inform the neighbors about the attractiveness of their current  moves accordingly.

locations, as well as to let those neighbors reciprocate. Froms) Convergence: After each iteration the convergence cri-

the information gathered about its own, as well as its neigh-  teria is checked and the whole process is repeated from

bors’ locations, an agent will decide to move in a certain step 2 if the algorithm is not converged yet.

direction. According to the nature of the problem on whickpege steps are illustrated in figure 5.

our algorithm is applied, our algorithm may have several These are the basic steps of our algorithm while there may
variants. This paper will concentrate mainly on two of the mogle minor variations of these steps for different kinds of prob-
important variants. The variations are essentially introduc&gdns The overall structure of the proposed algorithm would

in the exact procedure by which an agent determines th&nain largely unchanged. Each of these steps is discussed in
attractiveness of its current location. In some cases an agggtail in the following subsections.

can determine the attractiveness of its current location by

knowing only the coordinate of its location and its own regiorf\. Initialization

In other cases, it may have to examine its neighboring regionsie have a set ol agentsA = {a; : 1 =0,1,....K — 1},
also to estimate the attractiveness of its current location. Mich, to begin with, are distributed uniformly over the whole
the attractiveness estimation procedure is one of the mestarch space. Each agentis connected to its topological
fundamental concerns of our algorithm, we shall now discusgighbors, constituting the se¥; c A. We present our

this matter in some more detail. formulation as follows.

We may begin by supposing the simplest possible form for
the attractiveness estimation function. If we considernan A={a;:i=0,1,...... K—1}
dimensional search spacg, a point in it may be addressed as b e

. a; = <Xa-7DiaNi>

x = (21,22,...,Zm). Let the collectionf,(x);p=1,..., P . i
be a set of functions defined afi. We shall say that the D;={d;:j=0,1,..n; — 1} )
attractivenessA(x) is in nature if there existd’, such that db = (X%,r5,pt)
Ax) = Fa(fi(x),..., fr(x)) Xj = {af, 2y, ...x),},m >0

We next consider a rather more complex formulation for the N A
attractivenessi. We shall sayA is nonlocalif there does not i C
exist anF'4 such thatA may be deemed local in the sense X! is the current location ofi; in the search space and
described above, but there does existFansuch thatd(x) = D! is the set of the informations currently in its possession.
Fa(fi(x),....fp(x"));x' € R(x), whereR(x) C S;x € This set of informations includes all the informations it has
S. As a concrete instance of nonlocal attractiveness, consideceived from neighboring agents iW; and the information
Alx) = ffR(x) f1(x")dx" where we have take® = 1. A it discovers by itself. Att = ¢y, the starting point of the
nonlocal attractiveness is more general, but obviously clairaigorithm, evidentlyD!® = (), because at the start, no agent
more computation than the local counterpart. has yet coommunicated any attractive location in the search
We shall contend later that we may replace the exhauspace taz;. We call each membef§- of D! adecision metric
tive evaluation ofA(x) by using attribute information over and the whole seD! a decision set.
each point inR(x) with an evaluation over a sparse but Each decision metrid; will have three elements, a location
representative subset consisting of only a smaller number X in the search space, a rewarl and a punishmenp’
randomly chosen points withiR(x). An example of this kind associated with the IocatioHJt-. TheseX;-;j =0,...,m; — 1
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Fig. 1. In this figure we have represented an example search space of two dimensions X and Y. The search space istdefimed &5, —2 < y < 2.
The Z dimension is showing the attractiveness values. Our intention is to find out the maxima in a heuristic way. Here attractiveness is direct function of X
and Y.

are nothing but the locations of the neighborsupfvho have and present the results in Figh§ and Fig.Gc) respectively.

reported some attractive areas in their local search spaegs. [The rules for changing neighbors in the dynamic neighbor set

itself discovers some attractive location, then its own meffic case are stated below.

will also be included in the decision sél;: asa; € N;. The

cardinality of D!, n; satisfiesn; < |N;|. However we have 1) Let a; have a neighbor sel/! at time instantt and

no need for a superscrigt for the neighbor setV; of any NI ={aj : j = 0,1,...N}| — 1}. At time instantt

a; because the set of neighbors is preassigned and does not a«; has a home locatioX;. In each iteration, the agent

change with time. The assumption of a non-dynamic neighbor  a; will calculate the distancedist; = |X; — X,| : j =

set may seem to deviate from the basic model of comunication  0,1,..|Nf| — 1 if |[N}| > 1. If for any;j dist; > Th,

between individuals in a human work group, but we shall whereTh! is the upper bound of the distance upto which

justify this by some experiments later. In Fi¢u6, we see there the agents; wishes to communicate at the time instant

are some white pixels scattered amongst black pixels. In some ¢, then we shall delete the corresponding aggntrom

regions, the white pixels are seen to be much more densely the neighbor set of the agemt We should keep in mind

clustered than elsewhere. Our goal is to find out the region the fact that this deletion occurs only wheh/| > 1

with high density of white pixels. We experiment with both 2) Here we calculate the threshold dynamically. The thresh-

static neighbor sets and dynamically changing neighbor sets old could be different in general for each agentat
every time instant. We have calculated the threshold
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Fig. 2. A sample data set.

in the following way. Initially, we partition them > 0 dimensional search space
We shall make the reasonable assumption that a persoto K uniform regions. Each of th& agents will occupy the
is more likely to communicate with the person(s) whaentre of one of these regions to begin with.
is/are closest to him. According to this assumption, we

first determine a weighting factor for each neighbor. The S={S%:i=01,..,K-1}

weighting factorw; = (1/(|Nt|—1))(1— —disti
ghting facton, (J/V<| D) e ) CLS) = Liap - 4.1 € A
C IV it s,
The th(;esholdfhi * Zj.=0 dist; xw;. The thresholldr,] Here the center of thé" region at the time instant, is
instead of using a uniform average uses a weig t%%noted byC{SfU} which is nothing but the location of the

)

a\]/ctera%e.l ina the di iohb " ith agenta; at the time instant,. In equation(2) L{a;}
3) A Ierl e etlhng é e |star1F neignbors an ag@a}gm denotes the location af; andt, is the initial time instant of the
calculate the distancedist, = |Xi — Xi| : k = algorithm i.e. the algorithm starts &f. As we are considering

t : t
Oﬁl . hK —land a'ﬁ N, '.dlf for any .kdlSt’? EbThi that initially S;° are nonoverlapping regions, we may define
then the agent:; will consider a as its neighbor at . global search space as follows.

t+1.
From the results it is clear that the population with static i=K-1 .
neighbor sets yields a better result. We can see from (eig.6 s= s ®)
that some of the agents have converged to a local maxima =0

rather than the global maxima. This is because after some-or problems where a nonlocal attractiveness has been
iterations they have lost communication with other agents aspgecified, we would need a local search to compute the
formed small groups of agents to converge at local maximaﬂtractivenessA(X?) of the home location of each agent. We
There is another shortcoming in dynamic neighbor sets:titus need to define the initial local search reglbhxfo) for
raises the computational burden on the whole process. So eaeh agent. We initially assign a radigso each ageni; and
shall use static neighbor sets instead of dynamic sets. this radius can be simply chosen to be the radius of the region

After assigning its neighbor set to each agentwe next of the partition alloocated initially ta;, the center of which
also assign their initial home locations. To get better resulis,XfO. If the radius of theith region isw;, we may then say
we uniformly distribute the agents to cover the whole&f that the radius of local search regionafis 7, = ;. But it is
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Fig. 3. The score function of figure 2. Though, to determine the attractiveness we don'’t have to find out the scores at each location of the image, we have
done so and shown in this picture to visualize the output of the score function.Here the 'Z’ coordinate represents the score values.

not mandatory. IfS is very large, then we may choose to tak®. Attractiveness Estimation
7, < m; Oor evenr; << m;. If we user; < m; then it's better
to go through a fresh local search at each iteration. OtherwiséVhenever the specification of the attractiveness is nonlo-
the agents could miss some important information. Howevé®l, We need to go through a local search to estimate the
if 7, = m; att = t, then we can avoid local search at eachttractiveness at any locatien For different problems, this
iteration in favour of some simple estimation method. Th#@cal search procedure will be different. But we shall present
procedure will be discussed later in this section. The novelydeneral approach in this subsection. At the first iteration, all
of this algorithm will become apparent when we usec< ;. agents will make random searches for an attractive location
In that case, some of the attractive locations remain unreveal@dheir respective local search regions. Attractiveness can be
even after some initial iterations. But they will be revealed iStimated from the reward of the search location. During this
later iterations. So as time goes on, the search space will $®&rch operation, the location of the agent will not be changed
more and more fully explored by the agents and they will tryntil some attractive point is found. If any point seems to be
to converge to the optimal solution for the given problem. g@itractive the agent will adapt its location towards that point
for the sake of clarity, in our paper we will consider= ;. Dy a small amount. Once one agent finds an attractive point,
it's local search region will no longer necessarily remain non



(a) The attractiveness function of the subsampled image

Fig. 4. We have first defined @X 5 window around the pixel of interest to pick up 10 pixel locations randomly from within the window and summed them
up to determine the attractiveness of the pixel location. However to display the attractiveness values in a convenient way we have calculated the attractiveness
at each location and then displayed a subsampled attractiveness graph. Here the Z coordinate represents the attractiveness values.

overlapping with the search regions of other agents. For evéoythe normalized reward of the poid* which is thek*™®
agent that finds attractive points, the home location will bettractive location for i th agenf, is the current location of
changed according to the adaptation rule described in equatibe agent:; as said before.

4. Th|§ adaptation C.’f hom_e |OC?.tI9nS W.'” take place each t'meAfter each agent completes its initial local search those who
they find an attractive point within their current local searc

) nave found some attractive locations will move to a new home
. . . ) YBcation (the others will retain their current home locations).
that are randomly explored in each iteration will be a very ver.yhey will then update their their own decision sés as well

?T:I:ofézggﬁnaggﬂ,::t.gﬁil }/:I_l;rrézsc:;_ltt)sé(;ogzllosearch T€910M¢ transmit the update to their neighbors so that they can also
! ptation ruie ! W update their own decision sef3;.

Xl = X0 4+ 5% (XE - Xlo) Figure 7 shows how the decision set will look like after
! ¢ N ¢ ! (4) the information exchange. Due to lack of space we only have
§=axr(X)0<ax<l. shown the decision sets of first, second, third and fifth agent.
Here § is the rate of adaptation and and it is proportionalhe decision sets of the other agents will follow the same



Generate the population
Assign their initial location
Define agent neighborhood
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Fig. 5. In this figure we have shown a flowchart for our algorithm.



(a) Test data for dynamic population set

(b) Result with static neighbor sets (c) Result with dynamic neighbor set

Fig. 6. (a) shows the image on which we applied our algorithm with static and dynamic neighbor sets. Figure (b) shows the result with static neighbor sets
and figure (c) shows the result with dynamic data sets. We can see a clustering of agents at local maximas in figure (c).



solution of a given problem. Each of these agents have 5 neigh-

al->d1 22.3¢2 bors. Now if they had to comunicate with all the remaining
a3->d3 agents then at each iteration each agent had to go through 199
D1={c|1.c|&5} . . ] computationg in'ord'er to make the commuication onI.y.. After
TN, D2={d1.d2,d3.d4.d5.0 D3={d2.d3,05.d6} the communication is complete they need to take decisions. If

all the agents communicate to all the remaining agents then
the decision set will also be proportionately larger. This would
put severe computational burden on the system. Rather if we
take the scheme of neighborhood communication then at each
iteration each agent has to go through 5 computations only in
order to communicate and the decision set will also be small
in size. So the neighborhood communication scheme is more
realistic from the computational point of view.

After the communication is complete each agent has to de-
cide about their future movements. This procedure is described
in the following subsections.

ad-

~ S
Dﬁ:{[|1:Elltl3:E|4:E|5:E|5,E|?:E|E:E|9}

ad-k W} 2

ar-=

D. Unbiased Random Walk

Fig. 7. In this figure we have represented nine agents as nine red circles\\/hen an agent is attempting to make some decision it will
The interconnection between them are shown as black lines. Here, at any time . . . . . . .
instantt > to the agents al to a9 found decision metrics d1 to d9. They add§_§arCh _|ts Own deCISIOI']. S_et_for the a_Va”abI? _deCISIO_n metrics
their corresponding decision as well as the decision found by their neighb&sthat time instant. But if it finds that its decision set is empty

to their decision set. We have shown how the decision matrix of al, a2, 3en it will execute a small unbiased random walk around its
a5 will look like. These decision matrix are represented as D1, D2, D3, D5. rrent location

Others decision matrix are not shown due to lack of space but they will folloft!
the same rule.

X =XL +6t>t

rule. Here we have considered that all agents have found some¢ is a small random vector such thig| << 7; (6)
attractive locations, which is not a necessary state of affairs r, is the radius of local search space:tf agent.
on every occasion. We shall discuss some aspects of this inter_.
agent communication scheme in the next subsection. E. Biased Random Walk

At this point the first iteration is complete. If, at the Any agent which has a nonempty decision set will execute
first iteration, some of the agents have found some attractii@sed random walk biased by the probability factors asso-
locations then those who have found attractive locations hetiéted with each available decision metric in their decision
already changed their locations towards the most attracti¥et. The agent; will calculate n; probability factors Py
area in their initial local search space. So, accordingly, théerej = 0,1,...... n; — 1 depending upon the rewards and
centers of their local search spaces are also changed and h@wgéshments associated with each available decision in the
the local search spaces no longer remain non overlappiegowing way.
to each other. This phenomena is shown in the following

equation. . ]:(TE_)
e. =
K-1 7 G(ph) .
So | sht>t (5) ot (1)
P Pj= 2y t>t0,j =010 — L

_o €
Even after the information exchange some of the agents may =0k

have an empty decision set. Those who still have an empty-ere F(rj) an(_jthg(pﬁ)_ are the functions of reward and
decision set will have a small unbiased random walk and thadgnishment of thg*" decision at the time instant> ¢,. After

who have a non empty decision set will have a biased randéh¢ calculations of the probability factor the agentwill take
walk in the next iteration. decisiond; with a probability P}. If the agenta; has chosen

o the decisiond’; then it will update its location according to

C. Interagent Communication the following equation.
As we have stated earlier, each agent communicates to its

neighbors after it finds some attractive location in order to X = xt FB(X; — XLt >t
inform their neighbor about the attractiveness of the location it ' ' '
has revealed. A question may arise at this point, as to why they
should communicate to only their neighbors - and navery Here 3 is the rate of adaptation. If we chooBe< § <<
other agent? To answer this question let us consider that Wwetypically in the rangg0.001,0.1), then the algorithm will
have 200 agents in some application searching for an optinyédld better solution but at the same time it will take more

®)
Generally0 < g <1



time to converge. On the other hand if we takén the range will make the chosen move + a small random vector. Precisely,
of (0.5,0.9? the convergence will be fas_ter but the algor.ith_n}(tﬂ S XE 4B (X~ XD) 68>t

may not yield a good solution. There is a need to optimize® a a
the performance of the algorithm in terms of quality of thé 1S & Small random number such thgf| << ;,

solution and the time taken to converge. This can be done Wherer; is the radius of local search space of i agent.
using Genetic Algorithm. However we did not use G.A. In our 9)

applications We, have manually assignéd value of 0.5. To inmplement this population (density) control mechanism
In the equat|on§ above we have used a.functiﬁnof. we maintain a global dynamic state vector. Each element
reward and a functiog of punishment. A question may ariseyt this vector will correspond to the current state of the
regarding their exact forms. There are no generalized fo”@érresponding agent. Let us denote this state vectofrby
for these two functions._ Their form will depend on the typg_0 T will have K elements. At: the ith element of " will
of problem. But one thing must be remembered. Though dfrespond to the state of. At the start of each iteration, the
looks like the punishment factor is unnecessary and can ge of all the elements of this state vector will be reset to
avoided this is not practically so. Because if we make the,.; Now suppose that at anyhe first agent:, has decided
punishment factor a constant the algorithm may take too Mugh ,ove towards the location of the agent We shall then
time to converge. This punishment factors help the algorithif-rease the second elementBfby 1 to indicate that at the
to converge qmcke-r. location ofas has a population excess of one agent. Applying
Here we shall discuss some examples of the forms thes@s procedure for every agent move in the current iteration,
functions may take. Most oftenly the functiah is a linear \ye shall be able to track the population at each step at each
function of the reward-; because attractiveness is the primgyrrent home location. After finishing each iteration we shall

concern in most of the problems. So the functiitr;) = again reset all the elements of the state vector to zero.
97"7‘5 + w where both¥ andw are constants. The value of these

constants may vary from application to application. Even tffa. Convergence

values of these constants can be tuned by means of some oth@nce all the agents have made their decisions they will

meta heuristic algorithms like Genetic Algorithm to get mositart the next iteration with a local search and go through the
effective results. In our applications we have simply takemhole procedure again. This is repeated until the convergence
F(r%) = ;. Now the functionG may have different forms. criterion occurs. We shall say our algorithm has converged

If it's as important as the attractiveness we may use a lineghen the change in average movements of the agents with
form of the kind we have used fgF. But in some cases we respect to time is almost zero. However we cannot presently
may have to prioritize the punishment factor against the rewagiye a theoretical proof of the convergence of our algorithm.

factor. If the priority of punishment factor is less compared tBut we have observed that there is an important role of

the reward factor then it's better to use some nonlinear form ftste punishment factor in the convergence of our algorithm.

G. For example let us defirg@(p’) = &P whered is a constant Without a punishment factor there is a high chance for the

andd =1+v and0 < v << 1, generally0.001 < » < 0.01. algorithm to oscillate for ever. This phenomena occurs when
From this function it's clear that even for large variationzf some of the agents got some equally attractive locations. Then
the variation ofG(p}) will remain small. We have used thisthey jump around from one location to another endlessly

function in one of our applications discussed later. and the system starts oscillating. This can be avoided by
introducing a proper punishment factor.
F. Population Control A local search in every iteration will produce heavy com-

putational burden. In the next section we shall discuss about

Let us consider that at any time instant 't', & << K) gome techniques to avoid this computational burden.
number of agents have found some attractive locations. Now,

suppose a total of MM > R) number of agents have gotH. A procedure to avoid local search at each iteration
the informations about the R attractive locations. So at theAt the very first iteration of our algorithm, we divided the
instant t a total of M number of agents have to select thaihole global search space in K nonoverlapping regisinand
moves from 'R’ available locations to decide their positiomssigned each region to a unique agent as its exclusive zone
at thet + 1*" time instant. IfM/ >> R then some attractive that contained initially(and even equalledrif= ;) its local
locations may become crowdy due to over gathering of agergsarch space. So, as we have covered the whole global search
This may lead to some undesired results because due to #pace in the first iteration, we will have a gross estimate of the
overcrowding some attractive locations may remain unreveal@st attractive locations after the first iteration or rather after
for ever. So to avoid this we have to take necessary measutgs. iteration when for the first time a considerable number
Let's consider that at any time instant t, an agentis of the agents have found some attractive locations. At the
about to make a move towards, say , attractive locafign subsequent iterations the agents having non empty decision
So it will first see at the same time instant t how many agergsts will move towards one of the attractive locations found in
have already made the same choice prior to itself. If the totdrlier iterations. So their modified location will be very near
number of such agents goes beyond the crowd factbien it to one of the attractive locations found previously. Thus, rather



than carrying out a thorough local search we can formulate
an estimation procedure which will estimate the attractiveness
of the modified locations. This estimation may be done by
a function of distance of the modified locations from the
previous locations of the topological neighbors as well as the
previous location of the concerned agent itself. This procedure
may be formulated mathematically in the following manner.

r(XH) = e(xy,,

r(Xy)),k=0,.n;— 1.

X3 = L(ay) at time instant > ¢

ar € N; Ua;, N; is the neighbor set of agent.
r(XiH) is the estimated attractiveness

of the new location of agent;

£ is the estimation function.

(10)

Herer(Xt_“) is the attractiveness of the location of tHg Fig. 8. In this figure we can see some Wh!te pixels are spread over a
& black background. In some areas those white pixels are forming much denser

agenta; at the time instant + 1. We know thatXi+! will  ¢isters than the remaining area. Our goal is to find out the denser clusters
be somewhere near the home locations of the agents whickhe image in a completely heuristic way.

are neighbors of the agent or it will be very near to the

home location of the agent; itself. So here we have defined

the attractiveness of the new locatiéff ' as a function of the attractive location divided by some constant factor. The
the attractiveness of its neighbors, attractiveness of itself, itgmulations are shown in the following way.

neighbors locations and its own location. For the simplesty) First we generate a set of population and then we
possible approach let us consider that the attractiveness decays populate the neighbor set of each agents.

exponentially with distance. So KX; is an attractive location
andr(X;) is the attractiveness of the locatidfy then we can
say that at a location X the attractiveness will be estimated as
r(Xj)exp(M). Using this technique we estimate the
attractiveness of the location of the agep#t the time instant

t+ 1 as follows.

a; = <X;i7Df7Ni>

D! = {d; :7=0,1,...m; — 1}
&= (XL,rt)

X; ={z1,22,...km},m>0
N; C A

12)

— 11X = X

14

r(X5T =) mer(XL) exp( )
k=0
ar € N; Ua;, ki IS a constant such that< x, < 1.

v is a constant such that> 1.

The radius of local search region is determined after-
wards. Let the radius be.

2) Every agent estimates the probability of white pixels
and try to update their locations towards the center of
the most dense cluster in their local search space. This
probability is the reward at the newly updated location.
Updating the home locations towards the most dense
region within the immediate neighborhood of an agent
a; follows the rule stated in equatich The calculation
of the reward factor goes as follows.

(11)

IV. SOME SIMPLE APPLICATIONSOF OUR ALGORITHM

We applied our algorithm to some simple image processing
applications. In this section we will discuss some of the
simplest applications and analyze their results.
A. Finding High Density Clusters Of White Pixels

In Fig. 8 we have a binary image which contains some white

pixels as well as some black pixels. Our objective is to find out
the areas with high density of white pixels. For this we set up
a population of agents and leave them on their own to find out
the region where the density of white pixels is considerably
high. We formulate the whole problem in the following way.

The reward is the probability of white pixels at the neigh-
boring region of the location of interest. So the attractiveness
of the point X, will be 2+ wheren? is the total number

of white pixels andn! is the total number of pixels picked 3)

up randomly from the local search region centeredXaj.
The punishment factor is the distance to be travelled to reach

Xy Cxg sl

S! is the local search space of the agent (13)
| Xa

a
|Xai |

at a time instant tr! =

Here XV is the set of white pixels found and is
the set of total pixels counted. Heré" = |X| and
nt = |X2| ‘

7 ajl "

Now, those who have a nonzero reward will populate
their own decision set as well as their neighbors’ deci-

sion set.
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C. Automatic Eight Point Matching For Stereo Images

CONVERGENCE OF DUR ALGORITHH IN TERKS In this application we have used our algorithm to find out
?u; OF CHANGE IN AVARAGE DISTANCE TRAVELLED a number of pairs of matched points from a pair of stereo
1, WITH RESPECTTO TIME. images. To do this, first we have found out 20 feature points in
sof the left image using Gabor wavelet feature detection technique.
E Here the left image is nothing but image taken by the left
3 | camera and similarly the right image is the image taken by
wkb I\\ the right camera. However after finding out the feature points
E we shall search through the right image for their matches. The
- | matching is done by using weighted cross correlation over a
: 1 local window centered at the point of interest. We want to find
ar L out the match between two points, one from the left image ,say
N (z11,yr1)and the other from the right image, s&yr1, yr1)
A and to do so we shall use the following equation to evaluate

."'“;—-* — the similarity measure [14¥1, 1, (¥r1, Yr1, TR1, YR1)-

MUBIBER OF ITERATIONS ———

U (%L1, Yoi, Tri, YR1) =

Fig. 10. In this figure we can see average movement of every agent is

Do i, g) — pa)(L2(i, 7) — p2)

tsaggﬁ]izr:g.uced drastically at each iteration and at iteration eight the algorithm \/Zi,j %ij (Il(i,j) _ M1)2 \/Zi,j Vi (Ig(i, j) _ M2)2

4)

5)

6)

B. Experimental Results

= > 114, 7) = > 12(1,7) (15)
1= sy M2 =

2 1)2 2wq + 1)2
At this point, when all agents finish inter agent commu- (2wd +‘2) 5 (2wa+1)

nication, those who have empty decision set will make ;; = exp(fz +2] )is the weighting function

an unbiased random walk as described in equation 6. o7

The agents who have a nonempty decision set will calcu- 91S @ constant typically/2wq.

late the probability factor associated with each decision yere i and j are integers. i varies in the range,; —
metric avallab_le_ in its de_:ct|3|on ;5et in the foI_I(_)wmg WYy, a1t +wy) and (zr1 — wa, Tr1 + wg) in the left and right
F(zr every decision metri¢; € D; the probability factor image successively and j varies in the rafige, — wa, yr.1 +
P will be calculated as follows. wg) and (yr1 — wa, Yr1 + waq) in the left and right image
successively.

t
e§. = % We shall use this similarity measure as attractiveness func-
—L tion. First we shall take one feature point in the left image
. €§' _ 14) I, say (_xLl,yLl), and then define a re_ctangular window
Pi===—77=01.n -1 having sides of lengtfi2w, + 1) around this point and then
k=0 k match the windows around every point within an estimated
Heree, ¢, A are constants. region in the right image. This estimated region in the right

image is that region within which we predict the matching
bility Pjt and adapt their locations as shown in equatiorr)\o'.nt Of_ (w11, 9,1) is present. We shall_ not discuss the region
7 ands. es_tlmatlon procedure h_ere as this is qut (_)f the scope of
After every agent finish updating their locations the%h'iepagsé'rafgggosi tuhI:tic?r?t:)ngitdeerr?galOZr?it’\:\;ﬁilghnge then
have to determine the attractiveness of their curreff o o ated a pop . . 9

iformly distributed over this region. Each agent use the

I ions. Here in f going through a thorough | ; .
ocations. Here instead of going through a thoroug ocd ove similarity measure to estimate the attractiveness of

search we used simple estimation procedure to estimate . : .
the attractiveness of the new location. This estimatiof current location. In this problem a local search is _no_t
process follows the rule of equation 10 and 11. Then ghgcessary. Each agent does.not look for the Scores in Its
whole procedure repeats from step 3 until convergencge?'ghbormg regions. The pumshment factor is the euclidian
istance between the coordinate of the feature point, v, 1)

and the the coordinate of the attractive location towards which
it may attempt to make a move. So if the* attractive location

Then the agent; will take its j*" decision with proba-

_The experimental results are shown in Fig. 9. Here the gregfian agent, is X/ then the punishment factor is the distance
circles indicate the position of each agent and the blue lingg, | _ x* || So for the k" attractive location we have
aj "

are drawn to visualize the neighbor set of each agent. In Fgyculated the factoet as
10 we have plotted the average distance travelled per agent at ’
each iteration.From this figure it can be seen that our algorithm t V1, (16)

; . A ef = ————
converges at approximately eighth iteration in this case. 7o)X =X



S X R LR R B
EXEN
ERE
-
- -
A LR N R
b o
h o
&
ki
(a) Initial Population (b) The location of agents after two iterations

(c) The location of agents after four iterations (d) The location of agents after eight iterations

Fig. 9. In this figure we have shown the movement of the agents in a step by step manner. From the above pictures it can be seen that the algorithm
converges at the eighth iteration. In (a) we can see the starting locations of all the agents. Then in (b), (c), and (d) they arrange themselves to take the shape
of the denser clusters in the image shown in Fig.8.

Then the probability factor is calculated as edge of the left image are ignored. The upper left corner of
ot the bounding box of each green circle represents the location
Pf = 7Jt (17) of the corresponding agent. After convergence we can see
i€ that a few populations have found more than one matches
Then everything will follow the steps stated earlier. for its corresponding feature point. This is due to inefficiency

D. Experimental Results of th_e similarity measure we have used_here as attractiveness
' function. However most of the populations have found the
The results of the above experiment is shown in figuigpropriate match in the right image for the corresponding

11. In the left images the feature points are the upper Igfature points in the left image. The most intersting thing

corners of the blue rectangles. The rectangles are numbeigtthat we have considered the estimated region (hich is the

In the right image each green ball represents one agent. Ygbal search space for the corresponding population) as a

have twenty feature points and we have generated twepdétangular region of areal X41 pixels. So if we had to

populations to find out the matches for the correspondig@ through the whole search space in order to find out the
feature points. The feature points which are very near to the



perfect match for the corresponding feature point then we hasled the probability of white pixels in a local search region as
to search for matches in all of thid X41 pixels. However our the measure of attractiveness. Let us denote this attractiveness
algorithm has converged at the eighth iteration. So the totakasure byr!. In the present case we shall use- r! as
number of similarity measures (that we have used for featumttractiveness measure whehis not equals to zero. All the
matching) we have done i$ X8 which is less than one tenthother steps remain same. The result is shown in figure 13.
of the earlier. But if we use populations of nine agents then tlkeom this figure it can readily be observed that the agents have
computational cost will be reduced drastically but the reswdticcessfully found the areas with lower density of white pixels.
remains almost the same. However we have shown here 8 from this experiment we can infer that our algorithm is
results with populations having sixteen agents each. more flexible than other self organizing systems like growing
neural gas.

V. FUTURE RESEARCH

We have successfully applied our algorithm in some image
processing and computer vision applications. Now we are try-
ing to solve some problems related to finance and economics
using our algorithm. We are now focusing especially on
portfolio management systems and vehicle routing problems.

To improve the robustness of our algorithm in specific
applications we are also trying to combine our algorithm with
some other existing learning and meta heuristic algorithms
like tabu search, Q-learning, ACO etc. In this paper we have
considered that all the agents have similar characteristics. Now
we are trying to create a population where all agent will have
some common global characteristics as well as some agent
specific characteristics which are not common to all. This is
a more realistic approach in order to simulate the behavior of
Fig. 12. In this figure we have shown the result of GNG algorithm on th@ group of people working in particular situations.

image shown in figure 8. Here the green circles represents the position of thaje are also working on a formal logic approach to design

neurons. The neurons have formed clusters at every location wherever t@j ; sl )
found white pixels. They have not used the density information. They ha é behavior of each agent and then print it in the corre

blindly followed the locations of all the white pixels. sponding agent’s gene. Thus we will be able to use genetic
programming techniques to evolve the behaviors of each agent.
] What exactly we are trying is to generate the population in
E. A Comparative Study such a way that some agents are weaker is making decision
We have used another very popular self managing algorithihan the others and then we are trying to find whether there
on the image shown in figure 8 to achieve the same resudt.a possibility for the weaker agents to evolve themselves to
The results are shown in Fig 12. From fig.12 it can easiope with the stronger agents while working with them. And
be seen that the neurons do not only follow the shape of the are also trying to find whether this kind of population can
areas where the density of white pixels is very high they al$®lp in solving more difficult situations.
form clusters in the area where the density of white pixels
is low. These kinds of algorithms do not use the density
information; rather, they blindly follow the locations of the Though we have discussed only a few applications of our
white pixels. Not only that, to achieve the result shown in th&gorithm, in practice, it may find more and more imple-
figure the GNG algorithm took (10 X No. of white pixels)mentation areas. So far we have not dealt with dynamically
numbers of iterations which is very large compared to that @érying situations. This kind of situations can be dealt with
our algorithm. accomplishing a local search at every iteration. There are
Let us now consider a little different problem. Suppose, isome situations where we have to work in real time. For
the image shown in fig.6(a), instead of finding the area witxample consider the case of tracking an object in a video
high density of white pixels we need to do the reverse. Tha¢quence. Though our algorithm is more autonomous and even
is, we need to find out the areas where white pixel densitygemetimes computationally efficient than the others like self
lower. In this case we shall not consider the areas which amganizing maps we will have to work a lot to accomplish
having no white pixel. Rather we are interested in those aremgood result in real time simulations. The performance of
where very few white pixels are present. Other algorithnwur algorithm depends a lot on the attractiveness estimation
like Self Organizing Map or Growing Neural Gas will failprocedure, the reward function, the punishment function and
to serve the purpose. But our algorithm can efficiently servédse constant parameters. So we have to be careful in designing
this purpose. In our algorithm we only need to change tlikese estimation procedures, functions and other parameters.
attractiveness function. In the application shown above Wée overall performance of our algorithm is comparable with

VI. CONCLUSION



(a) Initial Population

(b) The location of agents after one iteration

(c) The location of agents after four iterations

(d) The location of agents after eight iterations

Fig. 11. In this figure we have shown the movement of the agents in a step by step manner. From the above pictures it can be seen that the algorithm
converges at the eighth iteration. In (a) we can see the starting locations of all the agents. Then in (b), (c),and (d)they arrange themselves to find the proper
match for the corresponding feature points in the left image.



(b) The location of agents after four iterations

(c) The location of agents after eight iterations (d) The location of agents after sixteen iterations

Fig. 13. In this figure we have shown the movement of the agents in a step by step manner. In this case instead of finding the region having high density
of white pixels we have tried to implement our algorithm to find out the region with fewer white pixels.

self organizing map but it converges at a faster rate than SOps|. Marco Dorigo, Thomas Sttzle, Ant Colony Optimization. Bradford Books.
A SOM will need hundreds of iterations to accomplish similar July 1st 2004

. : . 7] M. Dorigo, V. Maniezzo, and A. Colorni. An autocatalytic optimization
results as shown in Fig. 9. where our algorlthm took Onlg/ process. Technical Report 91-016, Dipartimento di Elettronica, Politec-

eight. After all our algorithm is more robust than the Self nico di Milano, Milano, Italy, 1991.
Organizing Map because it takes into account both the rewdst M Dorigo, and L. Ganbardella. Ant colony system: a cooperative learn-
and punishment factors and we can design these two factorsind approach to the ltravellng. salesman problem. IEEE transactions on
Evolutionary Computing, 1(1):53-66,1997.
to serve our purpose. [9] Martinetz T M,1993, Competitive Hebbian learning rule forms perfectly
topology preserving maps, Int. Conf. Artificial Networks , (Amsterdam:
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