
The Cooperative Behavior Of A Human Work
Group: A Distributed Learning Approach
Tapesh Santra

Department of Electrical Engineering
Indian Institute of Technology Kanpur

Kanpur-208016
Email: tapesh@iitk.ac.in

K.S. Venkatesh
Department Of Electrical Engineering
Indian Institute Of Technology Kanpur

Kanpur-208016
Email: venkats@iitk.ac.in

Amitabha Mukerjee
Department Of Computer Science

and Engineering
Indian Institute Of Technology Kanpur

Kanpur - 208016
Email: amit@iitk.ac.in

Abstract— Self managing systems are collective systems ca-
pable of accomplishing difficult task in dynamic and varied
environment without any guidance and control. Some particular
examples of this kind of systems are swarms and self organizing
maps. These algorithms are being used to solve a great deal of
complex problems like clustering, classification, optimization etc.
In this paper we have tried to develop an algorithm to solve
such problems easily and in a computationally efficient way. Our
algorithm is based on a simulation of the cooperative behavior of
a human work group. Like other multi agent systems we also have
multiple agents each of which are connected to its topological
neighbors. But instead of using any existing popular learning
rules like competitive learning etc. here we have developed a
simple decision theory based learning process in which each agent
can communicate to its neighbors in order to help them to make
an useful decision. This paper also contains some experimental
results that we have achieved when we applied our algorithm to
some image processing applications. Later we have discussed the
scope of our algorithm in many different areas of computation.

I. I NTRODUCTION

Meta heuristics are high level strategies which guide an
underlying subordinate heuristic to efficiently produce high
quality solutions and increase their performance. These heuris-
tics which were commonly referred to as modern heuristics
attempt to combine intelligently different concepts for ex-
ploring and exploiting the search space in order to find near
optimal solutions. There are several flavors of Meta-heuristics.
Some are intelligent extensions of local search that attempt to
avoid getting trapped in local minima by exploring the solution
space. Examples of such meta-heuristics include Tabu Search
[1], GRASP [2] and Simulated Annealing [3]. Others, such
as Ant Colony Optimization [8] and Genetic Algorithms [4]
are population based and tend to identify high quality areas in
the search space by sampling or recombination respectively.
Some other self managing systems are self organizing maps [
10] which follow competitive learning algorithms like hebbian
learning algorithm [9].

Our algorithm can be seen as a hybridization and modifica-
tion of some of the popular self managing systems. We call
it hybridization and modification because we have taken the
idea of neighborhood connection from self organizing maps
like Growing Neural Gas [11, 12, 13] and we have used the
idea of cooperation from ant colony optimization. However the
modification lies in the fact that we did not use the approach

of pheromen information as in ant colony optimization tech-
niques. Rather we have used a direct information exchange
scheme among the neighbors. The main inspiration behind
this work is the cooperating behavior of human beings in
order to get rid of a complex situation. While working in a
group human beings use to communicate to their neighboring
people to inform them about their current situation and also
collect information from their neighbors. Then from all the
available informations the individual decides his or her best
possible move. We used this fact in our algorithm to solve
some engineering problems and studied the results in order to
compare its efficiency with other algorithms.

II. MOTIVATION

This algorithm is motivated by the behavior of a group of
people searching for some object of interest in a completely
unknown search space. Let us consider the scenario of a large
forest area with a harmful creature hiding somewhere in it.
Suppose a group of people wishes to discover its whereabouts.
Since nobody knows the exact location of the creature, the
entire area of the forest needs to be thoroughly searched. In
order to accomplish this, they will first divide themselves into
smaller search parties, and allocate a separate region of the
forest to each party, taking care to cover every part of the
forest. Each party will search for the creature in the region
around its own location. Once one of the parties finds some
trace of the beast, it informs all parties nearest to itself. Then,
in turn,these secondary parties inform yet others - tertiary
parties -that are in their vicinity, as well as proceed to move
towards the primary party in order to help it.

Next, suppose there is more than one harmful creature
hiding in the jungle, each in a different place, In the process
of the search, suppose two of the parties find two of them.
Suppose a third party, located in the closeneighborhood of
both of them, has got information from both of the parties.
This party has now to decide which way to move. It will
decide its move according to the relative urgency at each
of the two places and the relative distances it will need to
travel to catch up with either party. This situation highlights
the increased complexity of the problem when multiple calls
arrive simultaneously from different locations. Even with the
simplifying assumption that a party can communicate only

with its immediate neighbors, this possibility of multiple
simultaneous calls, and the resulting conflicting demands for
action needs to be addressed.

In this paper, we simulate this behavior of a group to find
out the state of the overall system at different time instants
and find some surprising and interesting results. We find that
this behavior of a group may yield a good optimal solution in
reasonably less time for especially those problems where the
search space is completely unknown. In the following sections
we shall go through this simulation and its results and also
describe some of its applications.

III. PROPOSED ALGORITHM

Our algorithm consists of a population of agents, each
member of which is connected to, and only to, its topological
neighbors. These agents explore the search space for a near
optimal solution to a given problem. While thus searching,
they may continuously communicate with their neighbors to
inform the neighbors about the attractiveness of their current
locations, as well as to let those neighbors reciprocate. From
the information gathered about its own, as well as its neigh-
bors’ locations, an agent will decide to move in a certain
direction. According to the nature of the problem on which
our algorithm is applied, our algorithm may have several
variants. This paper will concentrate mainly on two of the most
important variants. The variations are essentially introduced
in the exact procedure by which an agent determines the
attractiveness of its current location. In some cases an agent
can determine the attractiveness of its current location by
knowing only the coordinate of its location and its own region.
In other cases, it may have to examine its neighboring regions
also to estimate the attractiveness of its current location. As
the attractiveness estimation procedure is one of the most
fundamental concerns of our algorithm, we shall now discuss
this matter in some more detail.

We may begin by supposing the simplest possible form for
the attractiveness estimation function. If we consider anm
dimensional search space,S, a point in it may be addressed as
x = (x1, x2, . . . , xm). Let the collectionfp(x); p = 1, . . . , P
be a set of functions defined onS. We shall say that the
attractivenessA(x) is in nature if there existsFA such that
A(x) = FA(f1(x), . . . , fP(x))

We next consider a rather more complex formulation for the
attractivenessA. We shall sayA is nonlocal if there does not
exist anFA such thatA may be deemed local in the sense
described above, but there does exist anFA such thatA(x) =
FA(f1(x′), . . . , fP(x′));x′ ∈ R(x), whereR(x) ⊆ S;x ∈
S. As a concrete instance of nonlocal attractiveness, consider
A(x) =

∫∫
R(x)

f1(x′)dx′ where we have takenP = 1. A
nonlocal attractiveness is more general, but obviously claims
more computation than the local counterpart.

We shall contend later that we may replace the exhaus-
tive evaluation ofA(x) by using attribute information over
each point inR(x) with an evaluation over a sparse but
representative subset consisting of only a smaller number of
randomly chosen points withinR(x). An example of this kind

of evaluationis shown in the sequence of figures Fig.2, Fig.3
and Fig.4. Fig.2 shows the sample data set. Fig.3 shows the
attribute functionf1 and Fig.4 shows the sparsely evaluated
attractiveness functionA.

We shall now discuss our algorithm in the context of the two
variants of attractiveness estimation procedure given above.
Our proposed algorithm has some common steps for every
variant.

1) Initialization: In this step the population of agents is
built and their initial locations are defined.

2) Attractiveness Estimation: During this process each
agent use to estimate the attractiveness of their current
locations.

3) Communication: During this process each agent com-
municates to its topological neighbors to inform about
the attractiveness of their current location.

4) Decision making and random walk: During this process
each agent decides about their next movement and
moves accordingly.

5) Convergence: After each iteration the convergence cri-
teria is checked and the whole process is repeated from
step 2 if the algorithm is not converged yet.

These steps are illustrated in figure 5.
These are the basic steps of our algorithm while there may

be minor variations of these steps for different kinds of prob-
lems. The overall structure of the proposed algorithm would
remain largely unchanged. Each of these steps is discussed in
detail in the following subsections.

A. Initialization

We have a set ofK agentsΛ = {ai : i = 0, 1,K − 1},
which, to begin with, are distributed uniformly over the whole
search space. Each agentai is connected to its topological
neighbors, constituting the setNi ⊂ Λ. We present our
formulation as follows.

Λ = {ai : i = 0, 1,K − 1}
ai = 〈Xt

ai
, Dt

i , Ni〉
Dt

i = {dt
j : j = 0, 1,ni − 1}

dt
j = 〈Xt

j , r
t
j , p

t
j〉

Xt
j = {xt

1, x
t
2,x

t
m},m > 0

Ni ⊂ Λ

(1)

Xt
i is the current location ofai in the search space and

Dt
i is the set of the informations currently in its possession.

This set of informations includes all the informations it has
received from neighboring agents inNi and the information
it discovers by itself. Att = t0, the starting point of the
algorithm, evidentlyDt0

i = ∅, because at the start, no agent
has yet coommunicated any attractive location in the search
space toai. We call each memberdt

j of Dt
i a decision metric,

and the whole setDt
i a decision set.

Each decision metricdt
j will have three elements, a location

Xt
j in the search space, a rewardrt

j and a punishmentpt
j

associated with the locationXt
j . TheseXt

j ; j = 0, . . . , ni − 1

Fig. 1. In this figure we have represented an example search space of two dimensions X and Y. The search space is defined as0 ≤ x ≤ 15,−2 ≤ y ≤ 2.
The Z dimension is showing the attractiveness values. Our intention is to find out the maxima in a heuristic way. Here attractiveness is direct function of X
and Y.

are nothing but the locations of the neighbors ofai who have
reported some attractive areas in their local search spaces. Ifai

itself discovers some attractive location, then its own metricdt
i

will also be included in the decision setDi: asai ∈ Ni. The
cardinality of Dt

i , ni satisfiesni ≤ |Ni|. However we have
no need for a superscriptt for the neighbor setNi of any
ai because the set of neighbors is preassigned and does not
change with time. The assumption of a non-dynamic neighbor
set may seem to deviate from the basic model of comunication
between individuals in a human work group, but we shall
justify this by some experiments later. In Fig.6(a), we see there
are some white pixels scattered amongst black pixels. In some
regions, the white pixels are seen to be much more densely
clustered than elsewhere. Our goal is to find out the region
with high density of white pixels. We experiment with both
static neighbor sets and dynamically changing neighbor sets

and present the results in Fig.6(b) and Fig.6(c) respectively.
The rules for changing neighbors in the dynamic neighbor set
case are stated below.

1) Let ai have a neighbor setN t
i at time instantt and

N t
i = {aj : j = 0, 1,|N t

i | − 1}. At time instantt
aj has a home locationXj . In each iteration, the agent
ai will calculate the distancesdistj = |Xi −Xj | : j =
0, 1, ...|N t

i | − 1 if |N t
i | > 1. If for anyj distj > Tht

i,
whereTht

i is the upper bound of the distance upto which
the agentai wishes to communicate at the time instant
t, then we shall delete the corresponding agentaj from
the neighbor set of the agentai. We should keep in mind
the fact that this deletion occurs only when|N t

i | > 1
2) Here we calculate the threshold dynamically. The thresh-

old could be different in general for each agentai at
every time instantt. We have calculated the threshold

(a)

Fig. 2. A sample data set.

in the following way.
We shall make the reasonable assumption that a person
is more likely to communicate with the person(s) who
is/are closest to him. According to this assumption, we
first determine a weighting factor for each neighbor. The
weighting factorwj = (1/(|N t

i |−1))(1− distjP|Nt
i
|−1

k=0 distk

) .

The thresholdTht
i =

∑|Nt
i |−1

j=0 distj ∗wj . The threshold,
instead of using a uniform average uses a weighted
average.

3) After deleting the distant neighbors an agentai will
calculate the distancesdistk = |Xi − Xk| : k =
0, 1 . . . , K − 1 andak /∈ N t

i . If for any k distk < Tht
i

then the agentai will consider ak as its neighbor at
t + 1.

From the results it is clear that the population with static
neighbor sets yields a better result. We can see from Fig.6(c)
that some of the agents have converged to a local maxima
rather than the global maxima. This is because after some
iterations they have lost communication with other agents and
formed small groups of agents to converge at local maximas.
There is another shortcoming in dynamic neighbor sets: it
raises the computational burden on the whole process. So we
shall use static neighbor sets instead of dynamic sets.

After assigning its neighbor set to each agentai, we next
also assign their initial home locations. To get better results,
we uniformly distribute the agents to cover the whole ofS.

Initially, we partition them > 0 dimensional search spaceS
into K uniform regions. Each of theK agents will occupy the
centre of one of these regions to begin with.

S = {St0
i : i = 0, 1,, K − 1}

C{St0
i } = L{ai}t0 = Xt0

ai
, ai ∈ Λ

(2)

Here the center of theith region at the time instantt0 is
denoted byC{St0

i } which is nothing but the location of the
ith agentai at the time instantt0. In equation(2) L{ai}
denotes the location ofai andt0 is the initial time instant of the
algorithm i.e. the algorithm starts att0. As we are considering
that initially St0

i are nonoverlapping regions, we may define
the global search space as follows.

S =
i=K−1⋃

i=0

St0
i (3)

For problems where a nonlocal attractiveness has been
specified, we would need a local search to compute the
attractivenessA(Xt0

i) of the home location of each agent. We
thus need to define the initial local search regionR(Xt0

i) for
each agent. We initially assign a radiusτi to each agentai and
this radius can be simply chosen to be the radius of the region
of the partition alloocated initially toai, the center of which
is Xt0

i . If the radius of theith region isπi, we may then say
that the radius of local search region ofai is τi = πi. But it is

(a)

Fig. 3. The score function of figure 2. Though, to determine the attractiveness we don’t have to find out the scores at each location of the image, we have
done so and shown in this picture to visualize the output of the score function.Here the ’Z’ coordinate represents the score values.

not mandatory. IfS is very large, then we may choose to take
τi < πi or evenτi << πi. If we useτi < πi then it’s better
to go through a fresh local search at each iteration. Otherwise
the agents could miss some important information. However
if τi = πi at t = t0 then we can avoid local search at each
iteration in favour of some simple estimation method. This
procedure will be discussed later in this section. The novelty
of this algorithm will become apparent when we useτi << πi.
In that case, some of the attractive locations remain unrevealed
even after some initial iterations. But they will be revealed in
later iterations. So as time goes on, the search space will be
more and more fully explored by the agents and they will try
to converge to the optimal solution for the given problem. But
for the sake of clarity, in our paper we will considerτi = πi.

B. Attractiveness Estimation

Whenever the specification of the attractiveness is nonlo-
cal, we need to go through a local search to estimate the
attractiveness at any locationx. For different problems, this
local search procedure will be different. But we shall present
a general approach in this subsection. At the first iteration, all
agents will make random searches for an attractive location
in their respective local search regions. Attractiveness can be
estimated from the reward of the search location. During this
search operation, the location of the agent will not be changed
until some attractive point is found. If any point seems to be
attractive the agent will adapt its location towards that point
by a small amount. Once one agent finds an attractive point,
it’s local search region will no longer necessarily remain non

(a) The attractiveness function of the subsampled image

Fig. 4. We have first defined a5X5 window around the pixel of interest to pick up 10 pixel locations randomly from within the window and summed them
up to determine the attractiveness of the pixel location. However to display the attractiveness values in a convenient way we have calculated the attractiveness
at each location and then displayed a subsampled attractiveness graph. Here the Z coordinate represents the attractiveness values.

overlapping with the search regions of other agents. For every
agent that finds attractive points, the home location will be
changed according to the adaptation rule described in equation
4. This adaptation of home locations will take place each time
they find an attractive point within their current local search
region. The total portion of points in each local search region
that are randomly explored in each iteration will be a very very
small fraction of the total volume of its local search region.
The location adaptation rule is described below.

Xt0
i = Xt0

i + δ ∗ (Xk
i −Xt0

i)

δ = α ∗ r(Xk
i), 0 < α ≤ 1.

(4)

Here δ is the rate of adaptation and and it is proportional

to the normalized reward of the pointXk
i which is thekth

attractive location for i th agent.Xt
ai

is the current location of
the agentai as said before.

After each agent completes its initial local search those who
have found some attractive locations will move to a new home
location (the others will retain their current home locations).
They will then update their their own decision setsDi as well
as transmit the update to their neighbors so that they can also
update their own decision setsDj .

Figure 7 shows how the decision set will look like after
the information exchange. Due to lack of space we only have
shown the decision sets of first, second, third and fifth agent.
The decision sets of the other agents will follow the same

(a)

Fig. 5. In this figure we have shown a flowchart for our algorithm.

(a) Test data for dynamic population set

(b) Result with static neighbor sets (c) Result with dynamic neighbor set

Fig. 6. (a) shows the image on which we applied our algorithm with static and dynamic neighbor sets. Figure (b) shows the result with static neighbor sets
and figure (c) shows the result with dynamic data sets. We can see a clustering of agents at local maximas in figure (c).

Fig. 7. In this figure we have represented nine agents as nine red circles.
The interconnection between them are shown as black lines. Here, at any time
instantt > t0 the agents a1 to a9 found decision metrics d1 to d9. They added
their corresponding decision as well as the decision found by their neighbors
to their decision set. We have shown how the decision matrix of a1, a2, a3,
a5 will look like. These decision matrix are represented as D1, D2, D3, D5.
Others decision matrix are not shown due to lack of space but they will follow
the same rule.

rule. Here we have considered that all agents have found some
attractive locations, which is not a necessary state of affairs
on every occasion. We shall discuss some aspects of this inter
agent communication scheme in the next subsection.

At this point the first iteration is complete. If, at the
first iteration, some of the agents have found some attractive
locations then those who have found attractive locations have
already changed their locations towards the most attractive
area in their initial local search space. So, accordingly, the
centers of their local search spaces are also changed and hence
the local search spaces no longer remain non overlapping
to each other. This phenomena is shown in the following
equation.

S ⊃
K−1⋃
i=0

St
i , t > t0 (5)

Even after the information exchange some of the agents may
have an empty decision set. Those who still have an empty
decision set will have a small unbiased random walk and those
who have a non empty decision set will have a biased random
walk in the next iteration.

C. Interagent Communication

As we have stated earlier, each agent communicates to its
neighbors after it finds some attractive location in order to
inform their neighbor about the attractiveness of the location it
has revealed. A question may arise at this point, as to why they
should communicate to only their neighbors - and not toevery
other agent? To answer this question let us consider that we
have 200 agents in some application searching for an optimal

solution of a given problem. Each of these agents have 5 neigh-
bors. Now if they had to comunicate with all the remaining
agents then at each iteration each agent had to go through 199
computations in order to make the commuication only. After
the communication is complete they need to take decisions. If
all the agents communicate to all the remaining agents then
the decision set will also be proportionately larger. This would
put severe computational burden on the system. Rather if we
take the scheme of neighborhood communication then at each
iteration each agent has to go through 5 computations only in
order to communicate and the decision set will also be small
in size. So the neighborhood communication scheme is more
realistic from the computational point of view.

After the communication is complete each agent has to de-
cide about their future movements. This procedure is described
in the following subsections.

D. Unbiased Random Walk

When an agent is attempting to make some decision it will
search its own decision set for the available decision metrics
at that time instant. But if it finds that its decision set is empty
then it will execute a small unbiased random walk around its
current location.

Xt+1
ai

= Xt
ai

+ ξ, t ≥ t0

ξ is a small random vector such that‖ξ‖ << τi

τi is the radius of local search space ofith agent.

(6)

E. Biased Random Walk

Any agent which has a nonempty decision set will execute
biased random walk biased by the probability factors asso-
ciated with each available decision metric in their decision
set. The agentai will calculate ni probability factorsP t

j

where j = 0, 1,ni − 1 depending upon the rewards and
punishments associated with each available decision in the
following way.

et
j =

F(rt
j)

G(pt
j)

P t
j =

et
j∑ni−1

k=0 et
k

, t > t0, j = 0, 1, ...ni − 1.

(7)

Here F(rt
j) and G(pt

j) are the functions of reward and
punishment of thejth decision at the time instantt > t0. After
the calculations of the probability factor the agentai will take
decisiondj with a probabilityP t

j . If the agentai has chosen
the decisiondt

j then it will update its location according to
the following equation.

Xt+1
ai

= Xt
ai

+ β(Xj −Xt
ai

), t ≥ t0

Generally0 < β ≤ 1
(8)

Here β is the rate of adaptation. If we choose0 < β <<
1, typically in the range(0.001, 0.1), then the algorithm will
yield better solution but at the same time it will take more

time to converge. On the other hand if we takeβ in the range
of (0.5, 0.9) the convergence will be faster but the algorithm
may not yield a good solution. There is a need to optimize
the performance of the algorithm in terms of quality of the
solution and the time taken to converge. This can be done by
using Genetic Algorithm. However we did not use G.A. In our
applications we have manually assignedβ a value of 0.5.

In the equations above we have used a functionF of
reward and a functionG of punishment. A question may arise
regarding their exact forms. There are no generalized forms
for these two functions. Their form will depend on the type
of problem. But one thing must be remembered. Though it
looks like the punishment factor is unnecessary and can be
avoided this is not practically so. Because if we make the
punishment factor a constant the algorithm may take too much
time to converge. This punishment factors help the algorithm
to converge quicker.

Here we shall discuss some examples of the forms these
functions may take. Most oftenly the functionF is a linear
function of the rewardrt

j because attractiveness is the prime
concern in most of the problems. So the functionF(rt

j) =
θrt

j +ω where bothθ andω are constants. The value of these
constants may vary from application to application. Even the
values of these constants can be tuned by means of some other
meta heuristic algorithms like Genetic Algorithm to get most
effective results. In our applications we have simply taken
F(rt

j) = rt
j . Now the functionG may have different forms.

If it’s as important as the attractiveness we may use a linear
form of the kind we have used forF . But in some cases we
may have to prioritize the punishment factor against the reward
factor. If the priority of punishment factor is less compared to
the reward factor then it’s better to use some nonlinear form for
G. For example let us defineG(pt

j) = δpt
j whereδ is a constant

andδ = 1 + ν and0 < ν << 1, generally0.001 < ν < 0.01.
From this function it’s clear that even for large variation ofpt

j

the variation ofG(pt
j) will remain small. We have used this

function in one of our applications discussed later.

F. Population Control

Let us consider that at any time instant ’t’, R(R << K)
number of agents have found some attractive locations. Now,
suppose a total of M(M ≥ R) number of agents have got
the informations about the R attractive locations. So at the
instant t a total of M number of agents have to select their
moves from ’R’ available locations to decide their position
at thet + 1th time instant. IfM >> R then some attractive
locations may become crowdy due to over gathering of agents.
This may lead to some undesired results because due to this
overcrowding some attractive locations may remain unrevealed
for ever. So to avoid this we have to take necessary measures.

Let’s consider that at any time instant t, an agentai is
about to make a move towards, say , attractive locationXj .
So it will first see at the same time instant t how many agents
have already made the same choice prior to itself. If the total
number of such agents goes beyond the crowd factorυ then it

will make the chosen move + a small random vector. Precisely,

Xt+1
ai

= Xt
ai

+ β ∗ (Xj −Xt
ai

) + ξ, t ≥ t0

ξ is a small random number such that‖ξ‖ << τi,

Whereτi is the radius of local search space of theith agent.
(9)

To inmplement this population (density) control mechanism
we maintain a global dynamic state vector. Each element
of this vector will correspond to the current state of the
corresponding agent. Let us denote this state vector byΥ.
So Υ will have K elements. Att the ith element ofΥ will
correspond to the state ofai. At the start of each iteration, the
value of all the elements of this state vector will be reset to
zero. Now suppose that at anyt the first agenta1 has decided
to move towards the location of the agenta2. We shall then
increase the second element ofΥ by 1 to indicate that at the
location ofa2 has a population excess of one agent. Applying
this procedure for every agent move in the current iteration,
we shall be able to track the population at each step at each
current home location. After finishing each iteration we shall
again reset all the elements of the state vector to zero.

G. Convergence

Once all the agents have made their decisions they will
start the next iteration with a local search and go through the
whole procedure again. This is repeated until the convergence
criterion occurs. We shall say our algorithm has converged
when the change in average movements of the agents with
respect to time is almost zero. However we cannot presently
give a theoretical proof of the convergence of our algorithm.
But we have observed that there is an important role of
the punishment factor in the convergence of our algorithm.
Without a punishment factor there is a high chance for the
algorithm to oscillate for ever. This phenomena occurs when
some of the agents got some equally attractive locations. Then
they jump around from one location to another endlessly
and the system starts oscillating. This can be avoided by
introducing a proper punishment factor.

A local search in every iteration will produce heavy com-
putational burden. In the next section we shall discuss about
some techniques to avoid this computational burden.

H. A procedure to avoid local search at each iteration

At the very first iteration of our algorithm, we divided the
whole global search space in K nonoverlapping regionsSi and
assigned each region to a unique agent as its exclusive zone
that contained initially(and even equalled, ifτi = πi) its local
search space. So, as we have covered the whole global search
space in the first iteration, we will have a gross estimate of the
most attractive locations after the first iteration or rather after
the iteration when for the first time a considerable number
of the agents have found some attractive locations. At the
subsequent iterations the agents having non empty decision
sets will move towards one of the attractive locations found in
earlier iterations. So their modified location will be very near
to one of the attractive locations found previously. Thus, rather

than carrying out a thorough local search we can formulate
an estimation procedure which will estimate the attractiveness
of the modified locations. This estimation may be done by
a function of distance of the modified locations from the
previous locations of the topological neighbors as well as the
previous location of the concerned agent itself. This procedure
may be formulated mathematically in the following manner.

r(Xt+1
ai

) = E(Xt
ak

, r(Xt
ak

)), k = 0, ..ni − 1.

Xt
ak

= L(ak) at time instantt > t0

ak ∈ Ni ∪ ai, Ni is the neighbor set of agentai.

r(Xt+1
ai

) is the estimated attractiveness

of the new location of agentai

E is the estimation function.

(10)

Herer(Xt+1
ai

) is the attractiveness of the location of theith

agentai at the time instantt + 1. We know thatXt+1
ai

will
be somewhere near the home locations of the agents which
are neighbors of the agentai or it will be very near to the
home location of the agentai itself. So here we have defined
the attractiveness of the new locationXt+1

ai
as a function of

the attractiveness of its neighbors, attractiveness of itself, its
neighbors locations and its own location. For the simplest
possible approach let us consider that the attractiveness decays
exponentially with distance. So ifXj is an attractive location
andr(Xj) is the attractiveness of the locationXj then we can
say that at a location X the attractiveness will be estimated as
r(Xj) exp(−‖Xj−X‖

ν). Using this technique we estimate the
attractiveness of the location of the agentai at the time instant
t + 1 as follows.

r(Xt+1
ai

) =
ni∑

k=0

κkr(Xt
ak

) exp(
−‖Xt

ak −Xt+1
ai

‖
ν

)

ak ∈ Ni ∪ ai, κk is a constant such that0 < κk < 1.

ν is a constant such thatν > 1.

(11)

IV. SOME SIMPLE APPLICATIONSOF OUR ALGORITHM

We applied our algorithm to some simple image processing
applications. In this section we will discuss some of the
simplest applications and analyze their results.

A. Finding High Density Clusters Of White Pixels

In Fig. 8 we have a binary image which contains some white
pixels as well as some black pixels. Our objective is to find out
the areas with high density of white pixels. For this we set up
a population of agents and leave them on their own to find out
the region where the density of white pixels is considerably
high. We formulate the whole problem in the following way.

The reward is the probability of white pixels at the neigh-
boring region of the location of interest. So the attractiveness
of the point Xai will be nw

i

nt
i

where nw
i is the total number

of white pixels andnt
i is the total number of pixels picked

up randomly from the local search region centered atXai .
The punishment factor is the distance to be travelled to reach

Fig. 8. In this figure we can see some white pixels are spread over a
black background. In some areas those white pixels are forming much denser
clusters than the remaining area. Our goal is to find out the denser clusters
in the image in a completely heuristic way.

the attractive location divided by some constant factor. The
formulations are shown in the following way.

1) First we generate a set of population and then we
populate the neighbor set of each agents.

Λ = {ai : i = 0, 1,K − 1}
ai = 〈Xt

ai
, Dt

i , Ni〉
Dt

i = {dt
j : j = 0, 1,ni − 1}

dt
j = 〈Xt

j , r
t
j〉

Xt
j = {x1, x2,xm},m > 0

Ni ⊂ Λ

(12)

The radius of local search region is determined after-
wards. Let the radius ber.

2) Every agent estimates the probability of white pixels
and try to update their locations towards the center of
the most dense cluster in their local search space. This
probability is the reward at the newly updated location.
Updating the home locations towards the most dense
region within the immediate neighborhood of an agent
ai follows the rule stated in equation4. The calculation
of the reward factor goes as follows.

Xw
ai
⊆ Xa

ai
⊂ St

i

St
i is the local search space of the agentai

at a time instant t.rt
i =

|Xw
ai
|

|Xa
ai
|

(13)

Here Xw
ai

is the set of white pixels found andXa
ai

is
the set of total pixels counted. Herenw

i = |Xw
ai
| and

nt
i = |Xa

ai
| .

3) Now, those who have a nonzero reward will populate
their own decision set as well as their neighbors’ deci-
sion set.

Fig. 10. In this figure we can see average movement of every agent is
being reduced drastically at each iteration and at iteration eight the algorithm
stabilizes.

4) At this point, when all agents finish inter agent commu-
nication, those who have empty decision set will make
an unbiased random walk as described in equation 6.

5) The agents who have a nonempty decision set will calcu-
late the probability factor associated with each decision
metric available in its decision set in the following way.
For every decision metricdt

j ∈ Dt
i the probability factor

P t
j will be calculated as follows.

et
j =

rt
j + ε

‖Xt
j−Xt

ai
‖+ε

λ

P t
j =

et
j∑ni−1

k=0 et
k

, j = 0, 1, ...ni − 1.

Hereε, ε, λ are constants.

(14)

Then the agentai will take its jth decision with proba-
bility P t

j and adapt their locations as shown in equation
7 and8.

6) After every agent finish updating their locations they
have to determine the attractiveness of their current
locations. Here instead of going through a thorough local
search we used simple estimation procedure to estimate
the attractiveness of the new location. This estimation
process follows the rule of equation 10 and 11. Then the
whole procedure repeats from step 3 until convergence.

B. Experimental Results

The experimental results are shown in Fig. 9. Here the green
circles indicate the position of each agent and the blue lines
are drawn to visualize the neighbor set of each agent. In Fig.
10 we have plotted the average distance travelled per agent at
each iteration.From this figure it can be seen that our algorithm
converges at approximately eighth iteration in this case.

C. Automatic Eight Point Matching For Stereo Images

In this application we have used our algorithm to find out
a number of pairs of matched points from a pair of stereo
images. To do this, first we have found out 20 feature points in
the left image using Gabor wavelet feature detection technique.
Here the left image is nothing but image taken by the left
camera and similarly the right image is the image taken by
the right camera. However after finding out the feature points
we shall search through the right image for their matches. The
matching is done by using weighted cross correlation over a
local window centered at the point of interest. We want to find
out the match between two points, one from the left image ,say
(xL1, yL1)and the other from the right image, say(xR1, yR1)
and to do so we shall use the following equation to evaluate
the similarity measure [14]ΨI1,I2(xL1, yL1, xR1, yR1).

ΨI1,I2(xL1, yL1, xR1, yR1) =∑
i,j γij(I1(i, j)− µ1)(I2(i, j)− µ2)√∑

i,j γij(I1(i, j)− µ1)2
√∑

i,j γij(I2(i, j)− µ2)2

µ1 =

∑
i,j I1(i, j)

(2ωd + 1)2
, µ2 =

∑
i,j I2(i, j)

(2ωd + 1)2

γi,j = exp(− i2 + j2

σ2
)is the weighting function

σis a constant typically
√

2ωd.

(15)

Here i and j are integers. i varies in the range(xL1 −
ωd, xL1 + ωd) and (xR1 − ωd, xR1 + ωd) in the left and right
image successively and j varies in the range(yL1 −ωd, yL1 +
ωd) and (yR1 − ωd, yR1 + ωd) in the left and right image
successively.

We shall use this similarity measure as attractiveness func-
tion. First we shall take one feature point in the left image
I1, say (xL1, yL1), and then define a rectangular window
having sides of length(2ωd + 1) around this point and then
match the windows around every point within an estimated
region in the right image. This estimated region in the right
image is that region within which we predict the matching
point of (xL1, yL1) is present. We shall not discuss the region
estimation procedure here as this is out of the scope of
this paper. Suppose this estimated region isRest,right. We
have generated a population of sixteen agents which are then
uniformly distributed over this region. Each agent use the
above similarity measure to estimate the attractiveness of
its current location. In this problem a local search is not
necessary. Each agent does not look for the scores in its
neighboring regions. The punishment factor is the euclidian
distance between the coordinate of the feature point(xL1, yL1)
and the the coordinate of the attractive location towards which
it may attempt to make a move. So if thekth attractive location
of an agentai is Xk

ai
then the punishment factor is the distance

‖XL1 − Xk
ai
‖. So for the kth attractive location we have

calculated the factoret
j as

et
j =

ΨI1,I2

(1.01)‖XL1−Xk
ai
‖ (16)

(a) Initial Population (b) The location of agents after two iterations

(c) The location of agents after four iterations (d) The location of agents after eight iterations

Fig. 9. In this figure we have shown the movement of the agents in a step by step manner. From the above pictures it can be seen that the algorithm
converges at the eighth iteration. In (a) we can see the starting locations of all the agents. Then in (b), (c), and (d) they arrange themselves to take the shape
of the denser clusters in the image shown in Fig.8.

Then the probability factor is calculated as

P t
j =

et
j∑
j et

j

(17)

Then everything will follow the steps stated earlier.

D. Experimental Results

The results of the above experiment is shown in figure
11. In the left images the feature points are the upper left
corners of the blue rectangles. The rectangles are numbered.
In the right image each green ball represents one agent. We
have twenty feature points and we have generated twenty
populations to find out the matches for the corresponding
feature points. The feature points which are very near to the

edge of the left image are ignored. The upper left corner of
the bounding box of each green circle represents the location
of the corresponding agent. After convergence we can see
that a few populations have found more than one matches
for its corresponding feature point. This is due to inefficiency
of the similarity measure we have used here as attractiveness
function. However most of the populations have found the
appropriate match in the right image for the corresponding
feature points in the left image. The most intersting thing
is that we have considered the estimated region (hich is the
global search space for the corresponding population) as a
rectangular region of area41X41 pixels. So if we had to
go through the whole search space in order to find out the

perfect match for the corresponding feature point then we had
to search for matches in all of the41X41 pixels. However our
algorithm has converged at the eighth iteration. So the total
number of similarity measures (that we have used for feature
matching) we have done is16X8 which is less than one tenth
of the earlier. But if we use populations of nine agents then the
computational cost will be reduced drastically but the result
remains almost the same. However we have shown here the
results with populations having sixteen agents each.

Fig. 12. In this figure we have shown the result of GNG algorithm on the
image shown in figure 8. Here the green circles represents the position of the
neurons. The neurons have formed clusters at every location wherever they
found white pixels. They have not used the density information. They have
blindly followed the locations of all the white pixels.

E. A Comparative Study

We have used another very popular self managing algorithm
on the image shown in figure 8 to achieve the same result.
The results are shown in Fig 12. From fig.12 it can easily
be seen that the neurons do not only follow the shape of the
areas where the density of white pixels is very high they also
form clusters in the area where the density of white pixels
is low. These kinds of algorithms do not use the density
information; rather, they blindly follow the locations of the
white pixels. Not only that, to achieve the result shown in the
figure the GNG algorithm took (10 X No. of white pixels)
numbers of iterations which is very large compared to that of
our algorithm.

Let us now consider a little different problem. Suppose, in
the image shown in fig.6(a), instead of finding the area with
high density of white pixels we need to do the reverse. That
is, we need to find out the areas where white pixel density is
lower. In this case we shall not consider the areas which are
having no white pixel. Rather we are interested in those areas
where very few white pixels are present. Other algorithms
like Self Organizing Map or Growing Neural Gas will fail
to serve the purpose. But our algorithm can efficiently serves
this purpose. In our algorithm we only need to change the
attractiveness function. In the application shown above we

used the probability of white pixels in a local search region as
the measure of attractiveness. Let us denote this attractiveness
measure byrt

i . In the present case we shall use1 − rt
i as

attractiveness measure whenrt
i is not equals to zero. All the

other steps remain same. The result is shown in figure 13.
From this figure it can readily be observed that the agents have
successfully found the areas with lower density of white pixels.
So from this experiment we can infer that our algorithm is
more flexible than other self organizing systems like growing
neural gas.

V. FUTURE RESEARCH

We have successfully applied our algorithm in some image
processing and computer vision applications. Now we are try-
ing to solve some problems related to finance and economics
using our algorithm. We are now focusing especially on
portfolio management systems and vehicle routing problems.

To improve the robustness of our algorithm in specific
applications we are also trying to combine our algorithm with
some other existing learning and meta heuristic algorithms
like tabu search, Q-learning, ACO etc. In this paper we have
considered that all the agents have similar characteristics. Now
we are trying to create a population where all agent will have
some common global characteristics as well as some agent
specific characteristics which are not common to all. This is
a more realistic approach in order to simulate the behavior of
a group of people working in particular situations.

We are also working on a formal logic approach to design
the behavior of each agent and then print it in the corre-
sponding agent’s gene. Thus we will be able to use genetic
programming techniques to evolve the behaviors of each agent.
What exactly we are trying is to generate the population in
such a way that some agents are weaker is making decision
than the others and then we are trying to find whether there
is a possibility for the weaker agents to evolve themselves to
cope with the stronger agents while working with them. And
we are also trying to find whether this kind of population can
help in solving more difficult situations.

VI. CONCLUSION

Though we have discussed only a few applications of our
algorithm, in practice, it may find more and more imple-
mentation areas. So far we have not dealt with dynamically
varying situations. This kind of situations can be dealt with
accomplishing a local search at every iteration. There are
some situations where we have to work in real time. For
example consider the case of tracking an object in a video
sequence. Though our algorithm is more autonomous and even
sometimes computationally efficient than the others like self
organizing maps we will have to work a lot to accomplish
a good result in real time simulations. The performance of
our algorithm depends a lot on the attractiveness estimation
procedure, the reward function, the punishment function and
the constant parameters. So we have to be careful in designing
these estimation procedures, functions and other parameters.
The overall performance of our algorithm is comparable with

(a) Initial Population

(b) The location of agents after one iteration

(c) The location of agents after four iterations

(d) The location of agents after eight iterations

Fig. 11. In this figure we have shown the movement of the agents in a step by step manner. From the above pictures it can be seen that the algorithm
converges at the eighth iteration. In (a) we can see the starting locations of all the agents. Then in (b), (c),and (d)they arrange themselves to find the proper
match for the corresponding feature points in the left image.

(a) The location of agents after the first iteration (b) The location of agents after four iterations

(c) The location of agents after eight iterations (d) The location of agents after sixteen iterations

Fig. 13. In this figure we have shown the movement of the agents in a step by step manner. In this case instead of finding the region having high density
of white pixels we have tried to implement our algorithm to find out the region with fewer white pixels.

self organizing map but it converges at a faster rate than SOM.
A SOM will need hundreds of iterations to accomplish similar
results as shown in Fig. 9. where our algorithm took only
eight. After all our algorithm is more robust than the Self
Organizing Map because it takes into account both the reward
and punishment factors and we can design these two factors
to serve our purpose.

REFERENCES

[1] F. Glover. Tabu Search Part I. OSRA Journal on Computing, 1(3):190-
206, 1990

[2] T. Feo, M. Resende, and S. Smith. A Greedy Randomized Adaptive
Search Procedure for the Maximum Independent Set. Journal of Opera-
tions Research, 42:860-878, 1994.

[3] P.M. Van Laarhoven and E.H.L. Aarts. Simulated Annealing: Theory and
Applications. Kluwer Academic Publishers, Boston, 1996.

[4] D.E.Goldberg. A comparative analysis of selection schemes used in
Genetic Algorithms. In Foundations of Genetic Algorithms, pages 69-
93, San Mateo, California 1991. Morgan Kaufman Publishers.

[5] I Osman and J Kelly. Meta-Heuristics: Theory and Applications. Kluwer
Academic Publishers, Boston, 1996.

[6] Marco Dorigo, Thomas Sttzle, Ant Colony Optimization. Bradford Books.
July 1st 2004

[7] M. Dorigo, V. Maniezzo, and A. Colorni. An autocatalytic optimization
process. Technical Report 91-016, Dipartimento di Elettronica, Politec-
nico di Milano, Milano, Italy, 1991.

[8] M Dorigo, and L. Ganbardella. Ant colony system: a cooperative learn-
ing approach to the traveling salesman problem. IEEE transactions on
Evolutionary Computing, 1(1):53-66,1997.

[9] Martinetz T M,1993, Competitive Hebbian learning rule forms perfectly
topology preserving maps, Int. Conf. Artificial Networks , (Amsterdam:
Springer) pp 42734.

[10] T. Kohonen. Self-Organizing Maps. Springer-Verlag, Berlin, 2nd edition,
1997

[11] Fritzke B 1991 , “Unsupervised clustering with growing cell structures
,” “Proc. Int. Joint Conf. on Neural Networks 1991(Seattle, WA)” , vol
II pp 5316.

[12] “Supervised learning with growing cell structures , ” “Advances in
Neural Information Processing Systems ,” 6 ed, J Cowan, G Tesauro &
J Alspector , (San Mateo, CA: Morgan Kaufmann) pp 25562.

[13] Bernd Fritzke, A growing neural gas network learns topologies,Advances
in Neural Information Processing Systems 7, pp 625–632,1995.

[14] Y.S. Yao and R. Chellappa ”Tracking a Dynamic Set of Fea-
ture Points”,IEEE Trans. Image Processing”, Vol.4,Issued 10,pp. 1382-

1395,oct-1995.

