
The CLAM Annotator: A Cross-platform Audio Descriptors Editing Tool

Xavier Amatriain
CREATE

University of California
Santa Barbara CA 93106 USA
xavier@create.ucsb.edu

Jordi Massaguer
Universitat Pompeu Fabra
Psg. Circumvalacio, 18

Barcelona, Spain
jmassaguer@iua.upf.es

David Garcia
Universitat Pompeu Fabra
Psg. Circumvalacio, 18

Barcelona, Spain
dgarcia@iua.upf.es

Ismael Mosquera
Universitat Pompeu Fabra
Psg. Circumvalacio, 18

Barcelona, Spain
imosquera@iua.upf.es

ABSTRACT

This paper presents the CLAM Annotator tool. This ap-
plication has been developed in the context of the CLAM
framework and can be used to manually edit any previ-
ously computed audio descriptors. The application offers
a convenient GUI that allows to edit low-level frame de-
scriptors, global descriptors of any kind and segmentation
marks. It is designed in such a way that the interface
adapts itself to a user-defined schema, offering possibil-
ities to a large range of applications.

Keywords: Audio Descriptors, XML, Annotating Tool

1 INTRODUCTION

Descriptor extraction from an audio source is one of the
most important practices related to the Music Information
Retrieval field. Many different research teams are focus-
ing on finding more and better algorithms to automatically
extract relevant features from the original signal.

Nevertheless, none of these algorithms can guarantee
a 100% reliability. In many cases automatically extracted
descriptors must be fine-tuned by hand and appropriate
tools are therefore needed. These manual tools become
even more important for research teams when testing new
algorithms.

The goal of the CLAM Annotator is to provide such
a tool, offering a flexible, reliable, extensible and effi-
cient alternative to other existing applications such as the
WaveSurfer [1]. Also, the fact that the CLAM Annota-
tor is provided in the context of the CLAM framework [2]
allows to extend it in unlimited ways, by embedding auto-
matic extraction algorithms in it, for instance.

Another important feature of the CLAM Annotator
is that it uses standard XML language to represent data.
Thus it works with readable and easily understandable
data files that should be also easily connected to external
applications or databases.

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee pro-
vided that copies are not made or distributed for profit or com-
mercial advantage and that copies bear this notice and the full
citation on the first page.

c©2005 Queen Mary, University of London

2 ON FILES AND FORMATS

The CLAM Annotator makes use of different XML files in
order to relate with the outside world. All previously gen-
erated information is input to the program through XML
files and the result of the editing process is also dumped
into those files.

The Project File contains a pointer to aSchema File
and another one to aSong List File. The Song List File
contains a list ofAudio Files andDescriptors Pool Files.

In the following sections we will detail the content of
each of those files.

2.1 The Project File

The Project file is an XML file with the “.pro” extension.
It simply contains the path to the Song List file and the
path to the Schema file. See the following example:

<Project>
<Songs>Songs.sl</Songs>
<Schema>Schema.sc</Schema>
</Project>

Listing 1: Sample Annotator Project file

2.2 The Song List File

The Song List file is also an XML file with the “.sl” ex-
tension. It contains a list of Sound file + Descriptors file
tuples.

A Sound file is simply the path to an existing sound
file. This sound file can be in virtually any format, includ-
ing PCM encoded files such as WAVs or AIFFs or com-
pressed formats such as MP3 or OGG. On the other hand,
the Descriptors file has a pointer to the descriptors related
to that particular sound file. If omitted, the program will
simply add the “.pool” extension to the sound file name.

See the following example:

<SongFiles>
<FileNames>
<Name>

<SoundFile>07.mp3</SoundFile>
</Name>
<Name>

<SoundFile>08.mp3</SoundFile>
<DescriptorsFile>08.mp3.pool</

DescriptorsFile>
</Name>
...

</FileNames>
</SongFiles>

Listing 2: Sample SongList file

426

2.3 The Schema File

The Schema file contains the list of all the different de-
scriptors that will later will be loaded from a Descriptors
file (see 2.4). In some cases it also gives their type and
range of expected values. Although this file is a regular
XML file with the “.sc” extension, in many senses it mim-
ics the purpose and syntax of an XML Schema format [3].

The Schema file is actually divided into two different
sections. The first one defines the Schema for high-level
descriptors while the second one defines the schema for
low-level descriptors (see example in listing 3).

Although the difference between low and high-level
descriptors is a matter of controversy and much has been
written about it (see [4]) in this application we have taken
a pragmatical approach. A high-level descriptor is consid-
ered to be any descriptor that has a whole song scope and
is unique within this scope. This kind of descriptor can be
of any type. On the other hand a low-level descriptor has
a Frame scope and can only take floating point values.

<Schema>
<HLDSchema><HLDs>
<HLD>
<Name>Title</Name>
<Type>String</Type>

</HLD>
<HLD>
<Name>Danceability</Name>
<Type>Float</Type>
<fRange><Max>10</Max><Min>0</Min></

fRange>
</HLD>
<HLD>
<Name>Key</Name>
<Type>Enum</Type>
<Values>A A# B C...</Values>

</HLD>
<HLD>
<Name>BPM</Name>
<Type>Int</Type>
<iRange><Max>240</Max><Min>0</Min></

iRange>
</HLD>
...

</HLDs></HLDSchema>
<LLDSchema>
<LLDNames>Pitch SpectralCentroid

SpectralSpread...</LLDNames>
</LLDSchema>

</Schema>

Listing 3: Sample Annotator Schema file

We will now see how the schema is defined both for
high-level and low-level descriptors.

2.3.1 High-level descriptors

As already mentioned a high-level descriptor has a unique
value for a whole song or sound source. It can be of any
of the following types: floating point number (“Float”);
integer number (“Int”); string (“String”); or value set re-
stricted strings (“Enum”).

A high-level descriptor is therefore defined by giving
its “Name” and its “Type”. In case the type is a number,
an optional range of valid values may be given (“iRange”
in case of integer values and “fRange” in case of floating
point values). See the HLD section in listing 3.

2.3.2 Low-level Descriptors

A low-level descriptor is in any case a vector of floating
point values where each value refers a particular frame.
In this case we only need to define the name of the de-
scriptors. Therefore the low-level descriptors section of
the schema is simply a list of low-level descriptors names
(see again listing 3).

2.4 Descriptors Pool File

This is an XML file with the “.pool” extension that con-
tains all the values, both for the high-level and low-levels
descriptors. The content must observe the restrictions
given in the related Schema or else it will not bevalidated.

Every song on the project has its own descriptors file.
Descriptions may be generated by any third-party applica-
tion by providing a proper schema, though it is much eas-
ier to generate it from within the CLAM framework. In
this case, the Descriptors file is directly the XML repre-
sentation of a CLAM Descriptors Data Pool. Any extrac-
tion algorithm using them may dump its results in such
format without having to worry about formatting issues.

As in the Schema, a Descriptors file is divided into
two sections: one for the high-level descriptors and an-
other one for the low-level descriptors (see listing 4). Note
that in the Descriptors file this difference is explicit by the
existence of two different “Scopes”, one with the name
“Song” and size=1 (there is only one song for each song)
and the other one with the name “Frame” and size=8917
(in this case there are 89671 frames in the song).

<DescriptorsPool>
<ScopePool name="Song" size="1">

...
</ScopePool>
<ScopePool name="Frame" size="8961">
...

</ScopePool>
</DescriptorsPool>

Listing 4: Sample Descriptors file

We will now explain how high and low-level descrip-
tors are stored.

2.4.1 High-level Descriptors

In the Song scope we basically see a list of AttributePool
elements. In any case each of those elements has an at-
tribute with the name of the particular descriptor and its
content is the content of the descriptor. Note that the type
of the descriptor is implicitly resolved from the schema
and must therefore not be given in the Descriptors file (see
HLD description in listing 5).

Finally, segmentation information is also included in
the high-level description. This descriptor must not be
given in the schema as it is always supposed to be avail-
able. When including segmentation marks in the descrip-
tion you must give their size (i.e. how many segmentation
marks are available) and the list of positions in number of
samples.

<ScopePool name="Song" size="1">
<AttributePool name="Title">

Pension_Triana</AttributePool>
<AttributePool name="Danceability">7.2</

AttributePool>

427

<AttributePool name="Key">C</
AttributePool>

<AttributePool name="BPM">100</
AttributePool>

...
<AttributePool name="Segments" size="43">

202334 497049 ...</AttributePool>
</ScopePool>

Listing 5: Sample High-level Description

2.4.2 Low-Level descriptors

The low-level descriptors section of the Descriptors file is
also a list of AttributePool elements where for each ele-
ment we must define its name an a list of values. Note
that in this case we must not give the size of each attribute
because this is already defined by the size of the “Frame”
scope. Therefore these vectors must all have as many ele-
ments as defined in the scope (8961 in the example given
in listing 6).

<ScopePool name="Frame" size="8961">
<AttributePool name="Pitch">63 68 60 ...<

/AttributePool>
<AttributePool name="SpectralDeviation">

50 50 48 ...</AttributePool>
...

</ScopePool>

Listing 6: Sample Low-level Description

3 THE APPLICATION

The application has been developed within the CLAM
framework, using qt [5] for the graphical user interface.
Figure 1 is a capture of the whole interface running on an
Debian GNU/Linux box with the KDE desktop environ-
ment, although its look is virtually the same in any of the
major platforms and graphical environments (Windows,
Mac OSX, GNOME...).

In the Annotator GUI, four different parts can be iden-
tified: on the upper-left the list of songs is shown, on the
upper-right the waveform and segmentation information
of the selected song is available, on the lower-left there is
the information for the high-level descriptors, and finally
on the lower-right there is the low-level descriptors infor-
mation.

3.1 Loading a Project

Once the program is started, the first thing that the user
must do is to load a project file. This project file will have
a pointer to the Song List and the Schema files. Once
loaded, the GUI is reconfigured and the list of songs and
related descriptions is available.

The user can also start a project from scratch. In this
case the Scheme and Song List files must be loaded by
hand from the Project menu.

3.1.1 The Schema and the dynamic GUI

One of the most important features in the CLAM An-
notator is its ability to dynamically adapt the GUI. The
GUI shows the descriptors according to the Schema that
is loaded with the Project.

In the case of low-level descriptors, the amount and
label of each of the tabs corresponds to the schema. And
in the case of high-level descriptors, the schema defines
the label and also the kind of editing widget that is shown.
The screenshot shown in figure 3 corresponds to the sam-
ple Schema introduced in section 2.3.

3.2 Viewing Song Properties

Once a song is selected from the Song List on the up-
per left, the audio file and the descriptors are loaded. Af-
ter this loading process finishes the waveform including
segmentation marks is available on the upper-right, the
low-level descriptors are shown on the lower-right, and
the high-level descriptors are on the lower-left. The user
can listen to the sound file and start the edition process.

Low level descriptors view and segmentation view are
synchronized in respect zoom, horizontal scroll and cur-
sor position. That feature makes easy to take segmenta-
tion editing decissions taking into acount low level fea-
tures values.

3.3 Editing Low-level Descriptors

Low-level descriptors are represented by equidistant con-
nected points that you can drag to change its Y value.
Each point represents the value for the descriptor in a
given frame. Because point to point edition may be hard,
some convenient edition modes suchtrim or draw are
provided.

Figure 1: The low-level descriptors

3.4 Editing High-level Descriptors

Figure 2: The high-level descriptors

The edition of a high-level description adapts on the
“type” of the descriptor as defined in the project’s schema.
Figure 4 shows how integer and float descriptors may be
edited by a slider that uses the range given in the schema,
while enumerated value descriptors can be selected with
a drop-down list widget with the allowed values. Regu-
lar strings use a simple text box widget were the user can
enter free text.

428

Figure 3: The CLAM Annotator GUI

Figure 4: Editing integer and enum high-level descriptors

3.5 Editing Segmentation Marks

Segmentation marks may be viewed/edited in the wave
form view in the upper-right. They can be moved, deleted
(with the Delete key pressed) and inserted (holding down
the Insert key).

3.6 Auralizing annotations

Sometimes visual representation is not as meaningfull as
an aural feedback could be. The CLAM Annotator pro-
vides auralization of descriptors. That means mapping an-
notation data to synthesizer controls so that we can listen
the synthesized sound synchronized to the actual wave-
form. Currently we support segmentation marks auraliza-
tion and floating point low level descriptors auralization.

Segmentation marks auralization consists on listening
a percussive sound at every segment start point. Floating
point low level descriptors may be auralized by modulat-
ing the pitch or the volume of a sound using descriptor
values. Although low level descriptors auralization was
intended for pitch related features, we found this kind of
aural feedback being also meaninfull for other descriptors.

4 CONCLUSIONS AND FUTURE WORK

In the paper we have presented the first version of the
CLAM Annotator, a tool that can be used in order to revise
and fine-tune the result of automatic description extraction

algorithms. This tool will be made available as Free Soft-
ware in the next release of the CLAM framework.

Although we believe that in its current state the appli-
cation is already useful and valuable, future plans include
the possibility of dynamically loading automatic extrac-
tion algorithms. With this addition the CLAM Annotator
will become a complete and flexible framework for audio
description and annotation.

ACKNOWLEDGEMENTS

The authors wish to thank the rest of the CLAM devel-
opment team for their contributions and all the members
of the UPF Music Technology Group for their valuable
feedback.

Part of this work has been done in the context of the
SIMAC IST-507142 project.

References

[1] K.Sjölander and J. Beskow. Wavesurfer – an open
source speech tool. In Proceedings of the Eighth Inter-
national Conference on Spoken Language Processing
(ICSLP00), Beijing, China, 2000.

[2] X. Amatriain, P. Arumí and M.Ramírez. CLAM, Yet

Another Library for Audio and Music Processing? In
Proceedings of the 2002 Conference on Object Ori-
ented Programming, Systems and Application (OOP-
SLA2002), Seattle, USA, 2002. ACM.

[3]� www-XMLSchema.� World� Wide� Web� Con-

sortium (W3C)’s XML-Schema home page,
gramming with QT 3. Pearson Education, 2004.

[4] X. Amatriain and P. Herrera. Transmitting Audio Con-
tent as Sound Objects. In Proceedings of the AES 22nd
Conference on Virtual, Synthetic, and Entertainment
Audio, Helsinki, 2001. Audio Engineering Society.

[5] J. Blanchette and M. Summerfield. C++ GUI Pro-
gramming with QT3 . Pearson Education, 2004.

429

