
The Abs t rac t ion / Imp lementa t ion Mode l o f 
P rob lem Reformula t ion 

Michael R. Lowry 
Stanford Artificial Intelligence Laboratory 

Box 3350, Stanford CA 94305 USA 
And Kestrel Institute 

1801 Page Mil l Road, Palo Alto CA 94304 USA 

Abs t rac t 
A good problem representation incorporates important 

problem constraints while hiding superfluous detail. This 
paper presents methods for abstracting a problem repre­
sentation by making implicit problem properties into ex­
plicit properties of the representation. The mathematics 
of the abstraction search space are given in terms of model 
theory and universal algebra. The Behavioral Abstraction 
method uses predefined representation maps to lift a prob­
lem representation to an abstract theory. The Behavioral 
Congruence method generates abstract theories and repre­
sentation maps which incorporate problem constraints ex­
pressed as Behavioral Equivalences. Two meta-level meth­
ods for generating Behavioral Equivalence theorems are 
given. The STRATA automatic programming system de­
scribed in this paper is currently being implemented. 

I I n t roduc t i on 
This paper1 and its companion AAAI87 paper[Lowry, 

1987a] present a framework for problem reformulation and 
algorithm synthesis. In this framework, both specifications 
and algorithms are viewed as theories, where an algorithm 
is a theory about a sequence of state changes. Reformu­
lation is viewed as a representation map between theo­
ries. The mathematics of theory mappings can be found 
in Goguen's work on abstract model theory [Goguen and 
Burstall, 1985]. This paper explores reformulation as im­
plementation maps between theories, while the AAAI87 
paper explores reformulation as instantiation maps between 
parameterized theories. 

This paper describes work done at Stanford University under 
DARPA contract N00039-84-C-0211, and at the Kestrel Institute un­
der ONR contract N00014-84-C-0473. 

The overall framework is presented in the diagram 
above. First, STRATA ABSTRACTS the specification in 
order to remove superfluous distinctions that are found in 
the user's init ial conceptualization of the problem. This 
step is explained in this paper. Second, STRATA DE­
SIGNS an abstract algorithm by instantiating algorithm 
schemas which are formalized as parameterized theories. 
This step is explained in the companion AAAI87 paper, 
which illustrates the DESIGN step by using the parame­
terized theory of local search to derive the simplex algo­
r i thm. Thi rd STRATA IMPLEMENTS the abstract algo-
r i thm using stepwise refinement. Most work in automatic 
programming addresses this third step. 

STRATA uses the RAINBOW directed inference sys­
tem developed by Douglas Smith[Smith, 1985] for theo­
rem proving and theorem generation. The third step of 
IMPLEMENTATION is carried out by the REFINE™ 
compiler, which embodies a decade's research in automatic 
programming done at the Kestrel Institute. 

The subject of this paper is specification abstraction. 
Given a problem specification in a problem domain theory, 
STRATA finds an equivalent problem specification in a 
more abstract problem domain theory. Globally, the space 
of theories and implementation mappings form an asso­
ciative directed multigraph (i.e. a category). There is no 
global abstraction ordering on theories. However, with re­
spect to each input-output behavior, there is an abstraction 
ordering on theories. For this reason, this overall process 
is called Behavioral Abstraction. The mathematical foun­
dations for the search space of behavioral abstraction is 
explained in section 3. 

There are two cases to consider for behavioral abstrac­
tion. In the first case, the multigraph of theories and imple­
mentation mappings is predefined, and STRATA performs 
Behavioral Abstraction by proving behavioral theorems and 
applying inverse theory maps. A behavioral theorem is 
a sentence about an important problem property, and is 
used as an enabling condition for applying an inverse im­
plementation map. An important subclass of behavioral 
theorems are behavioral equivalences, that is two objects 
which behave equivalently with respect to the input-output 
relation. 

When STRATA generates a behavioral theorem which 
does not correspond to a predefined inverse implementa­
tion map, then STRATA generates a new, more abstract 

1004 REASONING 



theory and the implementation map between this new the­
ory and the original theory. This new theory results from 
incorporating the behavioral theorem into the language 
and axioms of the new theory. When the behavioral theo­
rem is a behavioral equivalence, generating the new theory 
is called behavioral congruence. Behavioral congruence is 
the main technical result of this paper. 

The method of Behavioral Abstraction is given below: 

1. Behavioral Theorems: Find important problem prop­
erties. 

2. Is the Behavioral Theorem an enabling condition for 
applying a predefined inverse implementation map? 

3. YES - apply the inverse implementation map to obtain 
a logically equivalent problem specification in a more 
abstract theory. 

4. NO - generate the theory which incorporates the be­
havioral theorem. For the case of behavioral equiv­
alences, this is called behavioral congruence. Go to 
Step 3. 

The rest of this paper describes the methods used by 
STRATA to abstract a problem definition into an equiv­
alent abstract reformulation that incorporates constraints 
of the IO-relation. Section 2 describes the abstraction hi­
erarchy which is searched by behavioral abstraction. In 
section 3 a simple combinatorial example is introduced to 
illustrate the abstraction methods. Section 4 describes be­
havioral equivalence. Section 5 defines the method of be­
havioral abstraction. Section 6 and 7 contain the main 
results of behavioral congruence, which is a method for 
turning a behavioral equivalence in a theory into an equal­
ity in a more abstract theory. Only when behavior ally 
equivalent objects are made identical has the equivalence 
been incorporated into a new representation. 

The pioneering work of Amarel[Amarel, 1968] 20 years 
ago showed the potential power of reformulation. About 
1980, a number of people began investigating methods 
for searching the space of logically equivalent problem re­
formulations. The abstraction space formalized in this 
model is similar to the homomorphic reformulations de­
scribed in [Korf, 1980]. Another type of search heuris­
tic is to find problem reformulations targeted to a par­
ticular problem solving schema such as Divide and Con-
quer[Smith, 1985], or Heuristic Search[Mostow, 1983]. In 
[Lowry, 1987a], problem solving schemas are formalized 
as parameterized theories, and hence generalizes the work 
cited above. In the literature on abstract data types, [Goguen 
and Meseguer, 1982] it has been shown that abstraction 
implementation commutes with problem solving schema 
instantiation. 

I I Mathemat ics o f the 
Abst rac t ion Space 

This section describes the mathematics of behavioral 
abstraction from a model theoretic viewpoint in order to 

understand the behavioral abstraction search space. The 
model theoretic viewpoint is closely related to the math­
ematics for the implementation relationship described in 
[Goguen et o/., 1978]. 

The basic idea behind reformulation is that the class of 
models for the original problem formulation is isomorphic 
to the class of models for the reformulated problem defini­
tion. This key idea is extended for behavioral abstraction 
to allow merging models of the concrete theory which are 
identical wi th respect to the IO-behavior. This merging 
comes in two flavors. First, a derivor forgets some of the 
relations and functions which are not directly of interest. 
For example, the IO-derivor forgets everything except the 
input/output relation. This is in part how the most ab­
stract problem formulation wil l be defined. The second 
flavor of merging is through equivalences. This is the main 
subject of this paper. Objects which behave equivalently 
with respect to the IO-relation are merged together into 
an identity. 

The most abstract class of models for a given prob­
lem formulation is obtained by first forgetting everything 
except the io-relation (or io-relations/functions if there is 
more than one), and then identifying all objects which be­
have equivalently. This most abstract class is the top of a 
lattice structure whose bottom is the original problem for­
mulation. Some of the points in this lattice wil l not have 
finite axiomatizations, because taking a derivor does not 
necessarily preserve finite axiomatizability. 

The space of tractable problem abstractions, corre­
sponding to the classes of models which have finite axiom­
atizations, have a semi-lattice structure with the original 
problem formulation at the bottom. [Lowry, 1987b] de­
scribes this structure in more detail. The objective of be­
havioral abstraction is to move upwards in this space of 
tractable problem abstractions. The diagram below shows 
the space of abstract problem reformulations, the circles 
denote tractable abstractions. The space of implementa­
tions is obtained by unwinding the multigraph of imple­
mentations. 

Abstraction Space 



The definition of an implementation link is as a repre­
sentation map from an abstract theory to a concrete the-
ory, wi th an abstraction function for mapping concrete ob­
jects to abstract objects. The diagram below shows an 
implementation link between bags and lists, where the ab­
stract theory of bags and the concrete theories of lists are 
axiomatized using equational logic. 

Abstraction Map from lists to bags: 

Abs(Nil) = NullBag 
Abs(MakeList(x)) = MakeBag(x) 
Abs(Append(Ll,L2) = BagUnion{Abs(Ll), Abs(L2)) 

In general there are many implementation links be­
tween two theories, going in both directions. It is assumed 
that a knowledge base has some of these implementation 
links predefined. Subsequent sections show how to auto­
matically use predefined implementation links for behav­
ioral abstraction when they are available, and also to gen­
erate new implementation links when given a novel prob­
lem constraint. The next page has the equational theory 
for lists. The equational theory for bags is obtained by 
renaming append to bagunion and making it commuta­
tive. The equational theory for sets is obtained by renam­
ing bagunion to set union and making it idempotent (a set 
unioned with itself yields the same set). A different equa­
tional theory for sets is obtained by renaming bagunion to 
symmetric-set-difference and making it self-conjugate (a 
set differenced with itself yields the null set). This demon­
strate how adding an equality to a theory can generate an 
abstract theory. These theories wil l be used in the exam­
ple. 

Equa t iona l T h e o r y o f L is ts 

I I I A Simple Example 
This example wi l l be used to illustrate the methods 

described in subsequent sections. 
1101001 Start String 
01100 Operator 

Goal String 
The arrow puzzle 2 is a state space search problem 

where the states are bit strings and the operators are bit 
strings which are applied by bit-wise XORing with a state 
to yield a new state. The input sort is a StartString Goal-
String pair, and the output sort is a list(sequence) of op­
erators. The input /output relation SOLVE is defined as: 
SOLV E({StartString, GoalString}, OpList) = 
Apply(Reduce(XOR,OpList), StartString) = GoalString 

Reduce takes a binary operator and a list of argu­
ments, iteratively applying the operator to the accumu­
lated result and the next element of the list. Apply takes 
an operator and bitwise XORs it with a bitstring. Re­
duce and Apply are defined using conditional equations as 
follows: 
if list = null then Reduce(binop,hst) = identity 
if list / null then 
Reduce(bmopjist) = car(list)binopReduce(binop,cdr(hst)) 
Apply (operator, Bit String) — operator XORBitStrtng 

The properties of XOR, denoted <8>, assumed to be 
defined in the knowledge base, are used to reformulate the 
problem: 

Commutative 
Associative 
Identity 
SelfConjugate 

The commutativity and associativity of XOR means 
that a list of operators can be arbitrarily re-ordered, which 
is used to lift the output sort from list of operators to bags 
of operators. An alternative representation for a bag is 
an exponential notation, which maps each operator into 
its number of occurrences in the bag. The self-conjugate 
property of XOR means that applying an operator twice 
is equivalent to not applying it at all. In other words, only 
the even/odd parity of the number of operator occurrences 
is relevant. Thus the exponential notation is collapsed to 
the characteristic function for a set by mapping the nat­
ural numbers to mod2. Similarly, StartString GoalString 
pairs can be collapsed into a single bit-string by XOR­
ing them together. This single bit-string represents the 
class of StartString GoalString pairs that have the same 
solutions. The following transformations illustrate these 
abstractions: 

L is ts to Bags 

Exponents 

2Korf presented this puzzle with arrows pointed up or down to 
represent bits. He made additional assumptions about the set of 
operators which are irrelevant to the abstraction presented here. 

1006 REASONING 



Bags 

Pairs to b i t -s t r ings 

Note that certain choices of operators might not span 
the space of all possible Start String GoalString pairs. The 
search wil l not terminate unless the search space can be 
made finite. There are an infinite number of possible op­
erator lists and operator bags. However, there are only a 
finite (but exponential) number of operator sets; thus the 
search is guaranteed to terminate for the abstract problem 
reformulation. 

IV Behavioral Equivalence 
Theorems 

The first step in Behavioral Abstraction is to find a 
problem property which wil l then be incorporated in a 
new representation for the problem. Behavioral Equiva­
lences are an important subclass of problem properties. 
Two objects are behaviorally equivalent when they behave 
identically with respect to the 10 relation. In the schema 
given below, terms of the input sort are prefixed with / n , 
terms of the output sort are prefixed with Out, and the 
10 relation is designated R. The first schema is for in­
put objects that behave identically, the second schema is 
for output objects that behave identically.3 (The symbol 
=Bth denotes equivalence with respect to the IO-relation). 
Behav iora l Equivalence Schemas 

Two general meta-level methods for generating behav­
ioral equivalence theorems, the kernel method and the ho-
momorphism method, are given in [Lowry, 1987b]. In uni­
versal algebra, the kernel of a function f whose domain is 
sort A and whose range is sort B is defined as the equiv­
alence relation on A of elements which are mapped to the 
same element in B. A homomorphism is a function f from 
A to B that maps a function g on A to a function h on B. 
The kernel of g is mapped to the kernel of h (or a subset of 
the kernel of h). The generalization of homomorphism to 
many sorted logics can be found in [Goguen ti a/., 1978]. 

For the arrow puzzle, the kernel method yields a be­
havioral equivalence on the input sort, which is a Start-
String GoalString pair. The function XOR maps a pair of 
bit-strings to a single bit-string. This defines an equiva­
lence class on pairs of bit strings. The following behavioral 
equivalence theorem describes this equivalence class: 

For the arrow puzzle, the homomorphism method yields 
two behavioral equivalences on the output sort, which is a 

3This easily generalizes to the case where the behavior is defined 
as an arbitrary sublanguage of the problem domain theory[Lowry, 
1087b] 

list of operators. The homomorphism function in this case 
is REDUCE, which maps a list of operators to a single bit 
string representing the composite operator. The homo­
morphism maps the properties of XOR, particularly com-
mutativity and self-conjugate, to behavioral equivalences 
of append: 

V Behavioral Abst ract ion 
The basic idea of behavioral abstraction is to apply 

stepwise implementation in reverse. The representation 
map of an implementation link has all the primitive func­
tions and relations of the abstract theory as its source and 
often derived functions and relations in the concrete the­
ory as its target. Stepwise implementation simply trans­
lates a complex relation in the abstract theory through the 
representation map to a complex relation in the concrete 
theory. In general, the representation map is only par­
tially invertible, so a problem formulated in the concrete 
theory cannot always be simply mapped to the abstract 
theory. For example, in the bag theory to list theory rep­
resentation map given in section 3, there is no inverse map 
for C A R or C D R . This is because C A R and C D R are 
non-determinate when applied to bags. 

When a problem formulated in the concrete theory 
is defined solely in terms of the image of a representation 
map, then the inverse map can be directly applied to derive 
an abstract problem reformulation. Often, it is possible to 
prove that a problem has some abstract property which 
implies that it can be reformulated in a more abstract the­
ory even though the problem definition is not in terms of 
the image of the appropriate representation map. In this 
case, it is necessary to derive an equivalent problem formu­
lation stated in terms of the image of the representation 
map. This is in itself a reformulation or operationalization 
- the basic inference step is finding an equivalence. Given 
this equivalent problem formulation and the appropriate 
predefined implementation link, by applying the inverse 
representation map the abstract problem reformulation is 
obtained. Subsequent sections show how to generate a new 
implementation link when an appropriate one does not al­
ready exist in the knowledge base. 

A b s t r a c t i n g t h r o u g h Predef ined Imp lemen ta t i on 

1. Find properties of a problem. 

2. Find an implementation link which uses some of these 
properties in the abstraction direction. 

3. Find an equivalent problem formulation stated in terms 
of the image of the representation map. 

4. Apply the inverse of the representation map to derive 
the abstract formulation. 

These steps are illustrated with the reformulation of 
the arrow puzzle from lists of operators to bags of opera­
tors. In S T E P 1. the homomorphism method generates 

Lowry 1007 



several behavioral equivalence theorems including the com-
rautativity of append with respect to the 10-behavior, 

In S T E P 2. the knowledge base is searched for an 
appropriate implementation link which incorporates the 
problem constraint found in step 1. For behavioral equiv­
alence constraints, this means finding an implementation 
link with an abstraction function whose kernel is a subset 
of the behavioral equivalences found in step 1. The ab-
straction function for the bag to list implementation that 
maps bagunion to append is: 
abs(append\ 

Since bagunion is append wi th commutativity, the 
kernel of the abstraction function contains the behavioral 
equivalence of commutativity of append. 

In S T E P 3. the problem is reformulated to an expres­
sion in the target of the representation map. Since cons 
is in the target whereas car and cdr are not, the car/cdr 
recursion which defines the REDUCE operator is replaced 
by an existential construction using cons: 
if list = null then Reduce(binoplist) = identity 
if list 
Rcduct(binop,list) = x binop Reduce(binop, L) 

in S T E P 4. this new problem formulation is mapped 
through the inverse implementation link: 
if bag = nullbag then ReduceBag (binop, bag) = identity 
if bag nullbag then addbag(xyB) - bag AND 
Reduce(binop,bag) = x binop Rtduct(binop,B) 
SolveBag({StartString. GoalString},OpBag) = 
Apply(rcduceBag(XOROpbag), Start String) = GoalString 

VI Making the World Safe for 
Equality 

When a problem property does not correspond to a 
predefined implementation link, then for behavioral ab-
straction STRATA must generate a new representation 
theory which incorporates the property. From a math-
ematical viewpoint, the central issue*is how to turn an 
equivalence into an equality. In particular, a behavioral 
equivalence in the concrete theory is turned into an equal­
i ty in the abstract theory. Equal objects are identical - they 
can be freely substituted for each other everywhere. Equiv­
alent objects are not identical; by definition behaviorally 
equivalent objects can be substituted for each other in 
the IO-relation, but not necessarily elsewhere. Only when 
behaviorally equivalent objects are made identical has the 
equivalence been incorporated into a new representation. 
This is illustrated by the theories which are the abstract 
data types for lists, bags, and sets. 

In order to turn a behavioral equivalence into an equal­
ity, a new representation language is generated, so that be-
haviorally equivalent objects are freely substitutable. The 
requirement of free substitution is the constraint used in 
the generator of the new representation language. This sec­
tion discusses some of the conceptual background needed 

for generating the new representation language, further 
details can be found in [Lowry, 1987b]. A sort is PRO­
TECTED against new congruences when a congruence would 
lead to identifying objects that are not behaviorally equiv­
alent, A sort is SEPARABLE into separate copies for dif­
ferent functions if the problem definition does not link the 
different functions. This is the basis of the SPLITTING 
strategy. Finally, a function is SAFE with respect to a 
BEHAVIORAL EQUIVALENCE if propagating the equiv­
alence through the function as an equality does not lead to 
defining new congruences on PROTECTED sorts. Delet­
ing UNSAFE functions is the basis of the PROTECTION 
strategy. 

Definition: A sort is PROTECTED iff: 

Case 1 It is in the input or output of the IO-relation. 

Case 2 It is a free parameter to the problem definition. 

In the arrow puzzle, the following sorts are protected 
by case 1: lists of operators, StartString GoalString pairs. 
Case 2 protects the sort operators, because the arrow puz­
zle is defined with respect to any set of operators (bit 
strings which are XORed with the states). The basic idea 
behind a protected sort is that no congruence can be de­
fined on a protected sort unless it is a behavioral equiva­
lence with respect to the io-relation. 

In general each sort is in the domain or range of many 
functions. Congruences are propagated through sorts that 
are in the domain of a function to the sort which is the 
range of a function. This range sort is in turn the input 
to other functions, and in this way a congruence is propa­
gated through the daisy chain of functions in the problem 
domain theory. However, only some of this daisy chain­
ing is intrinsic to the axiomatization and definitions of the 
functions in the problem domain theory. This leads to 
the definition of a SEPARABLE sort with respect to two 
functions: 

Definition: A sort S is separable with respect to a func­
tion Fl whose range is S and a function F2 which has an 
input argument of sort S I F F Fl does not appear as part of 
a term in an expression whose head is F2 in the definition 
of the problem domain theory. 

The intuit ion of this definition is that a SEPARABLE 
sort can be split into two sorts, thus blocking the propa­
gation of a congruence from Fl to F2. Another viewpoint 
is that sort S is separable if the problem domain theory 
could have been given with the output of Fl being sort Si 
and the input of F2 being a distinct sort S2 (SI equal S2, 
but SI NOT eq S2). The mathematical machinery for this 
viewpoint is described at length in [Burstall and Goguen, 
1977] and [Goguen and Burstall, 1985]. 

Definition: A function is SAFE iff: 

Case 1 The range is the input or output sort of the io-
relation. Behaviorally equivalent inputs to the func­
tion result in behaviorally equivalent outputs. 

Case 2 The range is not the input or output sort. Behav­
iorally equivalent inputs have identical outputs. 

1008 REASONING 



CAR and CDR are not SAFE with respect to commu­
tativity of append, because their respective output sorts, 
operators and list of operators, are protected. However, 
CONS is safe because it is covered by case 1. 

V I I Behavioral Congruence -
Protect ion and Spl i t t ing 

The protection and splitting methods transform the 
language of the problem domain theory in minimal ways 
so that adding the behavioral equivalence theorem as a new 
equality preserves the problem semantics. The goal is to 
make the representation map as invertible as possible, so 
that the problem definition needs to be only minimally re­
formulated before being lifted to the new abstract problem 
domain theory. The protection method deletes functions 
whose range is a protected sort which are not safe. The 
splitting method makes copies of separable sorts so that 
functions which would not be safe after propagating the 
behavioral equivalence as a congruence become safe. 

The protection method is illustrated above for the case 
of transforming the behavioral commutativity of append 
into an equality. In the diagram, sorts are represented by 
boxes, and functions are represented by ovals. The inputs 
and outputs of a function are represented by arrows lead­
ing from/to the appropriate sorts. The protected sorts 
are ListofOperators and Operators, labeled with a P. The 
sort ListofOperators is used to define the behavioral equiv­
alence theorems of commutativity and self-conjugate, any 
function which uses this sort as an input argument must 
be safe. The functions A P P E N D and C O N S are safe, 
and labeled with an S. In contrast the functions C A R and 
C D R are not safe and are surrounded by black to indicate 
that they are deleted by the protection method. The func­
tion MakeL i s t is safe because its input is the protected 

sort operators upon which no equality can be defined, as 
it is a free parameter. 

To derive the abstract theory from the concrete theory 
of lists with the behavioral equivalence of commutativity 
of append, the protection method renames the behavioral 
sorts and the safe functions which reference them, copies 
the axioms and then adds the behavioral equivalence as an 
equality. The representation map takes a renamed function 
in the abstract theory into the corresponding function in 
the original theory. The protection method generates the 
theory of bags shown in section 2, along with the corre­
sponding implementation link from bags to lists. Note that 
behavioral abstraction must stil l be used to lift the prob­
lem definition SOLVE into the new theory, as explained in 
section 5. 

The protection method could be applied once again 
for the behavioral equivalence of self-conjugate of append. 
Bag-Union (previously append) becomes symmetric set dif­
ference. Addbag (previously cons) is also transformed to 
XorAdd, its new action is to delete an element if it already 
exists, otherwise it adds the element. 

An alternative derivation path which uses the behav­
ioral equivalence of self-conjugate of append is given by 
the splitting method. In this case, the theory of bags is 
first isomorphically transformed to exponential notation, 
as discussed in [Lowry, 1987b]. In this isomorphic the­
ory given below, equality of bags is defined in terms of 
bag-member. Bag-member is a function which takes an 
element and a bag and returns the number of occurrences 
of the element in the bag. 

i 

In this new isomorphic representation, bag equality is 
defined wi th the sort natural numbers through the func­
tion bag-member . In the arrow puzzle, the natural num­
bers are used both as the range of bag-member and as 
an index into bit-strings. Propagating the congruence of 
self-conjugate through the natural numbers causes them 
to collapse to Mod2 (isomorphic to the booleans). If this 
were then propagated to the index into bit-strings, it would 
cause a collapse of bit-strings into the even and odd indices. 
Unlike the elements of operator-lists, which are protected, 
the natural numbers are not protected and can be split. 
This prevents the propagation of the congruence through 
the range of bag-member to the index of bit-strings. 

Lowry 1009 



The splitting method is illustrated above, by the ad­
dition of the new sort natural numberst as the output of 
B a g M e m b e r The output of B a g M e m b e r is no longer 
the same sort as the input to I n d e x S t r i n g The prop-
agation of the behavioral equivalence of self-conjugate of 
bag-union through bag-member causes an additional ax­
iom to be added to the sort natural numbers2, which re­
sults in a theory which is syntactically identical to the 
theory for Mod2 or the booleans. The derivation below 
shows how the additional axiom which defines Mod2 (or 
the booleans) is obtained by propagating the behavioral 
equivalence through substitution: 
BagUnion , _„ 
BagMcmber(x, BagUnion(S, S)) = 
BagMember(x, NullBag) 
B agM ember (x,S) + BagMember\ 

In the new theory BagUnion becomes Symmetric Set Dif­
ference and the behavioral equivalence of self-conjugate 
of BagUnion becomes an equality. BagMember becomes 
SetMember, and the sort naturalnumbers2 becomes the 
booleans through the addition of the equality 

V I I I Summary 

A good representation incorporates the problem con­
straints. This paper has presented the abstraction imple­
mentation model of problem reformulation. The search 
space of abstract problem reformulations is formalized model 
theoretically as a lattice structure. Behavioral abstrac­
tion is a general method for incorporating a problem con­
straint into an abstract problem reformulation, by revers-
ing an implementation link. Behavioral congruence is a 
method for generating new representations which incorpo-
rate behavioral equivalence constraints. The first step is 
to transform the representation language through protec­
tion and splitt ing so that all functions are safe. Then the 
behavioral equivalence constraint is made into an equality, 

and propagated throughout the new representation lan­
guage to generate new constraints. The kernel method 
and the homomorphism method are meta-level inference 
techniques for efficiently generating behavioral equivalence 
constraints. These methods are being implemented in an 
automatic programming system called STRATA. 

I X Acknowledgment 
This paper benefitted from the technical and editing 

help provided by Joseph Goguen, Laura Jones, and Dou­
glas Smith. Discussions with the following people have also 
contributed to the development of these ideas: Phil Agre, 
Tom Binford, Bruce Buchanan, Raul Duran, Mike Gene-
sereth, David MacAllester, Patricia Riddle, Jeff Schrager, 
David Smith, Steve Tappel, and Daniel Weld. 

References 
[Amarel, 1968] Saul Amarel. On representations of prob­

lems of reasoning about actions. Machine Intelligence 
3, 1968. 

[Burstall and Goguen, 1977] Rod M. Burstall and Joseph 
Goguen. Putt ing theories together to make specifica­
tions. In IJCAI 5, pages 1045-1058, 1977. 

[Goguen and Meseguer, 1982] Joseph Goguen and Jose 
Meseguer. Universal realization, persistent intercon­
nection and implementation of abstract modules. In 
ICALP, Springer Verlag, 1982. 

[Goguen et a/., 1978] Joseph Goguen, Jim Thatcher, and 
Eric Wagner. An init ial algebra approach to the spec­
ification, correctness, and implementation of abstract 
data types. In Raymond T. Yeh, editor, Current 
Trends in Programming Methodology, pages 80-149, 
Prentice-Hall, 1978. 

[Goguen and Burstall, 1985] Joseph A. Goguen and 
Rod M. Burstall. Institutions: Abstract Model Theory 
for Computer Science. Technical Report CSLI- 85-30, 
CSLI, 1985. 

[Korf, 1980] Richard E. Korf. Towards a model of repre­
sentation change. Artificial Intelligence, 14(1), Apri l 
1980. 

[Lowry, 1987a] Michael R. Lowry. Algorithm synthesis 
through problem reformulation. In AAAI-81, July 
1987. 

[Lowry, 1987b] Michael R. Lowry. Algorithm Synthesis 
through Problem Reformulation. PhD thesis, Stan­
ford University, 1987. 

[Mostow, 1983] Jack Mostow. Machine transformation of 
advice into a heuristic search procedure. In Machine 
Learning, An Artificial Intelligence Approach, chap­
ter 12, Tioga Press, 1983. 

[Smith, 1985] Douglas R. Smith. Top-down synthesis 
of divide-and-conquer algorithms. Artificial Intelli­
gence, 27(1), September 1985. 

1010 REASONING 


