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The first year of TREC Genomics Track featured 
two tasks:  ad hoc retrieval and information 
extraction.  Both tasks centered around the Gene 
Reference into Function (GeneRIF) resource of 
the National Library of Medicine, which was 
used as both pseudorelevance judgments for ad 
hoc document retrieval as well as target text for 
information extraction.  The track attracted 29 
groups who participated in one or both tasks. 
 
The growing amount of scientific discovery in 
genomics and related biomedical disciplines has 
led to a corresponding growth in the amount of 
on-line data and information.  A growing 
challenge for biomedical researchers is how to 
access and manage this ever-increasing quantity 
of information.  This situation presents 
opportunities and challenges for the information 
retrieval (IR) field.  IR has historically focused 
on document retrieval, but the field has 
expanded in recent years with the growth of new 
information needs (e.g., question-answering, 
cross-lingual), data types (e.g., video) and 
platforms (e.g., the Web).  This paper describes 
the events leading up to the first year of TREC 
Genomics Track, the first year’s results, and 
future directions for subsequent years. 
 
Genomics and Information Resources 
 
The field of genomics is concerned with the 
genome, which is usually defined as the genetic 
material of living organisms.  Its research 
focuses on the central dogma of biology:  
deoxyribonucleic acid (DNA) is transcribed into 
ribonucleic acid (RNA), which serves to 
translate the nucleotide sequences of DNA into 
proteins.  The latter are responsible for functions 
in living organisms and the collection of all 
proteins in is increasingly called the proteome.  
With the advent of new technologies for 
sequencing the genome and proteome, along 
with other tools for identifying the expression of 

genes, structures of proteins, and so forth, the 
face of biological research has become 
increasingly data-intensive, creating great 
challenges for scientists who formerly dealt with 
relatively modest amounts of data in their 
research. 
 
The growth of biological data has resulted in a 
correspondingly large increase in scientific 
knowledge in what biologists sometimes call the 
bibliome or literature of biology.  A great deal of 
biological information resources have become 
available in recent years (Baxevanis, 2003).  
Probably the most important of these are from 
the National Center for Biotechnology 
Information (NCBI, www.ncbi.nlm.nih.gov), a 
division of the National Library of Medicine 
(NLM, www.nlm.nih.gov) that maintains most 
of the NLM’s genomics-related databases 
(Wheeler, Church et al., 2003). 
 
Key features of NCBI resources include linkage 
and annotation.   Linkage among resources 
allows the user to explore different types of 
knowledge across resources.  For example, the 
original research documenting the discovery of a 
gene function appears in MEDLINE (the 
bibliographic database of medical literature, 
accessed by PubMed and other systems), with 
links to the nucleotide sequence in GenBank, the 
structure of the protein in the Molecular 
Modeling Database (MMDB), and an overview 
of the diseases it may cause in humans in the 
Online Mendelian Inheritance in Man (OMIM) 
textbook.  LocusLink 
(http://www.ncbi.nlm.nih.gov/LocusLink/) 
serves as a switchboard to integrate these 
resources together as well as provide annotation 
of the gene’s function using the widely accepted 
GeneOntology (GO, www.geneontology.org).  
Genes with known locations are also into maps 
which denote their locations of genes on 
chromosomes.  PubMed also provides linkages 



to full-text journal articles on the Web sites of 
publishers. 
 
Additional genomics resources exist beyond the 
NCBI.   Of particular note are the model 
organism genome databases, such as: 
� Mouse Genome Informatics - 

www.informatics.jax.org 
� Saccharomyces Genome Database - 

http://genome-
www.stanford.edu/Saccharomyces/ 

� Flybase Database of the Drosophilia 
Genome - flybase.bio.indiana.edu 

As with the NCBI resources, these resources 
provide rich linkage and annotation. 
 
Preliminary Activities of the Genomics Track 
 
The genesis of the Genomics Track came in 
2001, when interest was expressed by the TREC 
Program Committee for moving into new types 
of data, including types which were more 
structured than the usual document collections 
from newswire.  A number of discussions 
among interested people led to the first activity 
of the track, which was a Web survey soliciting 
ideas that took place in early 2002.   Over 80 
individuals responded, revealing diverse 
interests in IR and information extraction (IE) 
tasks, but clustered around three areas:   
extraction of knowledge from databases, 
automated or semi-automated annotation of 
genes and proteins, and retrieval across 
heterogeneous databases.   Respondents from the 
IR community expressed the most enthusiasm 
for the latter task.  All respondents were 
interested in using public databases, mainly 
those from the NCBI. 
 
Activity also consisted of three workshops, held 
at the Joint Conference on Digital Libraries 
(JCDL) 2002, TREC 2002, and the Pacific 
Symposium on Biocomputing (PSB) 2003.   
These workshops led to the plan for the first year 
of the track, which was hoped would take place 
in 2003.  A significant constraint on the track 
was lack of resources; i.e., NIST did not have 
the in-house resources to obtain documents or 
perform relevance judgments in this domain.  As 
such, the choice of tasks, queries, documents, 
etc. would need to be guided by the availability 

of existing resources, including something that 
could be used to serve as proxies for relevance 
judgments.  Fortunately, the track identified a 
valuable resource from NCBI:  Gene Reference 
into Function (GeneRIF) data in the LocusLink 
database.  Each GeneRIF entry consists of a 
statement about the function of a gene along 
with a pointer to the MEDLINE reference for 
the article that discovered that data (see Table 
1). 
 
A preliminary analysis in January, 2003 
identified nearly 7,000 genes with one or more 
GeneRIFs.  There were 246 genes with 10 or 
more GeneRIFs.  As past IR work has shown 
that the “stability” of recall-precision numbers in 
batch retrieval experiments requires at least 25 
and ideally 50 topics (Buckley and Voorhees, 
2000), this would provide ample data for 
experiments. 
 
The workshops also resulted in a use case 
guiding the first year’s experiments, which was 
the biological researcher or graduate student 
(i.e., someone who already has considerable 
general domain knowledge) who is confronted 
with the need to learn about a new scientific area 
quickly.  Perhaps he or she has performed a gene 
expression array experiment identifying genes 
not previously known to be involved in the 
biological process he or she has been 
investigating.  Now he or she must get up to 
speed quickly with knowledge of these genes. 
 
The GeneRIFs allowed the track to pursue two 
tasks satisfying the interests of a larger audience:  
an ad hoc retrieval task and an IE task.  The ad 
hoc task was designated the primary task and 
was structured very similar to most previous 
TREC ad hoc tasks (e.g., ad hoc tasks of TREC 
1-10, Web track, etc.).  It was recognized that 
GeneRIFs could serve as pseudorelevance 
judgments, even though it was suspected (and 
later verified, see below) that they were 
incomplete from that standpoint. 
 
GeneRIFs could also be used as targets for IE, 
and this was chosen to be the secondary task.  
The secondary task was more exploratory in 
nature:  extracting the GeneRIF statement from 
the MEDLINE record or the article proper.  



Table 1 - GeneRIFs for the gene Interleukin 3 (colony-stimulating factor, multiple) from LocusLink.  The 
PubMed ID and citation are from the MEDLINE database. 
 
LocusLink ID PubMed ID Citation GeneRIF text 
3562 11763346 Antisense Nucleic Acid 

Drug Dev 2001 
Oct;11(5):289-300. 

inhibition of signaling by antisense 
oligodeoxynucleotides targeting the common 
beta chain of receptors 

3562 11861295 Blood 2002 Mar 
1;99(5):1776-84. 

ectopically expressed in myeloid leukemic 
cells with t(5;12)(q31;p13), suggesting that 
expression of IL3 was deregulated by the 
translocation, indicating a variant 
leukemogenic mechanism for translocations 
involving the 5' end of ETV6 

3562 12002675 Folia Biol (Praha) 
2002;48(2):51-7. 

Antiapoptotic cytokine IL-3 + SCF + FLT3L 
influence on proliferation of gamma-irradiated 
AC133+/CD34+ progenitor cells. 

3562 12055233 J Immunol 2002 Jun 
15;168(12):6199-207. 

Monocytes cultured in the presence of IL-3 
(plus IL-4) differentiate into dendritic cells that 
produce less IL-12 and shift T helper (Th) cell 
responses toward a Th2 cytokine pattern. 

3562 12093816 J Biol Chem 2002 Oct 
11;277(41):38764-71. 

Data suggest that increased activity of mutated 
interleukin 3 is due to a change from a rare 
ligand to a common one, allowing the increase 
in IL-3-dependent signaling. 

3562 12135758 FEBS Lett 2002 Jul 
31;524(1-3):149-53. 

role in potentiating hematopoietic cell 
migration 

3562 12165512 J Immunol 2002 Aug 
15;169(4):1876-86. 

The IL-3 gene is regulated by two enhancers 
that have distinct but overlapping tissue 
specificities. 

 
Research groups were charged with maximizing 
the lexical overlap of the GeneRIF statement as 
measured by the Dice coefficient and some 
derivatives of it.  Full-text articles were provided 
through Highwire Press (www.highwire.org), 
which publishes the full text of over 400 
biomedical journals.  Highwire does not own the 
copyrights to the journals, but has served as an 
intermediary to help various IR and other 
research groups obtain journal data for their 
work.   Highwire facilitated interaction with 
publishers to obtain content for experiments. 
 
Primary task 
 
As noted above, the primary task for 2003 
consisted of ad hoc document retrieval.  This 
type of task requires a document collection, 
topics, and relevance judgments. 
 

Documents 
 
The document collection consisted of 525,938 
MEDLINE records where indexing was 
completed between 4/1/2002 and 4/1/2003.  The 
MEDLINE records were provided in the 
standard NLM MEDLINE format (although an 
XML version was available).  The fields were 
indicated by their 2-3 letter abbreviation.  The 
fields likely to be most important to track 
participants were:  PubMed Unique Identifier 
(PMID), title (TI), abstract (AB), and MeSH 
headings (MH).  A description of all the fields in 
a MEDLINE record can be found in the PubMed 
help file at: 
http://www.ncbi.nlm.nih.gov/entrez/query/static/
help/pmhelp.html#MEDLINEDisplayFormat 
 
 



Topics 
 
The topics consisted of gene names, with the 
specific task being deriving from the definition 
of a GeneRIF (Mitchell, Aronson et al., 2003): 
� For gene X, find all MEDLINE references 

that focus on the basic biology of the gene 
or its protein products from the designated 
organism.  Basic biology includes isolation, 
structure, genetics and function of 
genes/proteins in normal and disease states. 

We distributed training and test topic sets of 50 
genes each.  The training data were distributed 
first, allowing groups to get an idea of what the 
data in the track were like and tune their 
systems.  The test data were the topics for the 
official runs in the track.  For each set of 50 
topics, we randomly chose gene names that were 
distributed across the spectrum of organisms, the 
number of GeneRIFs (many to few), name types 
(see below), and whether or not the gene names 
were Medical Subject Heading (MeSH) indexing 
terms.  We also distributed the GeneRIFs for all 
of the training topics to allow groups to see the 
targets of their systems’ retrieval efforts.  
GeneRIFs for the test topics were not distributed 
until after the deadline for the submission of 
official results. 
 

Gene Names 
 
LocusLink also contains a variety of names for 
each gene.  Many researchers have lamented the 
pervasiveness of synonymy and polysemy in 
gene naming (O'Neill, 2003).  Table 2 shows the 
multiple gene names for the Interleukin 3 
(colony-stimulating factor, multiple) gene whose 
GeneRIFs were shown in Table 1. 
 
Although many genes are present across 
multiple organisms (e.g., humans, mice, and rats 
produce and utilize insulin), LocusLink 
maintains a separate record for each gene in a 
given species.  We chose to limit genes to four 
possible organisms: 
� Homo sapiens - human 
� Mus musculus - mouse 
� Rattus norvegicus - rat 
� Drosophila melanogaster - fruit fly 
 
Relevance Judgments 
 
For reasons described above, the relevance 
judgments for the 2003 track consisted of 
GeneRIFs.  Track participants were not allowed 
to use GeneRIF data to augment their queries.  
While we recognized that GeneRIFs were, like 
the rest of LocusLink, publicly available, we 
worked on the honor system of research groups 
not using GeneRIF data. 

 
 
Table 2 - Names for the gene Interleukin 3 (colony-stimulating factor, multiple) from LocusLink. 
 
LocusLink ID Organism Gene name type Gene name 
3562 Homo sapiens OFFICIAL_GENE_NAME interleukin 3 (colony-stimulating factor, 

multiple) 
3562 Homo sapiens OFFICIAL_SYMBOL IL3 
3562 Homo sapiens ALIAS_SYMBOL IL-3 
3562 Homo sapiens ALIAS_SYMBOL MCGF 
3562 Homo sapiens ALIAS_SYMBOL MULTI-CSF 
3562 Homo sapiens PREFERRED_PRODUCT interleukin 3 precursor 
3562 Homo sapiens PRODUCT interleukin 3 precursor 
3562 Homo sapiens ALIAS_PROT mast-cell growth factor 
3562 Homo sapiens ALIAS_PROT P-cell stimulating factor 
3562 Homo sapiens ALIAS_PROT hematopoietic growth factor 
3562 Homo sapiens ALIAS_PROT multilineage-colony-stimulating factor 
 



We calculated recall and precision in the classic 
IR way, using the preferred TREC statistic of 
mean average precision (average precision at 
each point a relevant document is retrieved, also 
called MAP).  This was done in the standard 
TREC fashion of participants submitting their 
results in the format for input to the trec_eval 
program.  (Groups were directed to the 
repository of code for trec_eval at 
ftp://ftp.cs.cornell.edu/pub/smart/.  There are 
several versions of trec_eval, which differ 
mainly in the additional statistics they calculate 
in their output.)  The trec_eval program requires 
two files for input.  One file is the topic-
document output, sorted by each topic and then 
subsorted by the order of the IR system output 
for a given topic.  The second file required for 
trec_eval is the relevance judgments, which are 
called qrels in TREC jargon.  (More information 
about qrels can be found 
at http://trec.nist.gov/data/qrels_eng/). 
 
Training Data Runs 
 
The training data runs not only allowed groups 
to become familiar with the data, but also 
allowed for discovery of some “quirks” with the 
training data qrels: 
� A number of qrels represented documents 

not present in the document collection. 
� Three topics had no qrels in the document 

collection:  21, 35, and 49. 
This enabled us to make sure these problems did 
not exist before finalizing the test data.  Due to 
the unstable nature of recall-precision for topics 
with very small numbers of qrels, we made the 
decision to use only gene names that had a 
minimum of three qrels in the collection for the 
test topics. 
 
We also performed an analysis of relevance for 
10 queries from the training data.  This was done 
by manually judging relevance for all GeneRIFs 
as well as all other documents in the top 20 
retrieved by the best OHSU training data run (or 
all documents if less than 20 retrieved).  The 
relevance judgments were performed by an 
individual with a medical background enrolled 
in the OHSU medical informatics graduate 
program who had taken a course in IR.  This 
analysis validated our a priori assumptions that 

all articles pointed to by GeneRIFs were relevant 
in the classic IR sense and that there were many 
“false negatives” (i.e., articles that were relevant 
but did not have a GeneRIF designation).  We 
also discovered another phenomenon:  
documents that were relevant but for the gene in 
a species other than that designated by the 
LocusLink record.  In the analysis of the top 20 
ranking documents retrieved from the best 
OHSU training run, we found that: 
� 35.0% of documents retrieved were not 

relevant 
� 10.5% of documents retrieved were relevant 

and were GeneRIFs 
� 42.5% of documents retrieved were relevant 

and not GeneRIFs 
� 12.5% of documents retrieved were relevant 

and from a different species 
  
Official Runs 
 
A total of 25 groups submitted 49 official runs 
for scoring.  Table 3 lists the results for each 
run, consisting of the run tag, whether the run 
was purely automatic or used some manual 
processing, and three results:  MAP, number 
relevant at 10 documents retrieved, and number 
relevant at 20 documents retrieved.  The final 
two rows of the table show the mean and median 
for each result.  An analysis of variance with 
posthoc pairwise comparisons will be reported 
in a subsequent paper. 
 
The run with the highest MAP was 
NLMUMDSE, with a mean MAP of 0.4165.  
This and the next-highest performing run came 
from an NLM-based research group (not 
affiliated with the operations of the library) 
(Kayaalp, Aronson et al., 2003).  They used a 
search engine developed for the 
ClinicalTrials.gov database.  They achieved 
good results from: 
� Identifying species through use of MeSH 

terms and other simple rules 
� Recognizing terms or their synonyms or 

lexical variants in non-text fields, in 
particular MeSH and substance name (RN) 

� Using additional general key words, such as 
genetics, sequence, etc. 



A second run with a system that added MeSH 
terms and other controlled vocabulary along 
with collocation networks did not improve 
performance with this data. 
 
Runs from UC Berkeley (Bhalotia, Nakov et al., 
2003) and the National Research Council of 
Canada (deBruin and Martin, 2003) ranked next 
highest.  Both of their approaches benefited 
from rules for recognizing gene name synonyms 
and filtering for organism name.  The UC 
Berkeley approach included a machine learning 
algorithm to classify documents likely to have 
GeneRIFs assigned to them and document 
ranking based on gene name occurrence rules.  
The NRC approach added unsupervised 
relevance feedback to find additional relevant 
articles and ranking based on TF*IDF query 
term weighting. 
 
The Waterloo group also did well, using what 
could be best described as “database-specific” 
(as opposed to “domain-specific”) techniques 
that included (Yeung, Clarke et al., 2003): 
� Query formulation using fusion of Okapi 

weighting plus handling of punctuation plus 
pluralization as well as gene name bigrams 

� Recognition of gene name in substance 
name field 

� Query expansion on relevant substance 
names 

 
It was apparent from the above groups that 
searching in the MeSH and substance name 
fields, along with filtering for species, accounted 
for the best performance.  At least two other 
groups also found substantial benefit from 
organism name filtering, the National Research 
Council of Canada (deBruin and Martin, 2003) 
and Tarragon Consulting (Tong, Quackenbush et 
al., 2003).  No groups attempted to model gene 
“function” in the sense of the GeneRIFs. 
 
Approaches that used standard IR techniques 
shown to work best with traditional TREC data 
(i.e., newswire) performed less well.  The 
Neuchatel group tried many permutations of 
advanced features from SMART (Savoy, 
Rasolofo et al., 2003).  They obtained their best 
results with Okapi weighting, pivoted 
normalization, and query expansion, but they 

fell near the median of all groups.  Likewise, the 
Illinois-UC group used a variant of language 
modeling and also performed near the median 
(Zhai, Tao et al., 2003). 
 
As with many TREC experiments over the 
years, variation across topics and even within 
them across groups was substantial.  Table 4 
shows the variation of results for topic 35, the 
gene whose GeneRIFs and gene names were 
displayed in earlier tables. 
 
We also carried out a relevance similar to that 
described for the training data with all 50 test 
topics.  Again, all GeneRIFs as well as the top 
20 documents retrieved (or all documents if less 
than 20 retrieved) in the best OHSU run 
(ohsuboost) were analyzed by the individual 
described above.  Once again, we found that 
virtually all GeneRIFs were relevant (551/566, 
97.3%), although a small number were relevant 
in other species (13/566, 2.3%) or indeterminate 
because the abstract was not accessible in 
MEDLINE to allow judgment (2/566, 0.4%).  
However, we also found again that substantial 
numbers of documents deemed relevant by our 
judge were not designated as GeneRIFs.  Table 5 
summarizes the analysis of retrieved documents. 
 
Secondary Task 
 
There is much interest in the bioinformatics 
community in IE.  This comes in part from the 
desire to allow scientists to learn about new 
topics as quickly as they can, preferably without 
having to read and synthesize many papers.  The 
specific task was to reproduce the GeneRIF 
annotation.  As this task was more exploratory in 
nature and had an uncertain “gold standard,” 
groups were instructed to attempt the task and 
compare their methods and results.  Because of 
the exploratory nature of the secondary task, we 
did not provide any training data. 
 



Table 3 - Official primary task runs, sorted by mean average precision. 
 
Run Tag Run Type Mean Average 

Precision 
Relevant @ 10 
documents retrieved 

Relevant @ 20 
documents retrieved 

NLMUMDSE automatic 0.4165 3.16 4.84 
NLMUMDSRB manual 0.3994 3.20 4.56 
nrc1 automatic 0.3941 2.94 4.38 
biotext1 automatic 0.3912 3.06 4.46 
nrc2 automatic 0.3771 2.76 4.36 
biotext0 automatic 0.3753 2.92 4.30 
uwmtg03btrf automatic 0.3534 2.28 3.68 
uwmtg03atrf automatic 0.3479 2.48 4.00 
axon2 automatic 0.3173 2.50 3.86 
axon1 automatic 0.3118 2.40 3.78 
CSUSM2 automatic 0.3079 2.68 3.76 
edstanrecall automatic 0.3015 2.60 3.74 
edstanprec automatic 0.2984 2.60 3.74 
KUBIOIRNE automatic 0.2980 2.32 3.42 
KUBIOIRRAW automatic 0.2937 2.24 3.38 
CSUSM1 automatic 0.2859 2.56 3.52 
tgnBaseline manual 0.2837 2.18 3.52 
IBMbt1 automatic 0.2823 2.26 3.32 
tgnVariant1 manual 0.2791 2.22 3.56 
aoyama automatic 0.2277 1.90 2.92 
aoyama2 automatic 0.2276 1.92 2.92 
IBMbt2 automatic 0.2259 1.80 2.84 
UIowaGN1 automatic 0.2064 2.02 3.40 
UIUC03Gb automatic 0.2001 1.50 2.44 
SCAI automatic 0.1960 1.42 2.60 
utafil manual 0.1931 1.48 2.40 
utaband manual 0.1927 1.54 2.62 
UIUC03Ga automatic 0.1925 1.58 2.32 
UBgenomeBGNE automatic 0.1867 1.44 2.14 
UniNEg1 automatic 0.1852 1.28 2.12 
humG03ns automatic 0.1847 1.58 2.46 
UniNEg2 automatic 0.1802 1.30 2.10 
ErasmusMC3 automatic 0.1770 1.36 2.28 
ErasmusMC2 automatic 0.1754 1.38 2.32 
humG03ns5 automatic 0.1753 1.48 2.34 
ohsuboost automatic 0.1747 1.58 2.36 
DcuMesh1 automatic 0.1669 1.36 2.08 
DcuMesh2 automatic 0.1667 1.36 1.96 
dayrutgers1 automatic 0.1652 1.34 2.40 
dayrutgers2 automatic 0.1636 1.32 2.06 
UniNEg5 automatic 0.1635 1.28 2.00 
UniNEg4 automatic 0.1623 1.30 2.10 
balsc3 automatic 0.1528 1.44 2.10 
UBgenomRFB1 automatic 0.1511 1.16 1.84 
UBgenomRFB2 automatic 0.1493 1.12 1.80 
balsc2 automatic 0.1481 1.36 2.34 
StreamSage3 automatic 0.0508 0.70 0.80 
StreamSage4 automatic 0.0508 0.70 0.80 
vvP05mil3 automatic 0.0271 0.22 0.60 
Mean  0.2313 1.85 2.85 
Median  0.1960 1.58 2.60 
 



Table 4 - Best, median, and worst scores for the topic, Interleukin 3 (colony-stimulating factor, multiple). 
 
Score Best Median Worst 
MAP 0.4136 0.0647 0 
Relevant @ 10 4 1 0 
Relevant @ 20 6 1 0 
 
Table 5 - Classification of relevance of retrieved documents from best OHSU run organized by whether 
document, for a given query, is or is not a GeneRIF and is relevant, not relevant, relevant in another 
species, or unable to be judged due to no abstract in MEDLINE record. 
 
GeneRIF And Number Percentage 
GeneRIF Relevant 117 12.7% 
GeneRIF Not relevant 0 0.0% 
GeneRIF Relevant in another species 2 0.2% 
GeneRIF No abstract (unable to judge) 0 0.0% 
Not a GeneRIF Relevant 386 41.8% 
Not a GeneRIF Not relevant 85 9.2% 
Not a GeneRIF Relevant in another species 333 36.1% 
Not a GeneRIF No abstract (unable to judge) 0 0.0% 
Total  923 100.0% 
 
Consensus discussions yielded the notion that 
measuring success would be best calculated by 
some sort of overlap measure between words 
nominated for annotation and those actually 
selected in the GeneRIF.  A problem, however, 
was that while some GeneRIF snippets were 
direct quotations from article abstracts, others 
were paraphrased.  Furthermore, there were 
other legitimate references to basic gene biology 
beyond the official GeneRIF snippet.  A 
preliminary analysis by Jim Mork and Lan 
Aronson of NLM found that 95% of GeneRIF 
snippets contained some text from the title or 
abstract of the article.  About 42% of the 
matches were direct “cut and paste” from the 
title or abstract, and another 25% contained 
significant runs of words from pieces of the title 
or abstract. 
 
Data 
 
The data for the secondary task consisted of 139 
GeneRIFs representing all of the articles 
appearing in five journals for which we could 
obtain full text from Highwire (Journal of 
Biological Chemistry, Journal of Cell Biology, 
Nucleic Acids Research, Proceedings of the 
National Academy of Sciences, and Science) that 
were published during the latter half of 2002. 

 
Performance Measures 
 
The original plan for assessing the secondary 
task was to use the Dice coefficient, which 
measures overlap of two strings.  In this 
instance, the Dice coefficient would calculate 
the overlap between the candidate GeneRIF and 
actual GeneRIF.  For two strings A and B, 
define X as the number of words in A, Y as the 
number of words in B, and Z as the number of 
words occurring in both A and B.  The Dice 
coefficient is calculated as: 
 Dice (A, B) = (2 * Z)/(X + Y) 
 
It quickly became apparent that this measure 
was quite limited.  It did not, for example, 
perform any “normalization” of words, such as 
stop word removal or stemming.  It also did not 
give any credit for words occurring more than 
once in both strings.  Finally, it assumed the 
strings were simply bags of words and did 
account for word order or phrases. 
 
Marti Hearst and Presley Nakov developed four 
derivatives (and Perl code, enhanced by Ravi 
Teja Bhupatiraju to calculate them) of the classic 
Dice measurement for the task: 



� Classic Dice The Dice formula from above 
applied to words, which were defined as 
successive alphanumeric characters 
delimited by white space. 

� Modified Unigram Dice - This measure gave 
added weight to terms that occurred multiple 
times in both strings.  In particular, each set 
of words in a string was a multi-set, with the 
number of co-occurring words measured by 
the minimum number of co-occurences. 

� Bigram Dice - This measure gave additional 
weight to proper word order.  Instead of 
measuring the unigram Dice coefficient on 
single words, it measured it on bigrams. 

� Bigram Phrases - Bigrams do not always 
represent legitimate phrases.  Stop words 
such as articles and prepositions sometimes 
occur between content words such that 
straight bigrams of content words do not 
represent real phrases.  A further measure 

therefore only included bigrams that did not 
have intervening stop words filtered. 

 
Official Runs 
 
A total of 14 groups submitted 24 runs.  Table 6 
lists the runs, sorted by Classic Dice score.  The 
top-ranking run (emc4) came from Erasmus 
University.  The mean and median results are 
shown at the bottom of the table, followed by 
the results of a run using simply the document 
titles. 
 
Most participants found that the GeneRIF text 
most often came from sentences in the title or 
abstract of the MEDLINE record, with the title 
being used most commonly.  As such, just using 
the text of the titles alone achieved a baseline 
performance that few groups were able to  
 
 

 
Table 6 - Official secondary task runs, sorted by classic Dice score. 
 
Run Tag Classic Unigram Bigram Phrases 
emc4 57.83 59.63 46.75 49.11 
biotextTask2 53.04 54.65 38.62 41.17 
tgIIhugLASt 52.78 54.33 37.72 40.65 
UniNEie1 52.28 54.78 37.43 40.35 
UniNEie2 51.72 54.27 36.62 39.71 
UIowaSecCan 50.68 52.72 35.32 37.87 
IBMbtT2 50.47 52.60 34.82 37.91 
IUB2003 50.40 52.56 34.83 37.97 
NLMUMDLIN 50.36 52.65 35.03 38.34 
UniNEie3 49.46 51.42 33.62 36.99 
UBGenT2R2 49.40 51.30 33.59 36.99 
CSUSMcand 49.31 51.30 34.99 37.80 
UBGenT2BL1 49.28 51.25 33.59 36.99 
UBGenT2R1 49.03 51.16 33.94 37.35 
balscsec1 48.90 50.52 32.36 34.61 
we 48.15 49.78 32.31 35.63 
nwe 47.62 49.37 31.61 34.80 
uwb3 46.48 48.25 29.53 32.82 
uwb2 44.41 44.07 2.33 1.80 
uwb4 36.28 35.21 22.73 24.52 
EDISTFruns2 35.76 35.85 20.05 21.84 
tg2hug 35.20 34.57 20.04 21.58 
UniNEie4 25.88 25.29 12.03 13.61 
UniNEie5 9.42 14.20 0.15 0.17 
Mean 45.59 47.16 29.58 32.11 
Median 49.30 51.28 33.61 36.99 
Titles Only 50.47 52.60 34.82 37.91 
 



outperform.  The best approaches (Erasmus 
(Jelier, Schuemie et al., 2003) and Berkeley 
(Bhalotia, Nakov et al., 2003)) used classifiers to  
rank sentences likely to contain the GeneRIF 
text.  No groups much improvement beyond 
using titles alone. 
 
Future Directions 
 
Despite the limited type of data, relevance 
judgments, and tasks, the track organizers were 
pleased with the results and enthusiasm of the 
participants.  We are fortunate to have been 
awarded a National Science Foundation 
Information Technology Research grant to 
provide funding to the track for the next years.  
The first year’s activities also consisted of laying 
out a roadmap for future iterations of the track.  
Described in more detail on the track Web site, 
this will include, over the years, real relevance 
judgments, use of additional documents beyond 
MEDLINE, user experiments, and use cases of 
different types of users. 
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