
TREC 2014 Temporal Summarization Track

Overview

Javed Aslam Fernando Diaz Matthew Ekstrand-Abueg
Richard McCreadie Virgil Pavlu

Tetsuya Sakai

Homepage: http://www.trec-ts.org/

February 17, 2015

1 Introduction

News events such as protests, accidents or natural disasters represent a unique
information access problem where traditional approaches fail. For example,
immediately after an event, the corpus may be sparsely populated with relevant
content. Even when, after a few hours, relevant content becomes available,
it is often inaccurate or highly redundant. At the same time, crisis events
demonstrate a scenario where users urgently need information, especially if they
are directly affected by the event.

The goal of this track is to develop systems for efficiently monitoring the
information associated with an event over time. Specifically, we are interested
in developing systems which can broadcast short, relevant, and reliable sentence-
length updates about a developing event. The track has the following four main
aims:

• To develop algorithms which detect sub-events with low latency,

• To model information reliability in the presence of a dynamic corpus,

• To understand and address the sensitivity of text summarization algo-
rithms in an online, sequential setting, and

• To understand and address the sensitivity of information extraction algo-
rithms in dynamic settings.

The remainder of this overview is structured as follows. Section 2 describes
the temporal summarization task in detail. In Section 3, we discuss the corpus
of documents from which the summaries are produced, while in Section 4, we
discuss how temporal summarization systems are evaluated within the track.
Section 5 details the process via which sentence updates were assessed. Finally,

1

<event>

<id>1</id>

<title>2012 Buenos Aires rail disaster</title>

<description>...</description>

<start>1329910380</start>

<end>1330774380</end>

<query>buenos aires train crash</query>

<type>accident</type>

</event>

Figure 1: Example topic description for the topic ‘2012 Buenos Aires Rail Dis-
aster’.

in Section 6, we summarize the performance of the participant systems to the
2014 track.

2 Task Description

The aim of this task is to emit a series of sentence updates over time about a
named event given a high volume stream of input documents. In particular, the
temporal summarization task focuses on large events with a high impact, such
as protests, accidents or natural disasters. Each event is represented by a topic
description, providing a textual query representing that event, along with start
and end timestamps defining a period of time within which to track that event.
An example topic description is illustrated in Figure 1.

For an event, participant systems process a stream of Web documents from
the tracking period as defined in the topic in temporal order. The aim is to
select sentences from those documents to emit as updates describing that event.
The set of sentences emitted form a summary of that event over time. An
optimal summary is one that covers all of the essential information about the
event with no redundancy, where each new piece of information was added to
the summary as soon as it became available.

For the 2014 task, participants produced temporal summaries for 15 different
events, spanning accidents, natural disasters, storms, shootings and protests.
Table 1 summarizes these 15 topics.

3 Corpus

The 2014 Temporal Summarization track used documents from the TREC KBA
2014 Stream Corpus. This corpus consists of a set of timestamped documents
from a variety of news and social media sources covering the time period October
2011 through April 2013. Each document contains a set of sentences, each with
a unique identifier.

2

Each event topic defines a subset of the time period covered by this corpus,
representing the period to track that event. Participant systems had two options
available when working with the corpus:

1. Extract the topic time periods from the TREC KBA 2014 Stream Corpus
and process all documents from these time periods. This was the only
option available to partatipants during the 2013 track.

2. Use a pre-filtered version of the TREC KBA 2014 Stream Corpus, de-
noted TREC-TS-2014F, which only contains documents from the 2014
event topic time periods. TREC-TS-2014F was also subject to pre-filtering
such that it focuses on documents that are more likely to contain relevant
sentences.

Each document within the TREC KBA 2014 Stream Corpus contains zero
or more sentences (the sentence boundaries are pre-defined) and a timestamp
representing when that document was crawled. Participants return a list of
sentences extracted from the KBA corpus documents for each event. Each sen-
tence is identified by the combination of a document identifier (which document
the sentence came from) and a sentence identifier (the position of the sentence
within the document). Additionally, when a sentence is emitted, the partic-
ipant system also records the time with respect to the underlying document
stream of that emission. If the participant system is making immediate binary
emit/ignore decisions on a per sentence basis, then this timestamp will corre-
spond to crawl-time of the document. However, some participant systems opted
to delay the emission of sentences to collect more information before issuing up-
dates - in these cases the timestamps recorded reflect the additional latency of
these systems.

Participants were allowed to include runs that use information external to
the KBA corpus. The use of external data had the following requirements:

• External data must have existed before the event start time, or

• External data must be time-aligned with the KBA corpus and no infor-
mation after the simulation decision time can be used.

Similarly, supporting statistical models or auxiliary programs were subject to
the same requirements. For example, participants were not to use a statistical
model trained on data that existed after the event end time.

4 Evaluation

We evaluate runs according to their relevance, coverage, novelty, and latency of
the updates.

• The relevance or precision of the summary with respect to the event topic,
i.e. the degree to which the updates within the summary are on-topic
and novel. This is measured by the (normalized) Expected Gain metric
(nEG(S)).

3

topic type #gold #pooled
nuggets updates

Costa Concordia disaster and recovery accident 226 1008
Early 2012 European cold wave natural disaster 73 654
2013 Eastern Australia Floods storm 68 570
Boston Marathon bombings shooting 76 984
Port Said Stadium riot protest 47 813
2012 Afghanistan Quran burning protests protest 75 759
In Amenas hostage crisis hostage 48 768
2011-13 Russian protests protest 89 916
2012 Romanian protests protest 100 758
2012-13 Egyptian protests protest 35 612
Chelyabinsk meteor natural disaster 126 919
2013 Bulgarian protests against the Borisov protest 117 608
2013 Shahbag protests protest 138 723
February 2013 nor’easter storm 105 951
Christopher Dorner shootings and manhunt shooting 88 701

Table 1: TS2014 topics, with number of gold nuggets extracted by assessors,
and number of participant updates pooled for matching.

• The coverage of the summary with respect to all of the essential informa-
tion that could have been retrieved for the event. This is measured by the
Comprehensiveness metric (C(S)).

• The degree to which the information contained within the updates is out-
dated. This is measured by the Expected Latency metric (E[Latency]).

We also report the performance of all of the participant runs under a com-
bined measure (that incorporates Expected Gain and Comprehensiveness with
Latency included), i.e. the Harmonic Mean of normalized Expected Latency
Gain (nEGτ (S)) and Latency Comprehensiveness (Cτ (S)), denoted H. This is
the official target metric for the 2014 task. Detailed descriptions of metrics and
how they are calculated can be found in Appendix A.

5 Judging

The evaluation process occurred in two phases:

(a) Gold Nugget Extraction, and

(b) Update-Nugget Matching

The first phase defined the space of relevant information for the queries. In
particular, this involves the creation of a set of ‘information nuggets’ about
each event that represent all of of the essential information that a good sum-
mary should contain. This phase also associates each information nugget with

4

a timestamp representing approximately when that information became public
knowledge. The second phase generates a matching between updates provided
by the participants to the information nuggets. It is this matching that forms
the basis for evaluating a system’s accuracy and coverage. A detailed description
of these phases of judging can be found in Appendix B.

6 Results

We present an overview of the performance of the participant systems (runs) in
Table 3. The last column in Table 3 reports the H of each participant run and
the TREC average. From Table 3, we observe that the 2APSal run by cunlp
was the best performing overall, closely followed by the BJUT and uogTr runs.

To examine why these runs are the best performing, we next report perfor-
mance under both Expected Gain and Comprehensiveness separately. Note that
we would expect there to be some degree of trade-off between these two met-
rics. The average performance of participating system runs under (normalized)
Expected Gain and Comprehensiveness are reported in Table 3. From Table 3,
we observe that in terms of (normalized) Expected Gain, the three BJUT runs
and the 2APSal run by cunlp produced the most precise summaries, i.e. they
returned the least content not matching one or more nuggets (that were not
previously covered). Meanwhile, the systems that produced the most Compre-
hensive summaries (those that matched the most unique information nuggets)
were the three uogTr systems, the cunlp 3AP run and the BUPT PRIS Cluster1
approach. Figure 2 illustrates the distribution of all submitted runs in terms
of (normalized) Expected Gain and Comprehensiveness. As we can see from
Figure 2, the performance of the submitted runs varies greatly with respect
to Expected Gain and Comprehensiveness, indicating that participants applied
very different approaches to select sentences for inclusion into the summaries.

Next, we examine the performance of participating systems in terms of La-
tency. The fifth column of Table 3 reports the average Expected Latency weight
observed for each system. Somewhat contrary to its name, a higher latency
weight is better, above one means that on average, the system has found the
matched information before it was added to Wikipedia. From Table 3, we ob-
serve that in general, there is not a large correlation between the latency of a
system and its combined metric score (H). In fact, the lowest performing run
also has the best overall latency. On the other hand, the best performing runs
have a good overall, but relatively average Expected Latency. We can compare
any two runs to visualize the latency of their individual updates. To illustrate
this, Figure 3 shows the times after the event began at which the first 75 up-
dates were issued by the BJUT Q1 and uogTr2A runs, for event topic 13 (2013
Eastern Australia Floods). From Figure 3, we see that the uogTr2A runs be-
gan issuing updates very close to the beginning of the event (+3 hours from the
event start), while the first update by the BJUT Q1 run was two days later (+86
hours from the event start). As expected, the overall latency of the uogTr2A
run is higher. However, the BJUT Q1 run outperformed the uogTr2A run by

5

Figure 2: Participant run plot of (normalized) Expected Gain vs. Comprehen-
siveness.

a large margin under the combined measure (0.0992 vs 0.0526) for this topic.
From this, we can conclude that the evaluation metrics are much less sensitive to
latency considerations in comparison to Expected Gain or Comprehensiveness.

7 Conclusion

In general, the best performing runs submitted to the 2014 track balanced the
need for high precision and novelty with topic coverage. Systems that focused
on one or other components were less effective overall. From the scale of the
results, it appears that attaining high precision is more difficult than achieving
recall for this task, and hence it is here that further research is needed.

A Metrics

To evaluate the performance of the summaries produced by participant systems,
we define the concept of explicit sub-events or ‘nuggets’, each with a precise
timestamp and text describing the sub-event. An effective summary should
cover as many of these nuggets as possible, while minimizing redundancy.

A sentence update is a timestamped short text string. We generally denote
an update as the pair (string, time): u = (u.string, u.t). For example u =
(“The hurricane was upgraded to category 4”, 1330169580) represents an
update describing the hurricane category, now 4, pushed out by system S at
UNIX time 1330169580 (i.e. 1330169580 seconds after 0:00 UTC on January
1, 1970). In this year’s evaluation, the update string is chosen from the set of
segmented sentences in the corpus as defined in the guidelines.

6

Figure 3: Comparison of update issue times for the BJUT Q1 run and the
uogTr2A run for event topic 13 (2013 Eastern Australia Floods).

TeamID RunID nEG(S) C(S) E[Latency] H
cunlp 2APSal 0.0631 0.3220 1.2068 0.1162
BJUT Q1 0.0657 0.4088 1.1491 0.1110
BJUT Q2 0.0632 0.3979 1.1669 0.1091
BJUT Q0 0.0632 0.3979 1.1669 0.1091
uogTr uogTr2A 0.0467 0.4453 1.2322 0.0986
uogTr uogTr4AC 0.0347 0.4539 1.2751 0.0793
uogTr uogTr4ARas 0.0387 0.3691 1.2328 0.0772
IRIT KW30H5NW3600 0.0383 0.3521 1.2221 0.0723
IRIT KW30H5NW300 0.0378 0.3538 1.2208 0.0714
uogTr uogTr4A 0.0281 0.4733 1.2522 0.0677
average 0.0327 0.3615 1.2943 0.0620
IRIT KW80H5NW3600 0.0289 0.3764 1.2191 0.0604
IRIT KW30H10NW300 0.0298 0.3780 1.2617 0.0602
cunlp 1APSalRed 0.0325 0.3058 1.1507 0.0602
IRIT KW80H5NW300 0.0285 0.3806 1.2164 0.0596
ICTNET run3 0.0531 0.1081 0.7004 0.0530
BUPT PRIS Cluster4 0.0155 0.2692 1.9140 0.0508
IRIT KW80H10NW300 0.0225 0.4012 1.2621 0.0503
BUPT PRIS Cluster3 0.0115 0.3380 1.9165 0.0407
cunlp 3AP 0.0174 0.4265 1.3689 0.0403
ICTNET run2 0.0418 0.0934 0.6266 0.0311
BUPT PRIS Cluster2 0.0059 0.3728 1.9170 0.0222
ICTNET run4 0.0079 0.4070 1.2364 0.0178
ICTNET run1 0.0070 0.4090 1.2314 0.0160
BUPT PRIS Cluster1 0.0033 0.4369 1.9175 0.0127

Table 2: Performance metrics per participant run, averaged over topics.

7

TeamID RunID #submitted updates #pooled updates (std)
cunlp 2APSal 381.40 100.80 (33.58)
BJUT Q1 116.86 89.40 (28.31)
BJUT Q0 155.20 93.73 (22.70)
BJUT Q2 155.20 93.73 (22.70)
uogTr uogTr2A 1769.20 121.26 (46.23)
uogTr uogTr4AC 2532.73 133.00 (45.15)
uogTr uogTr4ARas 1735.73 104.06 (42.08)
IRIT KW30H5NW3600 880.20 132.26 (29.11)
IRIT KW30H5NW300 907.53 135.73 (30.69)
uogTr uogTr4A 2860.46 159.40 (50.14)
cunlp 1APSalRed 1064.93 114.26 (15.30)
IRIT KW30H10NW300 1401.66 178.40 (48.17)
IRIT KW80H5NW3600 1388.33 148.93 (33.41)
IRIT KW80H5NW300 1444.13 154.20 (34.46)
ICTNET run3 1005.13 60.66 (38.24)
BUPT PRIS Cluster4 31444.20 387.53 (811.95)
IRIT KW80H10NW300 2257.53 204.60 (52.18)
cunlp 3AP 5967.00 238.80 (50.64)
BUPT PRIS Cluster3 29937.93 351.00 (479.75)
ICTNET run2 1101.73 68.40 (46.20)
BUPT PRIS Cluster2 39082.80 370.66 (359.43)
ICTNET run4 5223.40 195.40 (74.50)
ICTNET run1 5917.13 201.60 (73.28)
BUPT PRIS Cluster1 65954.86 568.66 (551.56)
ALL - 8528.55 183.60 (266.38)

Table 3: For each run, the number of submitted updates and the number of
pooled updates (with std over topics), averaged over topics. Pooling takes into
account the number of updates per run, and the confidence stated for each
update per run. The number of pooled updates per run includes the automatic
matched updates in the average.

8

Two updates are semantically comparable using a text similarity measure or
a manual annotation process applied to their string components; if two updates
u and u′ refer to the same information (semantically matching), then we write
this as u ≈ u′, irrespective of their timestamps. Because two systems might
deliver the same update string at different times, it is generally not the case
that u.string = u′.string implies u.t = u′.t.

Given an event, our manual annotation process generates a set of gold stan-
dard updates called nuggets, extracted from wikipedia event pages and times-
tamped according to the revision history of the page. Editorial guidelines recom-
mend that nuggets be a very short sentence, including only a single sub-event,
fact, location, date, etc, associated with topic relevance. We refer to the canon-
ical set of updates as N . This manual annotation process is retrospective and
subject to error in the precision of the timestamp. As a result we might en-
counter situations where the timestamp of the nugget is later than the earliest
matching update.

In response to an event’s news coverage, a system/run broadcasts a set of
timestamped updates generated in the manner described in the Guidelines. We
refer to a system’s set of updates as S. The set of updates received before time
τ is,

Sτ = {u ∈ S : u.t < τ} (1)

Our goal in this evaluation is to measure the precision, recall, timeliness,
and novelty of updates provided by a system.

A.1 Preliminaries

Our evaluation metrics are based on the following auxiliary functions.

• Nugget Relevance. Each nugget n ∈ N has an associated relevance/importance
grade,

R : N → [0, 1] (2)

R(n) measures the importance of the content (information) in the nugget.
Nugget importance was provided on a 0-3 scale by assessors (no impor-
tance to high importance). For graded relevance, we normalize on an
exponential scale, since high importance nuggets are described as “of key
importance to the query”, whereas low importance nuggets are “of any
importance to the query”. When binary relevance is needed, everything
of any relevance is relevant (0 is the only non-relevant grade). The ac-
tual relevance functions used are presented below; n.i denotes the nugget
importance as assigned by the assessor.

Rgraded(n) =
en.i

emaxn′∈N n
′.i

Graded relevance (3)

Rbinary(n) =

{
1 iff n.i > 0

0 otherwise
Binary relevance (4)

9

Note that for graded relevance, returning exactly the nugget set as the
system output updates and nothing more (“perfect system”), would usu-
ally not result in an expected gain of 1. However, using binary relevance,
the perfect system would score an expected gain of 1.

The relevance can be discounted in time or in size, hence the following
discounting functions.

• Latency Discount. Given a reference timestamp of a matching nugget,
t∗, a latency penalty function L(t∗, t) is a monotonically decreasing func-
tion of t− t∗. A system may return an update matching Wikipedia infor-
mation before the Wikipedia information exists; thus we use a function
that is smooth and decays on both the positive and negative sides.

The actual function used is presented below with arguments the nugget
Wikipedia time (wiki-edit timestamp) n.t, and the update time u.t as
indicated by the system.

L(n.t, u.t) = 1− 2

π
arctan(

u.t− n.t
α

) latency-discount (5)

α = 3600 ∗ 6 latency-step (6 hours) (6)

Time Delay from Nugget Time u.t - n.t (in Hours)

L
at

en
cy

D
is

co
u

n
t

L

Latency Discount Function

-50 -40 -30 -20 -10 0 10 20 30 40 50
0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

Current parameters allow the latency discount factor to vary from 0 to 2
(1 means nugget time equal to update time), and flattens at around one
day(± 24 hours). Note that as a result, gain and expected gain can be
greater than 1.

• Verbosity Normalization. The task definition assumes that a user
receives a stream of updates from the system. Consequently, we want
to penalize systems for including unreasonably long updates, since these
easily lead to significantly higher reading effort. The verbosity can be
defined as a string length penalty function, monotonically increasing in the
number of words of the update string. We will refer to this normalization
function as V(u).

For the actual verbosity implementation, we approximate the number of
extra nuggets worth of information in a given update. This is done by

10

finding all text which did not match a nugget (as defined by the assessors),
and dividing the number of words in the text by the average number of
words in a nugget for that query.

V(u) = 1 +
|all wordsu| − |nuggetmatching wordsu|

AV Gn|wordsn|
(7)

= 1 +
|u| − | ∪n∈M−1(u,S) M(n,S)|

avgn∈N |n|
(8)

where |u|, |n| are the length (in number of words) of the update u, and
nugget n.

Note that if an update has all its words being part of some match to a
nugget, the verbosity is V (u)=1; otherwise V (u)−1 is an approximation of
the “extra non-matching words” in terms of equivalent number of nuggets.

• Update-Nugget Matching. We also define a key earliest matching
function between a nugget and an update set,

M(n,S) = argmin{u∈S:n≈u}u.t (9)

or ∅ if there is no matching update for n. M(n,S) should be interpreted
as “given n, the earliest matching update in S.”

We also define the set of nuggets for which u is the earliest matching
update as,

M−1(u,S) = {n ∈ N : M(n,S) = u} (10)

Note that an update can be the earliest matching update for more than
one nugget.

A.2 Metrics

Using the previously defined notion of relevance, latency, verbosity, and match-
ing we can define several measures of interest for Temporal Summarization.

Given an update u and a matching nugget n (i.e. u ≈ n), we can define the
discounted gain as,

g(u, n) = R(n)× discounting factor (11)

Given the previously defined discounts, we have the following family of dis-
counted gains,

gF(u, n) = R(n) discount-free gain (12)

gL(u, n) = R(n)× L(n.t, u.t) latency-discounted gain (13)

Since an update can be the earliest to match several nuggets (u ≈ n), we
define the gain of an update with respect to a system (or participant run) S

11

as the sum of [latency-discounted] relevance of the nuggets for which it is the
earliest matching update:

G(u,S) =
∑

n∈M−1(u,S)

g(u, n) (14)

where the gain can be either of the discounted gains described earlier. Note
that for an appropriate discounting function, G(u,S) ∈ [0, 1], although for
the latency-discounted gain, given the imperfect nature of model timestamps,
GL(u,S) ∈ [0, 2].

One way to evaluate a system is to measure the expected gain for a system
update. This is similar to traditional notions of precision in information retrieval
evaluation. Over a large population of system updates, we can estimate this
measure reliably. The computation of the expected update gain for system S
by time τ is the average of the gain per update:

nEG(S) =
1

Z|S|
∑
u∈S

G(u,S) (15)

=
1

Z|S|
∑
u∈S

∑
n∈M−1(u,S)

g(u, n)

=
1

Z|S|
∑

{n∈N :M(n,S) 6=∅}

g(M(n,S), n) (16)

where Z is the maximum obtainable expected gain per topic (similar to DCG
normalization). Additionally, we may penalize “verbosity” by normalizing not
by the number of system updates, but by the overall verbosity of the system

nEGV(S) =
1∑

u∈S V(u)

1

Z

∑
{n∈N :M(n,S) 6=∅}

g(M(n,S), n) (17)

Our definition of g is such that it:

• does not penalize for large a update matching several nuggets, as opposed
to a few small updates each matching a nugget, due to verbosity weighting,

• penalizes for late updates (against matched nugget reference timestamp),
and

• penalizes “verbosity” of updates text not matching any nuggets.

Furthermore, we have that G(u,Sτ) ∈ [0, 1] if all update timestamps are at or
after matching model timestamps. Over a set of events, the mean expected gain
is defined as,

MEG =
1

|E|
∑
ε∈E

EG(Sε) (18)

12

where E is the set of evaluation events and Sε is the system submission for event
ε.

Because a user interest may be concentrated immediately after an event and
because a system’s performance (in terms of gain) may be dependent on the
time after an event, we will also consider a time-sensitive expected gain for
the first τ seconds,

EGτ (S) = EG(Sτ) (19)

with MEGτ defined similarly.
In addition to good expected gain, we are interested in a system providing

a comprehensive set of updates. That is, we would like the system to cover
as many nuggets as possible. This is similar to traditional notions of recall in
information retrieval evaluation. Given a set of system updates, S, we define
the comprehensiveness (and latency-comprehensiveness) of the system
as:

C(S) =
1∑

n∈N R(n)

∑
{n∈N :M(n,S)6=∅}

g(M(n,S), n) (20)

=
1∑

n∈N R(n)

∑
u∈S

∑
n∈M−1(u,S)

g(u, n)

=
1∑

n∈N R(n)

∑
u∈S

G(u,S) (21)

We also define a time-sensitive notion of comprehensiveness,

Cτ (S) = C(Sτ) (22)

with an aggregated measure defined as,∫ te

ts

Cτ (S)dτ (23)

which measures how quickly a system captures nuggets.

B Judging

B.1 Gold Nugget Extraction

In this first phase, assessors were asked to read all edits of the Wikipedia article
for each query, manually extracting text perceived as relevant and novel for
that edit. Additionally, assessors assigned an importance grade to every text
fragment, or nugget, as well as noted any dependencies in the information. An
example portion of the extraction interface can be seen in Figure 4.

In order to simplify later matching, assessors were told to extract nuggets
such that they were atomic pieces of information relevant to the query. However,

13

Figure 4: Extraction interface used by assessors to extract nuggets from
Wikipedia edits.

knowing that information can be highly contextual, we allow for the notion of
dependencies between nuggets: a nugget may be relevant to a query if and
only if another nugget is also present. For evaluation purposes, a nugget was
considered unmatched if it had unmatched nuggets on which it depended.

Additionally, we provided a method for assessors to track updates to pieces
of information. This was primarily used to allow them to collate their work
and reduce redundancy, but it was also used in the matching phase to help the
assessor find the closest piece of information to a match.

B.2 Update-Nugget Matching

Once submissions were received, we performed a variant of depth-pooling in
order to sample updates for evaluation. We sampled the top 60 updates per
query and run as sorted by the provided confidence scores (highest first). Addi-
tionally, we performed near-duplicate detection among update text to increase
the covered set. This resulted in sampled update counts as per Table 2. One
note here is that not all runs contained 60 updates per query; for the run-query
pairs with less than 60 updates, all updates were sampled.

The sampled updates were presented in an interface similar to the one for
extraction. Assessors examined and matched updates to nuggets by selecting
portions of updates which matched a given nugget, as nuggets are atomic but
updates are not. An assessor was allowed to break a nugget into two or more
new nuggets to improve atomicity if desired. Note that a nugget may match
multiple updates, and an update may match multiple nuggets. An example view
of the matching interface can be seen in Figure 5.

B.2.1 Automatic matches for unpooled updates

The participant updates that did not make it to the pool for manual matching
form the set of “unpooled updates”. We performed an automatic exact match

14

Figure 5: Matching interface used by assessors to match updates and nuggets.

between these unpooled updates and the known relevant pooled updates (man-
ually matched); the updates that matched a known relevant pooled update are
also considered relevant and included as matching nuggets for evaluation pur-
poses. All updates, both pooled and unpooled, that do not match any nugget
(manual) or other relevant update (automatic), are considered nonrelevant for
evaluation metrics.

15

