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Abstract 

We describe the Sheffield A IVRU 3D vision system 
for robotics. The system currently supports model based 
object recognition and location; its potential for robotics 
applications is demonstrated by its guidance of a U M I 
robot arm in a pick and place task. The system 
comprises: 

1) The recovery of a sparse depth map using edge 
based passive stereo triangulation. 

2) The grouping, description and segmentation of edge 
segments to recover a 3D description of the scene 
geometry in terms of straight lines and circular arcs. 

3) The statistical combination of 3D descriptions for 
the purpose of object model creation from multiple 
stereo views, and the propagation of constraints for 
within view refinement. 

4) The matching of 3D wireframe models to 3D scene 
descriptions, to recover an initial estimate of their 
position and orientation. 

♦This research was supported by SERC project grant no. 
GR/D/1679.6-IKBS/025 awarded under the Alvey programme. 
Stephen Pollard is an SERC IT Research Fellow. 

Introduction. 

The following is a brief description of the system. 
Edge based binocular stereo is used to recover a depth 
map of the scene from which a geometrical description 
comprising straight lines and circular arcs is computed. 
Scene to scene matching and statistical combination 
allows multiple stereo views to be combined into more 
complete scene descriptions with obvious application to 
autonomous navigation and path planning. Here we show 
how a number of views of an object can be integrated to 
form a useful visual model, which may subsequently be 
used to identify the object in a cluttered scene. The 
resulting position and attitude information is used to 
guide the robot arm. Figure 1 illustrates the system in 
operation. 

The system is a continuing research project: the 
scene description is currently being augmented with sur­
face geometry and topological information. We are also 
exploring the use of predictive feed forward to quicken 
the stereo algorithm. The remainder of the paper wi l l 

Figure 1. A visually guided robot arm. 
Figures (a), (b) and (c) illustrate our visual system at work. 

A pair of Panasonic WV-CD50 CCD cameras are mounted on an 
adjustable stereo rig. Here they are positioned with optical centers 
approximately 15cm apart with asymmetric convergent gaze of 
approximately 16 degrees verged upon a robot workspace some 
50cm distant The 28mm Olympus lens (with effective focal 
length of approximately 18.5mm) subtends a visual angle of about 
27 degrees. The system is able to identify and accurately locate a 
modelled object in the cluttered scene. This information is used to 
compute a grasp plan for the known object (which is precompiled 
with respect to one corner of the object which acts as its coordi­
nate frame). The UMI robot which is at a predetermined position 
with respect to the viewer centered coordinates of die visual sys­
tem is able to pick up the object. 
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describe the modules comprising the system in more 
detail. 

PMF: The recovery of a depth map. 

The basis is a fairly complete implementation of a 
single scale Canny edge operator [Canny 1983] incor­
porating sub pixel acuity (achieved through quadratic 
interpolation of the peak) and thresholding with hysteresis 

applied to two images obtained from CCD cameras. The 
two edge maps are then transformed into a parallel cam­
era geometry and stereoscopically combined (see figures 
2, 3 and 4). The PMF stereo algorithm, described in 
more detail elsewhere [Pollard et al 1985; Pollard 1985], 
uses the disparity gradient constraint to solve the stereo 
correspondence problem. The parallel camera geometry 
allows potential matches to be restricted to corresponding 
rasters. Initial matches are further restricted to edge seg-

Figure 2. Stereo images. 
The images are 256x256 with 8 bit grey level resolution. In the camera calibration stage, a planar tile 

containing 16 squares equally spaced in a square grid was accurately placed in the workspace at a position 
specified with respect to the robot coordinate system such that the orientation of the grid corresponded to 
the XY axes. The position of the corners on the calibration stimulus were measured to within 15 microns 
using a Steko 1818 stereo comparator. Tsai's calibration method was used to calibrate each camera 
separately. We have found errors of the same order as Tsai reported and sufficient for the purposes of 
stereo matching. The camera attitudes are used to transform the edge data into parallel camera geometry to 
facilitate the stereo matching process. To recover the world to camera transform the calibration images are 
themselves used as input to the system, eg are stereoscopically fused and the geometrical description of the 
edges and vertices of the squares statistically combined. The best fitting plane, the directions of the orien­
tations of the lines of the grid corresponding to the XY axes, and the point of their intersection gives the 
direction cosines and position of the origin of the robot coordinate system in the camera coordinate system. 
The use of the geometrical descriptions recovered from stereo as feedback to iterate over the estimates of 
the camera parameters is a project for the future. 

Figure 3. The edge maps. 
A single scale Canny operator with sigma 1 pixel is used. The non maxima suppression which 

employs quadratic interpolation gives a resolution of 0.1 of a pixel (though dependent to some extent upon 
the structure of the image). After thresholding with hysteresis (currently non adaptive), the edge segments 
are rectified so as to present parallel camera geometry to the stereo matching process. This also changes 
the location of the centre of the image appropriately, allows for the aspect ratio of the CCD array (fixing 
the vertical and stretching the horizontal) and adjusts the focal lengths to be consistent between views. 
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Figure 4. The depth map. 
The output of the PMF stereo-algorithm displayed (with 

respect to the left image) with disparities coded by intensity 
(near-dark far-light). The total range of disparities in the scene 
was approximately 55 pixels from a search window of 90 pix­
els. PMF is a neighbourhood support algorithm and in this case 
the neighbourhood was 10 pixels radius. The disparity gradient 
parameter to PMF was 0.5. The iteration strategy used a con­
servative heuristic for the identification of correct matches, and 
their scores were frozen. This effectively removes them from 
succeeding iterations and reduces the computational cost of the 
algorithm as it converges to the solution. 5 iterations were 
sufficient. 

ments of the same contrast polarity and of roughly similar 
orientations (determined by the choice of a disparity gra­
dient limit). Matches for a neighbouring point may sup­
port a candidate match provided the disparity gradient 
between the two does not exceed a particular threshold. 
Essentially, the strategy is for each point to choose from 
among its candidate matches the one best supported by its 
neighbours. 

The disparity gradient l imit provides a parameter for 
controlling the disambiguating power of the algorithm. 
The theoretical maximum disparity gradient is 2.0 (along 
the cpipolars), but at such a value the disambiguating 
power of the constraint is negligible. False matches fre­
quently receive as much support as their correct counter­
parts. However, as the l imit is reduced the effectiveness 
of the algorithm increases and below 1.0 (a value pro­
posed as the psychophysical maximum disparity gradient 
by Burt and Julesz [1980]), we typically find that more 
than 90% of the matches are assigned correctly on a sin­
gle pass of the algorithm. The reduction of the threshold 
to a value below the theoretical l imit has little overhead 
in reduction of the complexity of the surfaces that can be 
fused until it is reduced close to the other end of the scale 
(a disparity gradient of 0.0 corresponds to fronto-parallel 
surfaces). In fact we find that a threshold disparity gra­
dient of 0.5 is very powerful constraint for which less 
than 1% of surfaces (assuming uniform distribution over 
the gaussian sphere: following Arnold and Binford 

[1980]) project with a maximum disparity gradient greater 
than 0.5 when the viewing distance is four times the 
interocular distance. With greater viewing distances, the 
proportion is even lower. 

It has been shown [Trivedi and Lloyd 1985; Porrill 
1985], that enforcing a disparity gradient ensures 
Lipschitz continuity on the disparity map. Such con­
tinuity is more general than and subsumes the more 
usual use of continuity assumptions in stereo. 

The method used to calibrate the stereo cameras was 
based on that described by Tsai [1986] (using a single 
plane calibration target) which recovers the six extrinsic 
parameters (3 translation and 3 rotation) and the focal 
length of each camera. This method has the advantage 
that all except the latter are measured in a fashion that is 
independent of any radial lens distortion that may be 
present The image origin, and aspect ratios of each cam­
era had been recovered previously. The calibration target 
which was a tile of accurately measured black squares on 
a white background was positioned at a known location in 
the XY plane of the robot work space. After both cam­
eras have been calibrated their relative geometry is calcu­
lated. 

Whilst camera calibration provides the transforma­
tion from the viewer/camera to the worldyrobot coordinate 
spaces we have found it more accurate to recover the 
position of the world coordinate frame directly. Stereo 
matching of the calibration stimulus allows its position in 
space to be determined. A geometrical description of the 
position and orientation of the of the calibration target is 
obtained by statistically combining the stereo geometry of 
the edge descriptions and vertices. The process is 
described in Pollard and Porrill [1986]. 

GDB: The recovery of the geometric descriptive base. 

In this section we briefly report the methods for seg­
menting and describing the edge based depth map to 
recover the 3D geometry of the scene in terms of straight 
lines and circular arcs. A complete description of the pro­
cess can be found in Pridmore et al [1986] and Porrill et 
al [1986a]. 

The core process is an algorithm (GDF) which 
recursively attempts to describe, then smooth and seg­
ment, linked edge segments recovered from the stereo 
depth map. GDF is handed a list of edge elements by 
CONNECT [Pridmore et al 1985]. Orthogonal regression 
is used to classify the input string as a straight line, plane 
or space curve. If the edge list is not a statistically satis­
factory straight line but docs form an acceptable plane 
curve, the algorithm attempts to fit a circle. If this fails, 
the curve is smoothed and segmented at the extrema of 
curvature and curvature difference. The algorithm is then 
applied recursively to the segmented parts of the curve. 

Some subtlety is required when computing geometri­
cal descriptions of stereo acquired data. This arises in part 
from the transformation between the geometry in disparity 
coordinates and the camera/world coordinates. The former 
is in a basis defined by the X coordinates in the left and 
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right images and the common vertical Y coordinate, the 
latter, for practical considerations (eg mere is no 
corresponding average or cyclopean image), is with 
respect to the left imaging device, the optical centre of 
the camera being at (0,0,0) and the centre of the image is 
at (0,0,0 where f is the focal length of the camera. 
While the transformation between disparity space and the 
world is projective, and hence preserves lines and planes, 
circles in the world have a less simple description in 
disparity space. The strategy employed to deal with cir­
cles is basically as follows: given a string of edge seg­
ments in disparity space, our program wil l only attempt to 
fit a circle if it has already passed the test for planarity, 
and the string is then replaced by its projection into this 
plane. Three well chosen points are projected into the 
world/camera coordinate frame and a circle hypothesised, 
which then predicts an ellipse lying in the plane in dispar­
ity space. The mean square errors of the points from this 
ellipse combined with those from the plane provide a 
measure of the goodness of fit. In practice, rather than 
change coordinates to work in the plane of the ellipse, we 
work entirely in the left eye's image, but change the 
metric so that it measures distances as they would be in 
the plane of the ellipse. 

Typically, stereo depth data are not complete; some 
sections of continuous edge segments in the left image 
may not be matched in the right due to image noise or 
partial occlusion. Furthermore disparity values tend to be 
erroneous for extended horizontal or near horizontal seg­
ments of curves. It is well known that the stereo data 
associated with horizontal edge segments is very unreli­
able, though of course the image plane information is no 
less usable than for the other orientations. Our solution to 
these problems is to use 3D descriptions to predict 2D 
data. Residual components derived from reliable 3D data 

Figure 5. The geometric description overlaid on the left 
edge map. 

The thin lines depict connected edge segments to which 
either no description has been ascribed because they were too 
short, or because they are present only in the left eyes image 
and only a 2D description was possible. The thicker lines dep­
ict the connected edge segments for which a 3D geometrical 
description has been computed. Before segmentation each edge 
list was smoothed by diffusion (see Porrill [1986]) approxi­
mately equal to a gaussian of sigma 2.5. 

and the image projection of unreliable or unmatched (2D) 
edges are then statistically combined and tested for accep-
tance. By this method we obtain a more complete 2D 
and 3D geometrical description of the scene from the left 
eyes view than if we used only the stereo data. Figure 5 
illustrates the GDB description of our scene. 

Evaluation of the geometrical accuracy of the 
descriptions returned by the GDF has employed both 
natural and CAD graphics generated images. The latter 
were subject to quantisation error and noise due to the 
illumination model but had near perfect camera geometry; 
they were thus used to provide the control condition, ena­
bling us to decouple the errors due to the camera calibra­
tion stage of the process. A full description of the experi­
ments are to be found in Pridmore [1987], suffice it to 
say that we find that typical errors for the orientation of 
lines is less than a degree, and for the normals of circu­
lar arcs subtending more than a radian, the errors are less 
than 3 degrees in the CAD generated images and only 
about twice that for images acquired from natural scene. 
The positional accuracy of features and curvature segmen­
tation points has also been evaluated, errors are typically 
of the order of a few millimetres which maybe argues 
well for the adequacy of Tsai's camera calibration method 
more than anything else. 

S M M : The Scene and Model Matcher. 

The matching algorithm (see Pollard et al [1986] for 
details), which can be used for scene to scene and model 
to scene matching, exploits ideas from several sources: 
the use of a pairwise geometrical relationships table as 
the object model from Grimson and Lozano-Perez [1984; 
1985], the least squares computation of transformations 
by exploiting the quaternion representation for rotations 
from Faugeraus et al [1984; 1985], and the use of focus 
features from Bolles et al [1983]. We like to think that 
the whole is greater than the sum of its parts! 
The matching strategy proceeds as follows: 

1) a focus feature is chosen from the model; 

2) the S closest salient features are identified (currently 
salient means lines with length greater than L) ; 

3) potential matches for the focus feature are selected; 

4) consistent matches, in terms of a number of pairwise 
geometrical relationships, for each of the neighbour­
ing features are located; 

5) the set of matches (including the set of focus 
features) is searched for maximally consistent 
cliques of cardinality at least C, each of these can be 
thought of as an implicit transformation. 

6) synonymous cliques (that represent the same implicit 
transformation) are merged and then each clique is 
extended by adding new matches for all other lines 
in the scene if they are consistent with each of the 
matches in the clique. Rare inconsistency amongst 
an extended clique is dealt with by a final economi­
cal tree search. 
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7) extended cliques are ranked on the basis of the 
number and length of their members. 

8) the transformation implicitly defined by the clique is 
recovered using the method described by Faugeras et 
al [1984]. 

The use of the parameters S (the neighbours of the 
focus feature), and C (the minimum subset of S ) are 
powerful search pruning heuristics that are obviously 
model dependent Work is currently in hand to extend 
the matcher with a richer semantics of features and their 
pairwise geometrical relationships, and also to exploit 
negative or incompatible information in order to reduce 
the likelihood of false positive matches. 

T I E D : the integration of edge descriptions. 

The geometrical information recovered from the 
stereo system described above is uncertain and error 
prone, however the errors are highly anisotropic, being 
much greater in depth than in the image plane. This 
anisotropy can be exploited if information from different 
but approximately known positions is available, as the 
statistical combination of the data from the two 
viewpoints provides improved location in depth. From a 
single stereo view the uncertainity can only be improved 
by exploiting geometrical constraints. A method for the 
optimal combination of geometry from multiple sensors 
based on the work of Faugeras et al [1986] and Durrant-
Whyte [1985] has been developed (for details see Porrill 
et al. [1986b]), and extended to deal both with the 
specific geometrical primitives recovered by the GDF and 
the enforcing of constraints between them. The method is 
used in the application being described to integrate the 
edge geometry from multiple views to create the object 
model (see figure 6), and to obtain the statistically 
optimum estimate of the position and direction cosines of 
the target object coordinate frame after the matching stage 
has been completed. The latter is done by enforcing the 
constraints that the axes of the coordinate frame are paral­
lel to all the lines they should be, that they are mutually 
perpendicular, and intersect at a single point The result of 
the application of this stage of the process is the position 
and attitude of the object in the world coordinates. Figure 
7 illustrates the SMM matching the compiled visual 
model in the scene. The information provided by match­
ing gives the RHS of the inverse kinematics equation 
which must be solved if our manipulator is to grasp the 
object (see figure 8). 

REV: the regions, edges, vertices graph. 

One may regard the system as generating a 
sequence of representations each spatially registered with 
respect to a coordinate system based on the left eye: 
image, edge map, depth map and geometrical description. 
In the initial stages of processing a pass oriented 
approach may be appropriate but we consider that it is 
desirable to provide easy and convenient access between 
the representations at a higher level of processing. The 
REVgraph is an environment, built in Franz Lisp, in 

Figure 6. The integration of linear edge geometry from 
multiple views. 

Figure (a) is a pair of stereo images produced by a ver­
sion of the IBM WINSOM CSG body modeler. It depicts the 
object to be modelled. To ensure a description of the model 
suitable for visual recognition and to allow greater generality 
(the same approach has been successfully applied to natural 
images of a real object) we combine geometrical data from 
multiple views of the object to produce a primitive visual 
model of it Figure (b) illustrates the 3D data extracted from 
eight views of the object Their combination is achieved by 
incrementally matching each view to the next Between each 
view the model is updated, novel features added and statistical 
estimation theory used to enforce consistency amongst them 
(eg. making near parallel and near perpendicular lines truely 
so). Finally only line features that have been identified in a 
more than a single view appear in the final visual model (see 
(c)). 
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Figure 7. Object location: 
The dark lines depict the projection of the object model 

into the scene geometry after being transformed by the rota­
tion and translation produced by the matching process (SMM) 
and the geometry integration process (TIED). The recovery of 
the object to scene transformation has two stages, they are as 
follows: first the matcher SMM locates the object model in the 
scene and recovers a sub-optimum estimate of the rotation and 
translation. The process is suboptimal because it does not take 
account of the anisotropics in the errors in the geometry of the 
matched edge features, and furthermore sequences the problem 
by first solving for the rotation and then using the rotation to 
calculate the translation. Notwithstanding these weaknesses, it 
is an adequate starting point for the second process which is a 
linearised recursive solution to the optimal weighted least 
squares integration of the geometry (TIED), which delivers 
the corrected transformation. To give some idea of the scale of 
the matching search problem, the object model contains 41 
features and the scene contains 423. Some 15 model focus 
features, chosen on the basis of length, resulted in the expan­
sion of only 37 local cliques. The latter were required to be of 
magnitude at least C-4 from S-7 neighbouring features. The 
largest clique found by the matcher contained 14 matched lines. 

which the lower level representations are all indexed in 
the same co-ordinate system. On top of this a number of 
tools have been and are being written for use in the 
development of higher level processes which we envisage 
overlaying the geometrical frame with surface and topo­
logical information. Such processes wi l l employ both 
qualitative and quantitative geometrical reasoning heuris­
tics. In order to aid debugging by keeping a history of 
reasoning, and increase search efficiency by avoiding 
backtracking, the REVgraph contains a consistency 
maintenance system (CMS), to which any processes may 
be easily interfaced. The CMS is our implementation of 
most of the good ideas in Doyle [1979] and DeKleer 
[1984] augmented with some our own. The importance of 
truth maintenance in building geometrical models of 
objects was originally highlighted by Hermann [1985]. 
Details of the REVgraph and CMS implementation may 
be found in Bowen [1986]. 

Conclusions 
We demonstrate the ability of our system to support 

visual guided pick and place in a visually cluttered but, in 

Figure 8. Closing the loop. 
Figures (a) and (b) show the arm grasping the object and 

the scene with the object removed. 

terms of trajectory planning, benign manipulator 
workspace. It is not appropriate at this time to ask how 
long the visual processing stages of the demonstration 
take, suffice it to say that they deliver geometrical infor­
mation of sufficient quality, not only for the task in hand 
but to serve as a starting point for the development of 
other visual and geometrical reasoning competences. 
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