In flight control of a morphing aircraft, the design objective and the dynamics may be different in its various configurations. To accommodate different performance goals in different sweep wing configurations, a novel switching strategy, mode dependent average dwell time (MDADT), is adopted to investigate the flight control of a morphing aircraft in its morphing phase. The switching signal used in this note is more general than the average dwell time (ADT), in which each mode has its own ADT. Under some simplified assumptions the control synthesis condition is formulated as a linear matrix optimization problem and a set of mode-dependent dynamic state feedback controllers are designed. Afterwards the proposed approach is applied to a morphing aircraft with a variable sweep wing to demonstrate its validity.
flight control, switching linear parameter-varying system, morphing aircraft, mode dependent average dwell time
93C95, 93D09