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In the past decade, many automated prediction methodsdfieuticellular localization of proteins have
been proposed, utilizing a wide range of principles anchiegrapproaches. Based on an experimental
evaluation of different methods and on their theoreticapprties, we propose to combine a well
balanced set of existing approaches to new, ensemble-lpmedittion methods. The experimental
evaluation shows our ensembles to improve substantiadly the underlying base methods.

1. Introduction

In cells, different regions have different functionaliieCertain functionalities are per-
formed by specific proteins. To function properly, a protminst be localized in the proper
region of a cell. Co-translational or post-translationahsport of proteins into specific sub-
cellular localizations is therefore a highly regulated aathplex cellular process. Knowing
of the subcellular localization of a protein helps to antits possible interaction partners
and functionalities.

Starting in the mid-nineties of the last century, until nopwlethora of automated pre-
diction methods for the subcellular localization of pragehas emerged. These methods
are based on different sources of information like the anaitid composition of the pro-
tein, specific sorting signals or targeting sequences gwdan the protein sequence, or
homology search in databases of proteins with known loatdin. Furthermore, hybrid
methods combine the different sources of information oifteanvery specialized way. Be-
sides different sources of information, prediction methdiffer in the employed learning
algorithms (like naive Bayes and Bayes networks, k-nearighbor methods, support vec-
tor machines (SVM), and neural networks). Due to their déffe sources of information,
prediction methods differ widely in their coverage of diffat localizations. For example,
methods based on targeting sequences generally have aVenage of only a few local-
izations. Methods based on amino acid composition varyidersbly in their coverage.
The coverage of a method is also directly related to the abvtgilclasses in the data sets
used for training of the corresponding method. As most ptedi methods are trained and
evaluated on data sets suitable to their requirements ierage, it is a hard task to compare
different methods w.r.t. their performange.

In this paper, we survey shortly prominent methods for ptéat of subcellular local-
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ization of proteins, particularly considering their diéat properties (Section 2). Based on
a diverse selection of the best methods, we propose comhie#itbds using a well bal-
anced set of prediction methods as new ensemble-methoctio(s8). Section 4 presents
the evaluation of selected localization prediction methiodomparison to our new ensem-
ble methods. Finally, Section 5 concludes the paper.

2. Survey on Prominent Prediction Methods for Subcellular L ocalization

For our evaluation of localization prediction methods, wafined the selection to those
that are available (excluding methods like NNPSDbr fuzzy.loc'®), and that focus on
eukaryotic localization prediction (excluding method&liPSORT-B! or PSLPred). In
the following, we survey prominent examples from these m@shchoosing representatives
for the different sources of information the methods areetdagpon.

2.1. Amino Acid Composition

Predicting the subcellular localization based on amind aoimposition was suggested by
Nakashima and Nishikaw®.They presented a method to discriminate between intracellu
lar and extracellular proteins using the amino acid contjwsiln the following years, a
number of approaches using the amino acid composition veasoped.

SubLod® uses one-versus-rest support vector machines (SVM) tagpitbe localiza-
tion. No additional information aside from the amino acidngmsition (like, e.g., dipep-
tide composition) is used for the prediction. In contrasStdLoc, PLOE® additionally
considers the dipeptide composition and the gapped amidocamposition aside from
the standard amino acid composition. Like SubLoc, this me#mploys one-versus-rest
SVMs. By using pairs of peptides the authors take more saxguerder information than
SubLoc into account. The gapped pair composition corredpém periodic occurrences
of certain amino acids in the sequence. Similar to PLOC, GBYlincorporates several
kinds of compositions, including single, dipeptide, andtiianed amino acid composi-
tions. Furthermore, compositions based on physicochémioperties of the amino acids
were derived. These features are again used as input foresas-rest SVMs.

2.2. Sorting Signals

One of the earliest works trying to identify a certain looatbased on protein sorting sig-
nals was already presented in 198®/4ost of the methods based on sorting signals are very
specialized. For example, MitopPgiredicts only mitochondrial proteins, Signalftedicts
only proteins of the secretory pathway. More general mettiwthis category are iPSORT
and Predotaf® The comparison of these two methods is especially intexgbtcause they
use very different computational approaches: iPSORT usgdesand interpretable rules
based on protein sequence features. These features areddieom the so-called amino
acid index, a categorization of amino acids based on diftddads of properties. iIPSORT
uses N-terminal sorting signal sequences. Predotar censdiiterminal sorting signals as
well and processes the input information with a feed forwaedral network. As an out-
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put value, this method yields probability values for thegerece of a certain localization
sequence rather than an abstract score.

2.3. Homology

Prominent methods based on homology search are Prediétih& PASUB® Pre-
dictNLS is also based on sorting signals, as it is trained data set of experimentally
confirmed nuclear localization signal (NLS) sequencess @lhta set is extended by homol-
ogy search. Nevertheless, NLSPred is specialized on redngmuclear proteins. PAUB

is purely based on PSI-BLAST homology search using datasasetations from homol-
ogous proteins. In many cases, homology search is very aecitowever, the result will
be arbitrary if no homologous protein with localization atation is available. The com-
bination of homology search with other methods is a commontawavercome this short-
coming.

2.4. Hybrid Methods

As in PredictNLS, most of the methods using homology seamrhhine this technique
with some other sources of information. In this categorgageffort was already spent to
develop refined combinations of information and method® &ften finds series of related
approaches from certain groups like the PSORT series (PSORBORT-112° PSORT-
B,1%11 and WoLFPSOR™) or ESLPred HSLPred!? and PSLPred.The PSORT-B ap-
proaches and PSLPred are specialized for bacteria. PSORisf the earliest methods
at all, based on amino acid composition, N-terminal targeiequence information, and
motifs. Like IPSORT, it is based on a set of rules. PSORT-#lsLes:-NN approach. WoLF-
PSORT uses a feature selection procedure and incorporatefeatures, based on new
sequence data, simultaneously increasing the coveragealidations and organisms. ES-
LPred uses an SVM approach, combining amino acid compasiipeptide composition,
overall physicochemical properties, and PSI-BLAST scofée extensions HSLPred and
PSLPred focus on human and prokaryotic proteins, resgdztMITOPREDS uses Pfam
domains and amino acid composition, and is specialized frmamondrial proteins. Multi-
Loc!® traines SVMs based on N-terminal targeting sequencesesegunotifs, and amino
acid composition.

3. Ensemble M ethods

In preliminary tests on our data set, the accuracy of all caneg methods was not as
high as reported in their original literature for other dsgés, meaning our data set can be
considered as not too easy. Furthermore, there were sezpieiith certain localizations
always wrongly predicted by some methods, e.g. there wagaieip with localization
vacuole within fungi group predicted positively althoudiete were 68 vacuole proteins
in this group. Some other methods could predict more acelyr&dr these proteins while
they might be incapable of accurate prediction of otherlleations. In other words, each
method has its own advantages and disadvantages. Thesegfindiotivate the idea to
combine some of these methods.
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3.1. Theory

Combining several self-contained predicting algorithms&h ensemble to yield a better
performance in terms of accuracy than any of the base pogdjas backed by a sound
theoretical backgrounti®281n short, a predictive algorithm can suffer from several-lim
itations such as statistical variance, computationabvere, and a strong biaStatistical
variancedescribes the phenomenon that different prediction modsldt in equally good
performance on training data. Choosing arbitrarily onehaf models can then result in
deteriorated performance on new data. Voting among eqgalty classifiers can reduce
this risk. Computational varianceefers to the fact, that computing the truly optimal model
is usually intractable and hence any classifier tries toawae computational restrictions
by some heuristics. These heuristics, in turn, can leadct laptima in the training phase.
Obviously, trying several times reduces the risk of chogsire wrong local optimum. A
restriction of the space of hypotheses a predictive algorinay create is refered to bigs

of the algorithm. Usually, the bias allows for learning arstaféiction and is, thus, a nec-
essary condition of learning a hypothesis instead of learbiy heart the examples of the
training data (the latter resulting in random performancaew data). However, a strong
bias may also hinder the representation of a good model ofrtieelaws of nature one
would like to learn. A weighted sum of hypotheses may theraaglthe space of possible
models.

To improve over several self-contained classifiers by lngjcan ensemble of those
classifiers requires the base algorithms being accurate &t least better than random)
and diverse (i.e., making different errors on new instandéss easy to understand why
these two conditions are necessary and also sufficientvéfrakbindividual classifiers are
not diverse, then all of them will be wrong whenever one ofitie wrong. Thus nothing
is gained by voting over wrong predictions. On the other héntthe errors made by the
classifiers were uncorrelated, more individual classifieay be correct while some indi-
vidual classifiers are wrong. Therefore, a majority vote byasemble of these classifiers
may be also correct. More formally, suppose an ensemblastmgsof & hypotheses, and
the error rate of each hypothesis is equal to a cepain 0.5 (assuming a dichotomous
problem), though independently. The ensemble will be wrdngore thank /2 of the en-
semble members are wrong. Thus the overall errorgatbthe ensemble is given by the
area under the binomial distribution, whére> [k/2], that is for at leasfk /2] hypothe-
ses being wrongp (k,p) = Zf:[k/ﬂ (")p*(1 — p)k~%. The overall error-rate is rapidly
decreasing for an increasing number of ensemble members.

3.2. Selection of Base Methods for Ensembles

Comparing several methods based on amino acid compositierfsund an increase of
accuracy by adding more sequence-order information. CEbékaved best no matter for
which taxonomy group because it used the most sequenceiofolenation: single amino
acid composition, dipeptide compositionpeptide composition, and even physicochemi-
cal properties of amino acids in the updated version thatseel un contrast, PLOC which
used only amino acid composition and dipeptide composhimh more false predictions
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than CELLO, but it was more accurate than SubLoc which uség gingle amino acid

composition. In comparison, the methods based on detebtitegminal sorting signals
performed better than expected, although they have to Banidising N-terminal sorting
signals. Of the hybrid methods the two newest, WoLFPSORT&2and MultiLoc (2006),

had similar prediction ability and their accuracy is higliesin that of the others in this
category.

Based on the results of our preliminary experimental coimspas and the criteria of
usability, reliability, efficiency, coverage, and, for thetical reasons, as discussed above,
diversity in the underlying methods and sources of inforamatwe chose the following
methods to build an ensemble: From the methods based on agithcomposition SubLoc
was excluded because of its too simple foundation and itedeank during the prelimi-
nary tests. In addition, both PLOC and CELLO use the singlmarmacid composition too
and predict more accurately than SubLoc. iIPSORT and Predstarominent examples of
methods based on sorting signals had similar predictidityalsi our preliminary tests but
use quite different algorithms, so both of them were choeetiie combination. PASUB
is a purely homology-based method. The data set used fora@mgePA SUB consists of
virtually all Swiss-Prot® entries that provide a localization annotation. As we eataihe
considered methods and our combination of methods on an-dpte data set also com-
piled from Swiss-Prot, we exclude PBUB from the experiments, as it is highly overfitted
to the data set. Usually, as discussed above, homologybapeoaches are combined with
other approaches. From the hybrid methods only the meth@R¥SI was excluded, be-
cause we use its extension WoLFPSORT which is more accurdtess a larger taxonomy
coverage than PSORT II. HSLPred is used for the human psotéithough its localiza-
tion coverage is very narrow, it is still very sensitive foetthree localizations within its
coverage. Finally we chose 7 methods for the plant, aninthfamgi groups and 8 methods
for the human group to construct an ensemble method: PLOCIL.OEPSORT, Predotar,
WOLFPSORT, MultiLoc, ESLPred, and, for human proteins, IRgid.

3.3. Ensemble Method Based on a Voting Schema

Despite a clear theoretical background for ensemble legrini general, the combination
of localization prediction methods is not trivial due to thiele range of localization and
taxonomic coverage. Imagining a prediction method as atiimmérom some feature space
to some class space, the base learners map the proteinsfiaterd class spaces. Thus,
for unifying the prediction methods, the class spaces meistiified first. The unified class
space should contain the classes supported by most of thedsefresulting in the set of
ten localization classes as described above). Methodat@ainable to predict some of the
classes contained in the unified class space must be trespiedially. Furthermore, some
methods (PLOC, CELLO, WoLFPSORT, and MultiLoc) predict @kaone localization

for a query protein while others (iPSORT, Predotar, ESLPxad HSLPred) predict arange
of possible localizations. We define therefore a voting sehas follows: Methods in the
first group give their vote to one certain localization atradiif the predicted localization

belongs to the 10 localizations in our data set. Otherwisi tlote is blanked out. Methods



September 28, 2007 15:29 WSPC - Proceedings Trim Size: 9.75in x 6.5in  apbc044a

Table 1. Ranks of different classification methods for thesidered taxonomic groups.

Taxonomic group| CELLO ESLPred HSLPred iPSORT MultiLoc PEUB
Animal 2 10 — 3 6 1
Fungi 4 9 — 1 7 3
Human 4 10 7 2 6 1
Plant 3 2 — 9 8 1
Taxonomic group| PLOC Predotar PSORTIl  SubLoc WOLFPSORT

Animal 4 5 8 9 7

Fungi 5 2 8 10 6

Human 5 3 9 11 8

Plant 4 7 — 6 5

in the second group may give their vote to several locabratat a time. If a classifier maps
the proteins into a class space containing some of the tesadaand a class ‘unknown’, a
prediction for class ‘unknown’ can be mapped to the set of¢hn@aining classes. However,
if a classifier cannot decide between some classes, thisetithean automatically that the
protein belongs to the set of unknown classes. For exanfpieegiie is no sorting signal
being detected by iPSORT or Predotar, we cannot say thaptbiein is not localized in
chloroplast, mitochondrion, or the secretory pathwayabise the N-terminal sequence of
this protein may be not complete. In this case, iPSORT andid®aewill give up on voting.

Based on the votes of all base classifiers, we derive a veabscorings for the local-
izations, where for localizationthe scores; is computed as follows:

N
si=» (vj- (N —rank; +1),

J=1

whereN is the number of methods used by the ensemble methad; is the rank in ac-
curacy of method according to our preliminary tests, ang = 1 if method; votes for
localizatiori (allowing voting for multiple localizations), otherwise = 0. This ensemble
is therefore built based on prior knowledge concerning iwégpmance of the base classi-
fiers. We also tried a voting without explicitly ranking thetes of the base classifiers, but
the results were not acceptable. The ranks we used for theadiean can be found in Table
1.

3.4. Ensemble Method Based on Decision Trees

As requiring prior knowledge to construct a voting schemadssatisfying, we chose to
derive the voting schema by decision trees, trained on tedigiions of the single base
methods and the correct localization classes. Decisi@s tembine the benefits of gener-
ally good accuracy and interpretable models, i.e. the ddnroting schema provides further
information regarding the performance of the underlyingtrods on different localization
classes. For example, the decision tree for the taxonomigpgfplant” learns a rule like
If CELLO predicts class 6 and WoLFPSORT predicts class 4 thess 4 is correctWe
trained decision trees using J48 of WER/or each taxonomic group.
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Table 2. Covered subcellular localizations and corresiponkkywords in SWISS-PROT.
ID  Subcellular Keywords in SWISS-PROT | ID  Subcellular Keywords in SWISS-PROT
localization localization
1  Chloroplast Chloroplast 8 Peroxisome Peroxisome, Peroxisomal
2 Cytoplasm Cytoplasm(ic) Microsome, Microsomal
3 ER Endoplasmic reticulum Glyoxysome, Glyoxysomal
4  Golgi apparatus  Golgi Glycosome, Glycosomal
5 Lysosome Lysosome, Lysosomal 9 Extracellular  Extracellular
6  Mitochondrion Mitochondrion, Mitochondrial Secreted
7  Nucleus Nucleus, Nuclear 10 Vacuole Vacuole, Vacuolar
4. Evaluation

Although more and more prediction methods for subcelluaalization have been devel-
oped, several limitations exist. First, the coverage ofljsted localizations, which ranges
from just a few localizations to all possible localizatiodghile e.g., SubLoc predicts only
4 localizations, PLOC is able to predict 12 localizationsc&d, most existing methods
were trained by a limited number of sequences from a speaifizrtomic category of or-
ganisms, so the methods differ in their taxonomic coveralge third aspect is the so-called
sequence coverage, which is the number of sequences theedifpproaches learn from.
Nonetheless, many newly developed methods still use tlzesgdtreated by Reinhardt and
Hubbard in 19984 Thus, we decided to compile an up-to-date data set based ms-Sw
Prot?° In order to compare methods differing widely in many aspeets restricted the
data set to 10 localization classes which are commonly aeddyy most of the methods.
These localization classes are listed in Table 2. This 8efeaccommodates most of the
available and rather general methods. For methods withrawer localization coverage
we used their reliability indices and assigned query secggewith lower reliability indices
to the class “unknown”. While their coverage is narrowegsth methods often exceed oth-
ers in their performance for the covered localization &ass

Based on Swiss-Prot (release 53.0), we at first selectediladirgotic proteins with a
unique subcellular localization annotation, where thali@ation annotation was one of the
10 localization classes listed in Table 2. Then, all prat&ifth a sequence length smaller
than 60 amino acids were removed, as this is the requiredmairsiequence length for Pre-
dotar, the method with the largest required minimal lenBthally we kept only those pro-
teins whose localization annotation was experimentalhyficmed and belonged to one of
the taxonomic groups “plant”, “fungi”, “human”, or “aninfalAs the golgi group of plants
was too small (7 entries), we complemented this group withrd8ins whose localization
information was not confirmed experimentally. This yieldeslibsets corresponding to the
4 taxonomic groups. Table 3 lists the final number of protéimsach taxonomic group
and each localization class.

Both the ensemble methods as well as the single base clessiiee evaluated by 10-
fold cross-validations on our data set. The results arstithted in Figures 1 and 2. Figure 1
shows the total accuracy. The simple weighted voting sch&vating”) performs slightly
better than the base classifiers. The decision tree ensefibl&Ensemble”) clearly out-
perform all other methods (including the voting schemag fifost prominent improvement
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Table 3. Number of proteins for different taxonomic groupd bcalization

classes.
Plant Fungi Animal Human Total
1 Chloroplast 3425 0 0 0 3425
2  Cytoplasm 470 578 1394 511 2953
3 ER 66 170 391 164 791
4  Golgi 35 55 78 55 223
5 Lysosome 0 0 102 56 158
6  Mitochondrion 370 632 1341 347 2690
7  Nucleus 308 899 2221 1094 4522
8 Peroxisome 50 85 181 72 388
9  Extracellular 149 199 596 4723 5667
10  Vacuole 35 68 0 0 103
Total 4908 2686 10431 2895 20920
0.9 B DT-Ensemble
0.8 - O Voting
> ] PLOC
& 0.7 -
5 % & CELLO
S 0.6 Z [l |oiPSORT
< 75 i
= 7 =l | | Predotar
205 - 7 4
|3 ’ g il | |2 WoLFPSORT
0.4 ? i |0 MultiLoc
i i || DESLPred
0.3 - G| LU |
: HSLPred
Plant Fungi Animal Human

Fig. 1. Comparison between single and ensemble classiicatiethods: Total Accuracy, i.e., the overall per-
centage of correctly predicted instances.

can be seen in the plant group, were the other methods maesftlyrm rather weak (at best,
ESLPred reaches an accuracy of just below 60%), while theracg of the decision tree
ensemble is well above 80%.

Most methods perform comparably well in terms of specifi¢dy Figure 2). Again,
in the plant group the improvement of both ensemble methedsoist prominent. In the
remaining taxonomic groups the best base classifiers ginesth almost 100%. Thus,
no significant improvement can be expected. However, thereble methods perform as
well as the best base classifiers. The decision tree ensemiga slightly improve over the
already very good values.

All our methods are available via a webinterfacdait p: / / www. dbs. i fi. | nu.
de/ research/ | ocpred/ ensenbl e/ .

5. Conclusions

In this paper, we shortly surveyed some prominent predictiethods for subcellular local-
ization of proteins. The spectrum of underlying informati@s amino acid composition,
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Fig. 2. Comparison between single and ensemble clasdificatethods: Average Specificity, i.e., the percentage
averaged over all localization classes to correctly exelanl instance from the corresponding class.

sorting signals, and homology search) makes these mettledtyi diverse to expect an
ensemble composed of these methods to improve consideératdyms of accuracy. We
developed two ensemble methods: First, a simple votingsehssing the votes of the base
learners weighted according to their average performarasse@ on prior knowledge), sec-
ond, decision trees trained on the prediction values of #se lmethods (thus learning the
weight of the methods on the fly and allowing for a more compleighting). Both en-
sembles are shown to improve over the base classifiers in casss. The decision tree
ensemble can even said to outperform the remaining methods.
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