skip to main content
10.1145/2663792.2663798acmconferencesArticle/Chapter ViewAbstractPublication PagescikmConference Proceedingsconference-collections
research-article

Structure Learning of Bayesian Network with Latent Variables by Weight-Induced Refinement

Published: 03 November 2014 Publication History

Abstract

Bayesian network (BN) with latent variables (LVs) provides a concise and straightforward framework for representing and inferring uncertain knowledge with unobservable variables or with regard to missing data. To learn the BN with LVs consistently with the realistic situations, we propose the information theory based concept of existence weight and incorporate it into the clique-based learning method. In line with the challenges when learning BN with LVs, we focus on determining the number of LVs, and determining the relationships between LVs and the observed variables. First, we define the existence weight and propose the algorithms for finding the ε-cliques from the BN without LVs learned from data. Then, we introduce the LV to each ε-clique and adjust the BN structure with LVs. Further, we adjust the value of parameter ε to determine the number of LVs. Experimental results show the feasibility of our method.

References

[1]
Anandkumar, A., Hsu, D., Javanmard, A., and Kakade, S. M. 2013. Learning Linear Bayesian Networks with Latent Variables. In Proc. ICML (Atlanta, GA, USA, June 16 - 21, 2013). ICML '13. JMLR.org, 28, 249--257.
[2]
Bernardo, J. M., Bayarri, M. J., Berger, J. O., Dawid, A. P., Heckerman, D., Smith, A. F. M., and West, M. 2003. The variational Bayesian EM algorithm for incomplete data: with application to scoring graphical model structures. Bayesian statistics, 2003, 7: 453--464.
[3]
Binder, J., Koller, D., Russell, S., and Kanazawa, K. 1997. Adaptive probabilistic networks with hidden variables. Machine Learning, Springer, 1997, 29 (2--3): 213--244. DOI= http://dx.doi.org/10.1023/A:1007421730016.
[4]
Bomze, I. M., Budinich, M., Pardalos, P. M., and Pelillo, M. 1999. The maximum clique problem. Handbook of combinatorial optimization. Springer, 1999, 1--74.
[5]
Chades, I., Carwardine, J., Martin, T. G., Nicol, S., Sabbadin, R., and Buffet, O. 2012. MOMDPs: A Solution for Modelling Adaptive Management Problems. In Proc. AAAI (Toronto, Ontario, Canada, July 22 - 26, 2012). AAAI '12. AAAI Press, 267--273.
[6]
Chen, W. Z., Ji, Z. L., Shen, S., and Yang, Q. 2011. A Whole Page Click Model to Better Interpret Search Engine Click Data. In Proc. AAAI (San Francisco, California, USA, August 07 - 11, 2011). AAAI '11. AAAI Press, 11, 1140--1145.
[7]
Cheng, J., Bell, D., and Liu, W. R. 1997. Learning Bayesian networks from data: An efficient approach based on information theory. In Proc. ACM (Las Vegas, Nevada, November 10 - 14, 1997). ACM, New York, NY, 325--331. DOI= http://doi.acm.org/10.1145/266714.266920.
[8]
Choi, M. J., Tan, V. Y. F., Anandkumar, A., and Willsky, A. S. 2011. Learning Latent Tree Graphical Models. Journal of Machine Learning Research, 2011, 12: 1729--1770.
[9]
Dempster, A. P., Laird, N. M., and Rubin, D. B. 1997. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society. Series B (Methodological), 1977, 1--38.
[10]
Eaton,D. and Murphy, K. 2007. BDAGL: Bayesian DAG learning. http://www.cs.ubc.ca/~murphyk/Software/BDAGL/, 2007.
[11]
Elidan, G., Lotner, N., Friedman, N., and Koller, D. 2000. Discovering hidden variables: A structure-based approach. In Proc. NIPS (Denver, CO, USA, 2000). NIPS '00. MIT Press, 479--485.
[12]
Friedman, N. 1998. The Bayesian structural EM algorithm. In Proc. UAI (Wisconsin, USA, July 24 - 26, 1998). UAI '98. Morgan Kaufmann, 129--138.
[13]
Heckerman, D. 2008. A Tutorial on Learning with Bayesian Networks. Innovations in Bayesian Networks. Springer, 2008, pp. 33--82.
[14]
Heckerman, D., Geiger, D., and Chickering, D. M. 1995. Learning Bayesian networks: The combination of knowledge and statistical data. Machine learning, Springer 1995, 20: 197--243. DOI= http://dx.doi.org/10.1007/BF00994016.
[15]
Ju, H. L., Jin, G. Z., and Namkamori, Y. 2010. Methods for products recommendation using emotional information. In Proc. SMC (Istanbul, Turkey, October 10 - 13, 2010). SMC '10. IEEE, 849--856. DOI= http://dx.doi.org/10.1109/ICSMC. 2010.5641865.
[16]
Karp, R. M. 1972. Reducibility among combinatorial problems. Springer, 1972, 85--103.
[17]
Lanterman, A. D. 2001. Schwarz, Wallace, Rissanen: Intertwining themes in theories of model selection. International Statistical Review, 2001, 69 (2): 185--212.
[18]
Leray, P. and Francois, O. 2004. BNT structure learning package: documentation and experiments. Technical report, Laboratoire PSI, Université et INSA de Rouen, 2004.
[19]
Lu, Z. W. and Peng, Y. X. 2011. Latent Semantic Learning by Efficient Sparse Coding with Hypergraph Regularization. In Proc. AAAI (San Francisco, California, USA, August 07 - 11, 2011). AAAI '11. AAAI Press, 411--416.
[20]
Martin, J. and VanLehn, K. 1995. Discrete factor analysis: Learning hidden variables in Bayesian networks. Technical report, Department of Computer Science, University of Pittsburgh, 1995.
[21]
Mohan, A., Chen, Z., and Weinberger, K. 2011. Web Search Ranking with Initialized Gradient Boosted Regression Trees. Journal of Machine Learning Research, 2011, 14: 77--89.
[22]
Paokanta, P. and Harnpornchai, N. 2012. Risk analysis of Thalassemia using knowledge representation model: Diagnostic Bayesian Networks. In Proc. BHI (Hong Kong, China, January 05 - 07, 2012). BHI '12. IEEE, 155--158. DOI= http://dx.doi.org/10.1109/BHI.2012.6211532.
[23]
Silva, R., Scheine, R., Glymour, C., and Spirtes, P. 2006. Learning the structure of linear latent variable models. Journal of Machine Learning Research, 2006, 7: 191--246.
[24]
Sun, F. T., Griss, M., Mengshoel, O. J., and Yeh, Y. T. 2013. Latent Topic Analysis for Predicting Group Purchasing Behavior on the Social Web. In Proc. UAI 2013 Workshop on Models for Spatial, Temporal and Network Data (Bellvue, Washington, USA, 2013). UAI Application Workshops '13. CEUR-WS.org, 1024, 67--76.
[25]
Wang, Y., Zhang, N. L., and Chen, T. 2008. Latent tree models and approximate inference in Bayesian networks. Journal of Artificial Intelligence Research, 2008, 32: 879--900.
[26]
Xu, Z. X., Zhang, N. L., Wang, Y. Q., Liu, G. P., Xu, J., Liu, T. F., and Liu, A. H. 2013. Statistical Validation of Traditional Chinese Medicine Syndrome Postulates in the Context of Patients with Cardiovascular Disease. The Journal of Alternative and Complementary Medicine, 2013, 18: 1--6.
[27]
Zhang, N. L. and Guo, H. P. 2006. Introduction to Bayesian Networks. Science Press, Beijing, 2006.

Cited By

View all

Index Terms

  1. Structure Learning of Bayesian Network with Latent Variables by Weight-Induced Refinement

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    Web-KR '14: Proceedings of the 5th International Workshop on Web-scale Knowledge Representation Retrieval & Reasoning
    November 2014
    72 pages
    ISBN:9781450316064
    DOI:10.1145/2663792
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 03 November 2014

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. ε-clique
    2. Bayesian network
    3. existence weight
    4. latent variable
    5. structure learning

    Qualifiers

    • Research-article

    Conference

    CIKM '14
    Sponsor:

    Acceptance Rates

    Overall Acceptance Rate 4 of 4 submissions, 100%

    Upcoming Conference

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)5
    • Downloads (Last 6 weeks)1
    Reflects downloads up to 14 Sep 2024

    Other Metrics

    Citations

    Cited By

    View all

    View Options

    Get Access

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media