
Strategies for Learning Search Control Rules: 
An Explanation-based Approach 

Steven Minton and Jaime G. Carbonell 
Computer Science Department 
Carnegie-Mellon University 

Pittsburgh, PA 15213 

Abstract 
Previous work in explanation-based learning has primarily focused 
on developing problem solvers that learn by observing solutions. 
However, learning from solutions is only one strategy for improving 
performance. This paper describes how the PRODIGY system uses 
explanation-based specialization to learn from a variety of phenomena, 
including solutions, failures, and goal-interactions. Explicit target 
concepts describe these phenomena, and each target concept is 
associated with a strategy for dynamically improving the 
performance of the problem solver. Explanations are formulated 
using a theory describing the domain and the PRODIGY problem 
solver. Both the target concepts and the theory are declaratively 
specified and extensible.1 

1. In t roduct ion 
Recent research has demonstrated that explanation-based learning 

(EBL) is a viable method for acquiring search control 
knowledge [22,6,18,27,29]. Almost all EBL problem solvers learn 
by analyzing why a solution succeeds in solving a problem. The 
result is a knowledge structure (such as a macro-operator or schema) 
that describes how to solve similar problems should they arise in the 
future. 

However, explanation-based learning can also be used to learn 
why a problem-solving method failed. By explaining why a method 
failed to solve a problem or sub-problem, a system can learn when to 
avoid that method in the future [16,11,24). In fact, EBL is a very 
general technique, and in principle an EBL system can learn from 
any phenomenon that it can explain. To do so, however, a system 
must know what phenomena - or target concepts - to explain and be 
able to formulate appropriate explanations [12]. Furthermore, the 
system must be able to modify its behavior appropriately on the 
basis of the learned information. 

This paper describes how the PRODIGY system learns from 
multiple target concepts in order to increase the utility of the 
learning process. Specifically, unlike previous EBL problem-solvers, 
PRODIGY learns from a variety of phenomena, including success, 
failure, and goal-interactions. Each of these meta-level target 
concepts corresponds to a strategy for optimizing PRODIGY'S 
effectiveness as a problem solver. Explanations are formulated using 
an explicit theory describing the domain and the PRODIGY problem 
solver. Both the set of target concepts and the theory are declarative 

lThis research was sponsored In part by the Defense Advanced Research Prefects 
Agency (DOD), ARPA Order No. 4976, monitored by the Air Force Avionics 
Laboratory under contract F33615-84-K-1520, in part by the Office of Naval Research 
under Contract N00014-84-K-0345. and in part by a gift from the Hughes Corporation. 
In addition, the first author was supported by a Bell Laboratories Ph.d Scholarship. 
The views and conclusions contained in this document are those of the authors and 
should not be interpreted as representing the official policies, either expressed or 
implied, of DARPA, the Air Force Office of Scientific Research or the US government. 

2Goal concept is an equivalent term, but is easily confused with the goal of the 
problem-solver. 

'The use of incomplete, approximate, and default theories are topics of current 
research, but not considered here. 

and extensible, therefore additional optimization strategies can be 
incorporated into the system when necessary. This paper also 
introduces an new EBL algorithm, Explanation-based Specialization 
(EBS), which constructs explanations by specializing proof schemas 
using information gained from a training example. EBS is 
particularly appropriate for problem solvers that learn from their 
own problem solving performance. 

2. The Terminology of Explanation-based Learning 
Several recent papers [22,6,17] have contributed greatly to the 

emergence of a relatively standard terminology for describing 
explanation-based learning. (We use the generic term "explanation-
based learning" to refer to deductive learning from single examples, 
as exemplified by [17,22,23,9,8].) 

The target concept is a high-level description of a concept (i.e., a 
class of instances).2 A training example is an instance of the target 
concept. Using the domain theory, a set of axioms describing the 
domain, one can explain why the training example is an instance of 
the target concept. The explanation constitutes a proof that the 
training example satisfies the target concept3. By finding the 
weakest conditions under which the explanation holds, EBL will 
produce a learned description that is both a generalization of the 
training example, and a specialization of the target concept. 
Typically, the purpose of the learning process is to produce a 
description that can serve as an efficient recognizer for the target 
concept. 

As an example (adapted from [221) consider the target concept 
(SAFE-TO-STACK x y), that is, object x is can be safely placed on 
object y without object y collapsing. A training example could be a 
demonstration that a particular book, 'Principles of AI", can be safely 
placed upon a particular table, Coffee-Table-1. Let us suppose that 
our domain theory, shown below, contains assertions enabling us to 
prove that "Principles of AI" is safe to stack on Coffee-Table-1 
because all books are lighter than tables. From this proof we can 
conclude that that any book can be safely stacked on any table. Thus 
the learned description is (AND (IS-BOOK x) (IS-TABLE y)). 
DOMAIN THEORY. 
(IS-BOOK PRINCIPLESOF-AI) 
(SAFE-TO-STACK x y) If (OR (LIGHTER x y) (NOT-FRAGILE y)) 
(LESS-THAN w 5-LBS) if (AND (IS-BOOK x) (WEIGHT x w)) 

3. The PRODIGY System 
PRODIGY is a learning apprentice [20] that acquires problem 

solving expertise by interacting with an expert, by carrying out 
experiments, and, as described in this paper, by analyzing problem 
solving traces, PRODIGY can be divided into four subsystems: 

• A n advanced Strips-like[9] problem solver that provides a 
uniform control structure for searching with both inference 
rules and operators. The problem solver includes a simple 
reason-maintenance system, allows operators with conditional 
effects to be specified, and is capable of interleaving goals. The 
problem solver's search can be guided by domain-independent 
or domain-specific control rules. 

228 KNOWLEDGE ACQUISITION 



• An explanation-based learning facility [19,15] that can propose 
explanations about why a control decision was appropriate, 
and transform them into search control rules. 

• A learning-by-experimentation module [4] for refining 
incompletely or incorrectly specified domain knowledge. 
Experimentation is triggered when plan execution monitoring 
detects a divergence between internal expectations and 
external expectations. 

• A user-interface that can participate in an apprentice-like 
dialogue, enabling the user to evaluate and modify the 
system's behavior. 

Except for the experimentation module (which is currently under 
development), PRODIGY has been ful ly implemented, and tested on 
several task domains including a machine shop scheduling domain 
and a 3-D robotics construction domain. For brevity of exposition 
the examples described in this paper wi l l be taken from an extremely 
simple task domain, the familiar "blocks world", whose standard 
specification [251 is shown in Figure 3-1. While the blocks world 
may seem contrived, solving apparently simple problems may 
involve searching hundreds of nodes. In other words, the domain is 
simple but as we w i l l see, the formalization (i.e., axiomization) of the 
domain is far from ideal. By acquiring search control knowledge, 
PRODIGY effectively modifies its behavior so that its performance 
reflects the inherent simplicity of the domain, rather than the 
deficiencies of the formalization. Learning search control knowledge 
thus has the same effect as reformalization ~ important knowledge is 
brought to bear early, so that correct decisions can be made 
efficiently. 

PICKUP b 
Precondition: (AND (CLEAR b) (ONTABLE b) (ARMEMPTY)) 
Add: (HOLDING b) 
Delete: (ONTABLE b) (CLEAR b) (ARMEMPTY) 

PUTDOWNb 
Precondition: (HOLDING b) 
Add: (ONTABLE b) (CLEAR b) (ARMEMPTY) 
Delete: (HOLDING b) 

STACK b1 b2 
Precondition: (AND (HOLDING b1) (CLEAR b2)) 
Add: (ON bl bl) (CLEAR bl) (ARMEMPTY) 
Delete: (HOLDING bl) (CLEAR b2) 

UNSTACK bl bl 
Precondition: (AND (ON bl bl) (CLEAR bl) (ARMEMPTY)) 
Add: (HOLDING M) (CLEAR bl) 
Delete: (ON bl bl) (CLEAR M) (ARMEMPTY) 

Figure 3-1: Blocks World Specification 

3.1. A n Example Prob lem 
A problem consists of a description of a start-state, and a set of 

goal states, as shown in Figure 3-2. PRODIGY'S description 
language, called PDL, is a logic-based language that includes 
conjunction, disjunction, negation, existential quantification, and 
universal quantification over sets. (Variables are shown in lower 
case.) PDL is also used for describing the preconditions of operators 
and search control rules. 

By default, PRODIGY searches depth-first, attacking goals from left to 
right, unless search control rules indicates a more appropriate 
ordering. To solve a goal, the system selects an operator wi th a 
postcondition (a formula in the add or delete list) that matches the 
goal. If the preconditions of the operator are satisfied, then the 
operator can be applied, otherwise the system subgoals on any 
unsatisfied preconditions. (For simplicity, this paper describes only 
the basic capabilities of the system necessary to illustrate the 
examples. More sophisticated features, such as conditional effects, 
inference rules, functions, and non-linear planning are discussed in 
[15]. Readers unfamiliar wi th the basic operation of a STRIPS-style 

system should see [251.) 

Figure 3-3: Search Tree 

To solve the example problem, PRODIGY considers applying 
either PICKUP or UNSTACK to achieve (HOLDING B), as 
illustrated in Figure 3-3. PICKUP is inappropriate, but this is only 
discovered during the course of solving the problem. In attempting 
to PICKUP B, PRODIGY is forced to subgoal on (CLEAR B) and 
(ONTABLE B), the unsatisfied preconditions of PICKUP. These are 
added to the goal-stack, and then PRODIGY attempts to solve 
(CLEAR B). Unstacking A from B achieves (CLEAR B), but then a 
goal-stack cycle occurs in attempting to achieve (ONTABLE B). 
PRODIGY then attempts other ways to (CLEAR B) at Node2, but 
these also result in failure. (The problem solver has no way of 
knowing that unstacking A from B did not cause the failure of 
Node3. But as we wi l l see, when learning is interleaved with 
problem-solving, PRODIGY backtracks more intelligently.) 
Eventually backtracking to Node l , PRODIGY attempts unstacking B 
from C, which leads to a solution. 

PRODIGY'S performance in a given domain can be improved by 
the addition of search control rules. Control rules constrain the 
search by mediating the four decisions PRODIGY makes during each 
problem solving cycle. First, the system must choose a node in the 
search tree to expand next - the default is depth-first expansion. 
Each node consists of a goal-stack, a set of subgoals and a state 
describing the wor ld. Once a node has been chosen, one of the 
subgoals must be selected, and then an operator relevant to reducing 
this subgoal. Finally, a set of bindings for the variables in that 
operator must be decided upon. 

Each of these four decisions can be affected by control rules, which 
indicate when to SELECT, REJECT, or PREFER a particular 
candidate (node, goal, operator or bindings). Given a default set of 

Minton and Carbonell 229 



candidates, PRODIGY first applies the applicable selection rules to 
select a subset of the candidates. If no selection rules are applicable, 
all the candidates are selected. Then rejection rules are executed to 
filter this set, and finally preference rules are used to find the 
heuristically best alternative . (If backtracking is necessary, the next 
most preferred is attempted, and so on.) 

Consider the first control rule shown in Figure 3-4. This rule is a 
operator selection rule; it is used in deciding which candidate 
operator to choose. Notice that the description language PDL allows 
the use of meta-level predicates such as KNOWN. The formula 
(KNOWN node exp) is true if the expression exp matches the state at 
node. Therefore the rule asserts that if the current goal matches 
(HOLDING x) and x is not on the table, then UNSTACK is the 
appropriate operator. Normally, since both PICKUP and UNSTACK 
can achieve (HOLDING x), both would be candidate operators. If 
this rule had been learned prior to our example problem (Figure 3-3), 
PRODIGY would have solved the problem without having to waste 
time exploring Node2 and its descendents. 

(SELECT OPERATOR (UNSTACK x y)) 
if (and (CURRENT-NODE node) 

(CURRENT-GOAL node (HOLDING x)) 
(CANDIDATE-OPERATOR node (UNSTACK X y) ) 
(KNOWN node (NOT (ONTABLE X)) ) ) 

(PREFER GOAL (ON X y) OVER (ON w X)) 
if (and (CURRENT-NODE node) 

(CANDIDATE-GOAL node (ON X y) ) 
(CANDIDATE-GOAL node (ON w X) ) ) 
Figure 3-4: Two Search Control Rules 

The second control rule in Figure 3-4, a goal preference rule, is 
used to decide which of the candidate goals at a node to attempt 
first. The rule states that if (ON w x) and (ON x y) are candidate 
goals, then it is preferred that (ON x y) should be attempted before 
(ON w x). This piece of control knowledge directs the problem 
solver to build stacks of blocks from the bottom up. Since PRODIGY 
finds the most preferred goal from a set of candidates, this rule 
correctly handles stacks regardless of height (i.e., the number of 
goals in the ON chain). 

4. Learning Control Rules: The Explanation-based 
Specialization Method 
PRODIGY'S explanation-based learning module can either be 

invoked after the problem solver has finished, or learning can be 
interleaved with problem solving. In either case, the learning process 
begins by examining the a trace of the explored search tree (in a 
pre-order traversal) in order to pick out examples of PRODIGY'S 
target concepts. Search control rules are learned by explaining why 
a training example satisfies a target concept. There are currently 
four types of target concepts implemented in PRODIGY: 

1. SUCCEEDS: A control choice succeeds if it results in a 
solution. Learning about successes results in preference rules. 

2. FAILS: A choice fails if there is no solution consistent with 
that choice. Learning about failures results in rejection rules. 

3. SOLE-ALTERNATIVE: A choice is a sole-alternative if all 
other candidates fail. Learning about sole alternatives results 
in selection rules. 

4. GOAL-INTERACTION: A choice causes in a goal-interaction 
if it results in a situation where a goal must be re-achieved. 
Learning about goal-interactions results in preference rules. 

Each type of target concept has four variants, one for each of the 
four control decisions (picking a node, goal, operator, and bindings). 
For example, the target concept (OPERATOR-FAILS op g n) is true if 

4Preferences are transitive. If there is a cycle in the preference graph, then those 
preferences in the cyde are disregarded. A candidate is best, or "most preferred", if 
there is no candidate that is preferred over it. 

operator op fails to solve goal g at node n. As with all concepts in the 
system, target concepts are represented by atomic formulas. Each 
target concept is declaratively specified to the system, as illustrated 
by Figure 4-1. A target concept specification includes a template for 
building search control rules, and may include other information 
such as heuristics for selecting training examples, as described in 
[151. 
Target Concept: (OPERATOR-FAILS op goal node) 
Rule Template: (REJECT OPERATOR op) 

if (AND (CURRENT-NODE node) 
(CURRENT-GOAL node goal) 
(CANDIDATE-OPERATOR Op node) 
(OPERATOR-FAILS op goal node)) 

Figure 4-1: Target Concept Specification for OPERATOR-FAILS 
An explanation describes why an example is a valid instance of a 

target concept, and corresponds to a proof. To construct such proofs, 
we require a theory describing the problem-solver, as well as a 
theory that describes the task domain (such as the blocks world). 
Therefore, PRODIGY contains a set of architecture-level axioms which 
serve as its theory of the problem solver. The domain theory is given 
by a set of domain-level axioms extracted from the domain operators 
by a pre-processor. Together, these sets of axioms are referred to as 
proof-schemas. Each proof-schema is a conditional which describes 
when a concept is true. Appendix 1.1 illustrates the architecture-
level proof schemas relevant to the concept OPERATOR-
SUCCEEDS. These schemas state that an operator succeeds in 
solving a goal at a node if: 

• the operator is applicable and directly solves the goal, or 
• subgoaling occurs, creating a child node where the 

operator succeeds, or 
• another operator is applied to achieve a subgoal, creating 

a child node where the operator succeeds. 
Domain-level schemas (Appendix 1.2) indicate the available 
operators, and their effects and preconditions. 

To prove that a target concept is satisfied by an example, 
PRODIGY specializes the target concept in accordance with the 
example. This process is equivalent to creating a proof tree by 
starting at the root (i.e., the target concept) and incrementally 
expanding the leaves of the tree. To specialize a concept PRODIGY 
retrieves a proof schema that implies the concept and recursively 
specializes all the subconcepts in the schema, as described in Figure 
4-2. The process terminates when primitive concepts are 
encountered. The result of the specialization process is a description 
of the weakest premises of the explanation. 

If a concept is described by more than one proof schema, as is 
OPERATOR-SUCCEEDS, then it is disjunctive. When specializing 
disjunctive concepts, PRODIGY uses the example to determine 
which schema gives the appropriate specialization5 Specifically, we 
allow each concept to be associated with a discriminator function 
which examines the problem solving trace and selects a schema 
consistent with the training example. In this way, discriminator 
functions provide a mapping between the example and the 
explanation. 

After the EBS process terminates, the resulting description is a 
specialization of the target concept. A search control rule is formed 
by retrieving the rule construction template (found in the target 
concept specification) and substituting the specialized description 

5There can be multiple training examples for a subconcept if the subconcept is 
within the scope of a universal quantifier. Universally quantified statements take the 
form FORALL x SUCH-THAT (P x), (Q x). The formula (P x) acts as a generator for 
values of x. (Q x) can be any expression. The implementation treats universally 
quantified statements as if they were written in the logically equivalent normal form: 
FORALL x (OR (NOT (P x))(Q x))). Because (P x) is negated, it is not specialized. 
(However, If P generates a fixed set of values, it can typically be simplified out of the 
learned description using simplification axioms! [15].) EBS specializes Q separately for 
each example of x, and returns the disjunction of these descriptions as the 
specialization of Q 

230 KNOWLEDGE ACQUISITION 



A concept it represented by an atomic formula. 
To specialize a concept: 

• If the concept is primitive - there is no schema that implies 
the concept - then return the concept unchanged, 
otherwise, 

• Call the discriminator function associated with the concept 
to retrieve a schema consistent with the training example. 
Each non-negated atomic formula in the schema is a 
subconcept. While there exists a subconcept in the schema 
that has not been specialized, do the following: 
• Specialize the subconcept 
•Uniquely rename variables in the specialized 
description to avoid name conflicts, 

•Substitute the specialized description for the 
subconcept in the schema and simplify. 

Return the schema (now a fully specialized description of 
the concept). 

Figure 4-2: The EBS Algorithm 

for the target concept in the template. During subsequent problem-
solving episodes, PRODIGY will maintain a utility estimate for the 
new rule, where utility is defined by the cumulative time cost of 
matching the rule versus the cumulative savings in search time 
provided by the rule. Only rules that prove useful are retained in 
the set of active control rules. 

Let us return to our example problem (Figure 3-3) to illustrate how 
the EBS algorithm works. As stated previously, the selection of 
UNSTACK at Nodel provides a training example for the target 
concept OPERATOR-SUCCEEDS. 

Target concept: (OPERATOR-SUCCEEDS op goal node) , 
Example*: (OPERAT0R-8DCCXED8 (UNSTACK B) (HOLDING B) Nodal) 

Because OPERATOR-SUCCEEDS is a recursive definition, the 
success of UNSTACK depends on its success at nodes 9 and 10 and 
eventual application at Nodel 1. We shall illustrate the specialization 
process by "unrolling" the recursion from the bottom up, starting 
with the success of UNSTACK at Nodell. 
Subconcept: (OPERATOR-SOCCXXDfl op goal node), 
Example:(OPERATOR-SUCCEEDS (UNSTACK B)(HOLDING B) Nodell) 

Because UNSTACK. directly solves (HOLDING B) at Nodell, 
OPERATOR-SUCCEEDS is specialized by Schema-Si in Appendix 
1.1 - the schema consistent with the example. The system then 
recursively specializes the subconcepts as shown below: 
Specialize (OPERATOR-SUCCEEDS op goal node) using Scheme-81: 

(AND (ADDED-BY-OPERATOR goal op) 
(APPLICABLE op node) 

Specialize (ADDED-BY-OPERATOR goal op) using Scheme-Dl: 

(AND (AND (MATCHES op (UNSTACK x,y) 
(MATCHES goal (HOLDING x)) 

(APPLICABLE op node) 

Spaoialisa (APPLICABLE op node) using Schema-D4: 

(AND (AND (MATCHES op (UNSTACK x y) 
(MATCHES goal (HOLDING x)) 

(AND (MATCHES Of (UNSTACK u V)) 
(KNOWN node (AND (CLEAR u) (ON u v) (ARMEMPTY))) 

After some trivial simplifications, our result can be re-expressed as 
follows: 
(OPERATOR-SUCCEEDS op goal node) if 

(AND (MATCHES op (UNSTACK x,y)) 
(MATCHES goal (HOLDING x)) 
(KNOWN node (and (CLEAR x) (ON x y) (ARMEMPTY))) 

This simply states that an operator succeeds in solving a goal at a 
node if the operator is UNSTACK, the goal is to be holding an object, 
and the preconditions of UNSTACK are known to be true at the 
node. Though this result is not particularly useful by itself, it serves 
as a lemma in explaining why the application PUTDOWN at node10 
enabled the application of UNSTACK: 
Sub-Concept: (OPERATOR-SUCCEEDS op goal node) , 
Example:(OPERATOR-SUCCEEDS (UNSTACK B)(HOLDING B) Nodel0) 

This time, OPERATOR-SUCCEEDS is specialized by schema-S2, the 
recursive definition of OPERATOR-SUCCEEDS, because 
PUTDOWN was applied as a precursor to UNSTACK, rather than 
directly solving the problem. Then APPLICABLE is specialized as 
before, and the recursive specialization of OPERATOR-SUCCEEDS 
is accomplished using the result from Nodell. Finally, the concept 
(CHILD-NODE-AFTER-APPLYING-OP child-node pre-op node) is 
specialized and then simplified; doing so effectively regresses the 
constraints on child-node across the definition of PUTDOWN. (The 
relevant proof-schemas used for regression are shown in Appendix 
1.3). The result states that UNSTACK will succeed whenever the 
goal is to hold an object, and the preconditions of the sequence 
PUTDOWN w, UNSTACK x y are satisfied: 
(OPERATOR-SUCCEEDS op goal node) if 

(AND (MATCHES op (UNSTACK x y)) 
(MATCHES goal (HOLDING x)) 
(KNOWN node (AND (CLEAR x) (ON xy) (HOLDING w))) 

The specialization process continues in this manner, until finally the 
successful selection of UNSTACK at Nodel is explained. The 
resulting expression indicates that UNSTACK is appropriate if the 
goal is to hold an object and the preconditions of the sequence 
UNSTACK w x, PUTDOWN w, UNSTACK x y are satisfied.6 That is, 
UNSTACK is appropriate when the goal is to hold a block, there is a 
single block on top of the desired block, and the robot's arm is 
empty: 
(OPERATOR-SUCCEED8 op goal node) if 

(AND (MATCHES op (UNSTACK x y)) 
(MATCHES goal (HOLDING x)) 
(KNOWN node (AND (ON x y) (ON w x) 

(CLEAR w) (ARMEMPTY))))) 
At this point, a control rule can be built from the rule construction 
template for OPERATOR-SUCCEEDS. However, the reader may 
have noticed that the learned description seems very specific. 
Although we will not discuss here the process by which PRODIGY 
evaluates the utility of the rules it learns, it should be clear that the 
learned rule will be a relatively weak control rule. In the next 
section, we will see that a much better explanation of why 
UNSTACK was appropriate can be found by by analyzing why the 
alternative choice, PUTDOWN, failed7. 

This example was chosen for several reasons. First, it is similar to 
the USEFUL-OP example in LEX2, as described in 122], and thus can 
be directly compared to previous work. Furthermore, the example 
illustrates that learning from successful operator applications is not 
guaranteed to produce strong control rules. As we will see, the 
utility of explanation-based learning in a given task domain depends 
greatly on the choice of target concept and explanation. 

bNotice that the arguments of the first UNSTACK must be w and x in order to 
achieve the preconditions of the remainder of the sequence. Otherwise unique 
variables would take the place of w and x. 

7A third possibility, not discussed in this paper, is to formulate an inductive proof 
explaining thai UNSTACK succeeds no matter how many blocks are on top [16, 5,26]. 

Minton and Carbonell 231 



5. Learning from Failure 
To learn from the failure of PICKUP at Nodel in our example 

(Figure 3-3), PRODIGY uses the target concept OPERATOR-FAILS. 
Proof-schemas for specializing OPERATOR-FAILS are shown in 
Appendix 1.4. These schemas state that an operator fails to achieve a 
goal at a node if: 

• the operator is rejected by a control rule, or 
• the operator is not relevant to the goal, or 
• the operator is not applicable and subgoaling fails, or 
• the operator is applicable, and all operator applications 

result in failure. 
The reader is cautioned that for expository clarity these schemas are 
a simplified subset of those used in the actual implementation. 

To explain why the selection of PICKUP at Nodel failed, 
PRODIGY must explain why the subtree rooted at Node2 failed. As 
in the previous section, the analysis is recursive and corresponds to a 
pre-order traversal of the tree. We will describe the results of the EBS 
process in a bottom-up manner. First, attempting to PUTDOWN B 
at Node3 failed because the goal (HOLDING B) was already on the 
goal-stack, resulting in a goal-stack cycle. Therefore, specialization 
of OPERATOR-FAILS at Node3 proceeds as follows: 
Target concept: (OPERATOR-FAILS op goal node) 
Example: (OPERATOR-FAILS (PUTDOWN B) (ONTABLE B) Node3) 
specialize (OPERATOR-FAILS op goal node) by Schema-r3: 

(AMD (ADDED-BY-OPERATOR goal op) 
(IS-PRECONDITION p op) 
(KNOWN node (MOT p)) 
(SUBGOALING-FAILS p node)) 

Specialize (ADDED-BY-OPERATOR goal op) by Schama-D2, 
Specialize (IB-PRECONDITION p op) by 8ohana-D3, 
Specialize (SUBGOALING-rAILS p node)) by Schema-r5: 

(AMD (AMD (MATCHES op (PUTDOWN x)) 
(MATCHES goal (OMTABLE x))) 

(AMD (MATCHES op (PUTDOWN y)) 
(MATCHES p (HOLDING y) )) 

(KNOWN node (MOT p)) 
(ON-GOAL-STACK node p))) 

PRODIGY simplifies this result to the following expression, which 
states that PUTDOWN fails if (ONTABLE x) is the goal and 
(HOLDING x) is not true, but is on the goal-stack. 
(OPERATOR-FAILS op goal node) if 

(AMD (MATCHES op (PUTDOWN x)) 
(MATCHES goal (ONTABLE x)) 
(KNOWN node (MOT (HOLDING x))) 
(ON-GOAL-8TACK node (HOLDING x)) 

This expression describes why the operator PUTDOWN failed at 
Node3. Because PUTDOWN was the only operator relevant to 
(ONTABLE B) the goal at Node3, the node failed. Therefore the 
concept (NODE-FAILS node) specializes to the following, given 
(NODE-FAILS Node3) as the training instance, and using the result 
shown above as a lemma: 
(MODE-FAILS node) 

(and (IS-GOAL node (ONTABLE x)) 
(KNOWN node (NOT (HOLDXMG x))) 
(ON-GOAL-STACK node (HOLDXMG x)) 

Moving up the tree, we find that the description above also explains 
why Node2 failed. In fact had the user asked PRODIGY to 
interleave learning with problem-solving, the inevitable failure of 
Node2 would have been recognized without the necessity of 
exploring the rest of the subtree below Node2. In effect, because 
PRODIGY reasons about its failures in the process of learning, 
dependency-directed backtracking [7] results when learning and 
problem solving are interleaved. 

At this point, PRODIGY can explain why the selection of PICKUP 
failed at Nodel. Because the precondition (ON-TABLE B) was not 
true, it became a goal at Node2 and (HOLDING B) was pushed 
down on the goal-stack, resulting in the failure described above. 
Thus, after the appropriate specializations, EBS yields the following 
learned-description for OPERATOR-FAILS: 
(OPERATOR-FAILS op goal node) if 

(AMD (MATCHES op (PICKUP x)) 
(MATCHES goal (HOLDING x) 
(KNOWN node (NOT (ONTABLE x))) 

This description can then be converted into a control rule asserting 
that if the current goal is (HOLDING x) and x is not on the table, 
then PICKUP should be rejected. However, in addition, an even 
higher-level rule can be learned by specializing the target concept 
OP-IS-SOLE-ALTERNATIVE (whose definition is shown in 
Appendix 1.4), which says that an operator should be selected if all 
other operators will fail. The description shown above, stating why 
PICK-UP failed, is used as a lemma while specializing OP-IS-SOLE-
ALTERNATIVE. Thus, PRODIGY learns the first control rule shown 
in Figure 3-4, stating that (UNSTACK x y) should be selected if the 
goal is to be holding x, and x is not on the table. (Selecting 
UNSTACK is slightly more efficient than rejecting PICKUP, because, 
as described in section 3, PRODIGY first selects the appropriate 
alternatives, and then uses rejection rules to filter this set. If a single 
alternative is selected, it is not necessary to check the rejection rules.) 
Notice that this rule provides a much more general and more 
efficient description of why UNSTACK was appropriate than the 
rule learned in the previous section. 

As this example illustrated, learning why an alternative choice 
failed can be more useful than learning why a candidate succeeded 
[13]. This is especially true in the blocks world, where one can 
succinctly state the reason why a choice was "stupid". Learning from 
success and from failure are complementary optimization techniques 
whose relative utility varies from domain to domain. 

6. Learning From Goal Interactions 
An example of a goal interaction [30] occurs when PRODIGY 

attempts to solve (AND (ON A B)(ON B C)) by first stacking A on B 
before stacking B on C (see Figure 6-1). Of course, stacking A on B 
deletes (CLEAR B), a prerequisite for stacking B on C. Consequently, 
there is no way to achieve (ON B C) without unstacking A from B. 

In the general case, we say that a plan exhibits a goal interaction if 
there is a goal in the plan that has been negated by a previous step in 
the plan. There are two complementary forms in which a goal 
interaction may manifest itself. A protection violation occurs when an 
action undoes a previously achieved goal, requiring the goal to be 
re-achieved. A prerequisite xnolation occurs when an action negates a 
goal that arises later in the planning process. In our example, a 
prerequisite violation occurs when stacking A on B deletes (CLEAR 
B). (Furthermore, a protection violation will follow when picking up 
B deletes the goal (ON A B). The two phenomenon can also occur 
independently.) 

Goal interactions typically result in sub-optimal plans. Some 
previous planning systems have included built-in mechanisms for 
avoiding goal interactions [28,3,32]; PRODIGY improves on this by 
reasoning about interactions in order to learn control rules (in a 
manner reminiscent of Sussman's HACKER [30].) Since goal 
interactions can be unavoidable in some problems (and may even 
occasionally result in better plans) PRODIGY learns rules that 
express preferences, thereby enabling solutions to be found even 
when interactions are unavoidable. Learning to avoid goal 
interactions is an optimization technique specifically designed for 
planning domains; In other types of domains (e.g., theorem-proving) 
this technique may be irrelevant. 

232 KNOWLEDGE ACQUISITION 



To explain why a decision caused a goal-interaction, PRODIGY 
must show that all paths in the search tree subsequent to that 
decision resulted in a protection violation, a prerequisite violation or 
a failure. Shown below is an informal definition of the target 
concept GOAL-CAUSES-INTERACTION which describes how 
selecting a goal before another goal at a node8 can result in goal 
interaction: 

(GOAL-CAUSES-INTERACTION goall goal2 node) if 
forall paths in which goall is selected before goal2, either: 
- the path terminates in a failure, or 
- while achieving goal2, goall is negated (a protection 
violation), or 

- while achieving goal2 a subgoal arises that was negated 
in the process of achieving goall (a prerequisite violation). 

Figure 6-1 illustrates the relevant section of the search tree from 
our example. Nodel and Node6 represent the two goal orderings 
that PRODIGY attempts. As can be seen, it is not necessary to 
expand the entire tree to prove that a goal interaction occurs if (ON 
A B) is attacked before (ON B C). Next to nodes 2 through 5 are 
shown the intermediate descriptions produced by EBS in explaining 
why the goal interaction occurred. The target concept and training 
example are: 

Target concept: 
(GOAL-CAUSES-INTERACTION goall goal2 node) 

Example: 
(GOAL-CAUSES-INTERACTION (ON A B) (ON B C) Nodel) 

Figure 6-1: Search Tree Illustrating Goal Interaction 

•The proof schemas for goal-interactions are similar to the proof schemas for 
failures. A goal interaction can be regarded as a "soft" failure. As with failure, the 
wrong choice of a node, goal, operator, or bindings can result in a goal interaction. 

The final result of the learning process is the goal preference rule 
shown in Figure 3-4 indicating that (ON x y) should be attacked 
before (ON w x) when both are candidate goals. After learning this 
rule, PRODIGY will always work from the bottom up whenever the 
goal is to produce an ON chain. 

The key point in the learning process occurs at Node4, where EBS 
reveals that attacking (ON vl v2) before (ON v3 v4) results in an 
interaction only if v2 equals v3. This equivalence is a necessary part 
of the proof because achieving (ON vl v2) must delete (CLEAR v3) 
for the prerequisite violation to occur. The fact that v2 and v3 were 
incidently bound to the same constant in the example is not the 
reason for the equivalence. 

7. Discussion 

7.1. Explanation-Based Specialization 
The most obvious difference between PRODIGY'S EBS method 

and previous explanation-based learning algorithms, such as 
CBG[17], EBG [22], EGGS [23] and the STRIPS MACROPS 
algorithm [9], is that EBS is a specialization-based method rather 
than a generalization-based method. Although this is primarily an 
algorithmic distinction, it demonstrates how the appropriateness of 
an EBL algorithm depends on the environment in which learning 
takes place. As an example, consider the EBG method described by 
Mitchell, Keller, and Kedar-Cabelli. The first step of the EBG method 
is to create a fully instantiated explanation (in the form of a proof 
tree). In the second step, EBG takes the explanation and computes a 
general set of sufficient conditions under which the explanation 
structure holds. Similarly, the CBG, EGGS and STRIPS methods are 
given an instantiated explanation (often a sequence of operators 
produced by a problem solver) and they compute sufficient 
conditions under which the explanation structure holds. Thus these 
generalization-based methods all take a ground-level explanation 
and compute a generalization that is based on the structure of the 
explanation. There are two basic approaches to generating the 
explanation. Either it is constructed by a black box as in EBG 
(perhaps using a theorem prover as demonstrated by Mostow and 
Bhatnagar [241), or more typically, an observed solution sequence 
serves as the explanation, as in STRIPS. In the latter case the 
problem solving operators are the domain theory9 

EBS, on the other hand, never bothers to create a ground-level 
explanation. Instead, a generalized proof tree is expanded from the 
top down10. There are two factors that make this method 
appropriate. First, there is no ground-level explanation that is 
immediately observable, as in STRIPS. Although the problem 
solving trace is available, it does not constitute a useful explanation; 
to explain failures, goal-interactions, etc., an explanation must be 
constructed from the appropriate architecture-level and domain-
level axioms. Secondly, mapping between from the problem solving 
trace to the explanation can be efficiently accomplished in a top 
down manner. The discrimination functions that augment the 
theory control the explanation process; by specifying the appropriate 
schema (i.e., inference rules) with which to specialize each concept 

9These two schemes have been implemented in a variety of ways. For example, 
Dejong and Mooney [6] discuss a hybrid scheme in which the observed operator 
sequence is optional. If there is no observed operator sequence, it is constructed from 
the domain theory. In either case, a fully instantiated explanation is eventually 
produced. In the SOAR system [271, an observed sequence of production firings is the 
basis for learning. SOAR learns whenever a sequence of productions produces a result 
for a goal. (Because learning is implemented on the production level and a result is 
obtained independent of the goal's failure or success, SOAR is able to learn from 
certain forms of failure as well as success.) 

10Alao, note that in EBS, unlike EBG, the learned description represents the weakest 
sufficient conditions under which the proof holds [15). 

Minton and Carbonell 233 



they provide all the information necessary to directly find the 
preconditions of the generalized proof. Therefore PRODIGY simply 
specializes the target concept top-down to produce the learned 
description, instead of first constructing the instantiated proof and 
then regressing the general conditions through the proof structure. 
In fact, the learned description produced by EBS is more general 
than the training example only because EBS terminates before 
producing the ground-level explanation. The bias in EBS (i.e., the 
factor determining the generality of the resulting 
description [21,31,101) comes from the proof schemas, and in 
particular, is determined by the disjunctive and primitive concepts 
used. 

7.2. The Uti l i ty Of Mult iple Optimization Strategies 
In this paper, we have described how Explanation-based learning 

can serve as a general method for implementing optimization 
strategies to improve problem solving performance. In particular, 
we have illustrated four strategies for dynamically improving the 
performance of the PRODIGY system; each strategy corresponds to a 
target concept that can be explained, and therefore, be learned. In 
the future, more target concepts can be added to PRODIGY by 
augmenting the theory as necessary. 

The four optimization strategies illustrated in this paper are 
completely general, as they are applicable in any domain specified to 
PRODIGY. A better question concerns the utility of the techniques. 
Obviously, PRODIGY can always learn from observing solutions, as 
do other EBL systems. However, using additional target concepts 
gives the system a range of options that can result in better 
performance, as illustrated by our examples. In general, the utility of 
a particular target concept depends greatly on the task domain and 
its formalization. In a sense, any optimization technique can be 
regarded as a strategy for recovering from suboptimal 
formalizations - those that are epistemologically adequate but 
procedurally inadequate [14]. The need for multiple strategies is 
suggested by both theoretical and practical work on program 
optimization [2,1]. 

8. Acknowledgements 
We gratefully acknowledge the assistance of Craig Knoblock, Dan 

Kuokka and Henrik Nordin in designing and implementing the 
PRODIGY system. Ideas and suggestions by Jerry Dejong, Oren 
Etzioni, Yolanda Gil, Smadar Kedar-Cabelli, Rich Keller, Sridhar 
Mahadevan, Tom Mitchell, Ray Mooney, Jack Mostow, and Prasad 
Tadepalli greatly influenced our work. 

I. Proof Schemas 
The following proof schemas represent a very simplified subset of 

the actual schemas used in the PRODIGY implementation. We have 
assumed, for instance, that the preconditions of operators are simple 
existentially quantified conjunctions, that there can be not negated 
goals, and that an operator can have at most one formula in its add-
list relevant to a goal. A more complete description of the actual 
schemas used in PRODIGY can be found in [15]. 

1.1. Architecture-Level Schemas for OPERATOR-
SUCCEEDS 

Schema-Si: An operator succeeds if it directly solves the problem. 
(OPERATOR-SUCCEEDS op god node) if 

(AMD (ADDED-BY-OPERATOR goal op) 
(APPLICABLE op node)) 

Schema-S2: For an operator to succeed, another operator may first be 
required. 
(OPERATOR-SOCCEEDS op goal node) if 

(AMD (APPLICABLE pre-op node))) 
(OPERATOR-SUCCEEDS op goal child-node) 
(CHILD-MODE-AFTER-APPLYING-OP chad-node pre-op node))) 

Schema-S3: For an operator to succeed, subgoaling may be necessary. (Sub 
goaling creates the node where pre-op applies. See Schema-S2.) 
(OPERATOR-SUCCEEDS op goal node) if 

(AMD (CHILD-NODE-AFTER-SUBGOALING child-node pre-op node))) 
(OPERATOR-SUCCEEDS op goal child-node) 

1.2. Some Domain-level Schemas for the Blocks World 
Schema-Dl: A postcondition of (UNSTACK bl b2) is (HOLDING B1) 
(ADDED-BY-OPERATOR goal op) if 

(AMD (MATCHES op (UNSTACK bl bl)) 
(HATCHES goal (HOLDING bl))) 

Schema-D2: A postcondition of (PUTDOWN b) is (ONTABLE b) 
(ADDED-BY-OPERATOR goal op) if 

(AMD (MATCHES op (PUTDOWN b)) 
(MATCHES goal (ONTABLE b)) ) 

Schema-D3: A precondition of (PUTDOWN b) is (HOLDING b) 
(IS-PRECONDITION subgoal op) if 

(AMD (MATCHES op (PUTDOWN b)) 
(MATCHES subgoal (HOLDING b))) 

Schema-D4: UNSTACK is applicable if its preconditions are established. 
(APPLICABLE op node) if 

(AMD (MATCHES op (UNSTACK bl b2)) 
' (KNOWN node (AMD (CLEAR bl) (ON bl b2) (ARMEMPTY)))) 

1.3. Architecture-level Axioms for Computing Regressions 
Schema-Rl: Computes the constraints on node when child-node 
results from applying op. Note that child-node and op must be 
bound when this schema is used, otherwise the result may be incorrect. 
(CHILD-NODE-AFTER-APPLYINO-OP chad-node op node) if 

(FORALL x SUCH-THAT (KNOWN x child-node) 
(REGRES8-ACROSS-OP-APPLICATION node child-node x op))) 

Schema-R2: The following two schemas represent frame axioms. All literals 
that hold at the child node were either added by the operator, or hold at 
the parent node (and don't match any member of the operator's delete list). 
(REGRESS-ACROSS-OP-APPLICATION parent-node child-node lit op) if 

(AMD (KNOWN child-node lit) 
(IN-ADD-LIST add op) 
(MATCHES add lit)) 

Schema-R3: 
(REGRESS-ACROSS-OP-APPLICATI0N parent-node child-node lit op) if 

(AMD (KNOWN x parent-node)) 
(FORALL del 8UCH-THAT (IN-DELETE-LI8T del op) 

(MOT (MATCHES dd lit))) 

Schema-R4: These 3 schemas regress facts when subgoaling. Called 
by Schema-F6. 
(REGRESS-ACROSS-SUBGOAL-ACTION node subgoal formula) if 

(KNOWN node formula) 

Schema-R5: 
(REGRES8-ACROSS-SUBOOAL-ACTION node subgoal formula) if 

(AMD (MATCHES formula (0N-GOAL-STACK child-node god) 
(I8-GOAL node god))) 

Schema-R6: 
(REGRE8S-ACROSS-SUBGOAL-ACTION node subgod formula) if 

(MATCHES formula (IS-GOAL child-node subgoal)) 

234 KNOWLEDGE ACQUISITION 



References 

1. Aho, A.V., Sethi, R. and Ullman, J.D.. Compilers: Principles, 
Techniques and Tools. Addison Wesley, 1986. 
2. Blum, M. "On Effective Procedures for Speeding Up Algorithms". 
Journal of the ACM 18,2 (1971). 
3. Carbonell, J. G.. Subjective Understanding: Computer Models of Belief 
Systems. Ann Arbor, M I : U M I research press, 1981. 
4. Carbonell, J.G. and Gi l , Y. Learning by experimentation. 
Proceedings of the Fourth International Workshop on Machine 
Learning, Irvine, CA, 1987. 
5. Cheng, P. W. and Carbonell, J. G. Inducing Iterative Rules from 
Experience: The FERMI Experiement. Proceedings of AAAI-86, 
1986. 
6. DeJong,G.F., Mooney, R. "Explanation-Based Learning: An 
Alternative View". Machine Learning 1,2 (1986). 
7. Doyle, J. "A Truth Maintenance System". Artificial Intelligence 12, 
3 0979). 
8. Ellman, T. Generalizing Logic Circuit Designs by Analyzing 
Proofs of Correctness. IJCAI-9 Proceedings, 1985. 

9. Pikes, R., Hart, P. and Ni lsson,N. "Learning and Executing 
Generalized Robot Plans". Artificial Intelligence 3,4 (1972). 
10. Flann, NS. and Dietterich, T.G. Selecting Appropriate 
Representations for Learning from Examples. A A A I Proceedings, 
1986. 
11. Hammond, K.J. Learning to Anticipate and Avoid Planning 
Problems through the Explanation of Failures. A A A I Proceedings, 
1986. 
12. Keller, R.M. The Role of Explicit Knowledge in Learning Concepts to 
Improve Performance. Ph.D. Th., Dept. of Computer Science, Rutgers 
University, 1986. 
13. Kibler, D. and Morris, P. Don't be Stupid. IJCAI-7 Proceedings, 
1981. 
14. McCarthy, J. Epistemological Problems of Artificial Intelligence. 
In Readings in Knowledge Representation, Brachman, R.J and Levesque, 
H.J., Eds. Morgan Kaufmann, Inc., 1985. 
15. Minton, S. Acquiring Search Control Knowledge: An Explanation-
based Approach. Ph.D. Th., Carnegie-Mellon University, 1987. 
Forthcoming. 
16. Minton S., Carbonell, J.G., Knoblock, C.A., Kuokka, D., and 
Nordin, H. Improving the Effectiveness of Explanation-Based 
Learning. Proceedings of the Workshop on Knowledge 
Compilation, Oregon State University, September, 1986. 
17. Minton, S. Constraint-Based Generalization. A A A I Proceedings, 
1984. 
18. Minton, S. Selectively Generalizing Plans for Problem Solving. 
IJCAI-9 Proceedings, 1985. 
19. Minton, S., Carbonell, J.G., Etzioni, O, Knoblock, C.A., Kuokka, 
D.R. Acquiring Effective Search Control Rules: Explanation-Based 
Learning in the PRODIGY System. Proceedings of the Fourth 
International Workshop on Machine Learning, Irvine, CA, 1987. 
20. Mitchell, T., Mahadevan, S. and Steinberg, L. LEAP: A Learning 
Apprentice for VLSI Design. IJCAI-9 Proceedings, 1985. 
21. Mitchell, T. The Need for Biases in Learning Generalizations. 
Dept. of Computer Science, Rutgers Univ., 1980. Tech report CBM-
TR-117. 
22. Mitchell, T., Keller, R., and Kedar-Cabelli, S. "Explanation-Based 
Generalization: A Unifying View". Machine Learning 1,1 (1986). 
23. Mooney, R.J and Bennet, S. W. A Domain Independent 
Explanation-Based Generalizer. A A A I Proceedings, 1986. 
24. Mostow, J. and Bhatnagar, N. Failsafe -- A floor planner that 
uses EBG to learn from its failures. IJCAI-10 Proceedings, 1987. 
25. Nilsson, N.J.. Principles of Artificial Intelligence. Tioga Publishing 
Co., 1980. 
26. Prieditis, A.E. Discovery of Algorithms from Weak Methods. 
Proceedings of the International Meeting on Advances in Learning, 
Les Arcs, Switzerland, 1986. 
27. Rosenbloom, P.S. and Laird, J.E. Mapping Explanation-Based 
Generalization Onto Soar. A A A I Proceedings, 1986. 
28. Sacerdoti, E. D.. A Structure for Plans and Behavior. Elsevier 
Publishing Co., 1977. 
29. Silver, B. Precondition Analysis: Learning Control Information. 
In Machine Learning, An Artificial Intelligence Approach, Volume II, 
Morgan Kaufmann, 1986. 
30. Sussman, G. J.. A Computer Model of Skill Acquisition. Elsevier 
Publishing Co., 1975. 
31. Utgoff,P.E. Shift of Bias for Inductive Concept Learning. Ph.D.Th., 
Rutgers University, May 1984. 
32. Vere,S.A. Splicing Plans to Achieve Misordered Goals. IJCAI-9 
Proceedings, 1985. 

Minton and Carbonell 235 


