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Abstract—Next generation wireless architectures are expected
to enable slices of shared wireless infrastructure which are
customized to specific mobile operators/services. Given infras-
tructure costs and the stochastic nature of mobile services’
spatial loads, it is highly desirable to achieve efficient statistical
multiplexing amongst network slices. We study a simple dynamic
resource sharing policy which allocates a ‘share’ of a pool of
(distributed) resources to each slice– Share Constrained Propor-
tionally Fair (SCPF). We give a characterization of the achievable
performance gains over static slicing, showing higher gains when
a slice’s spatial load is more ‘imbalanced’ than, and/or ‘orthog-
onal’ to, the aggregate network load. Under SCPF, traditional
network dimensioning translates to a coupled share dimensioning
problem, addressing the existence of a feasible share allocation
given slices’ expected loads and performance requirements. We
provide a solution to robust share dimensioning for SCPF-based
network slicing. Slices may wish to unilaterally manage their
users’ performance via admission control which maximizes their
carried loads subject to performance requirements. We show this
can be modeled as a “traffic shaping” game with an achievable
Nash equilibrium. Under high loads the equilibrium is explicitly
characterized, as are the gains in the carried load under SCPF
vs. static slicing. Detailed simulations of a wireless infrastructure
supporting multiple slices with heterogeneous mobile loads show
the fidelity of our models and range of validity of our high load
equilibrium analysis.

I. INTRODUCTION

Next generation wireless systems are expected to embrace

SDN/NFV technologies towards realizing slices of shared

wireless infrastructure which are customized for specific mo-

bile services e.g., mobile broadband, media, OTT service

providers, and machine-type communications. Customization

of network slices may include allocation of (virtualized) re-

sources (communication/computation), per-slice policies, per-

formance monitoring and management, security, accounting,

etc. The ability to deploy service specific slices is viewed, not

only as means to meet the diverse and sometimes stringent

demands of emerging services, e.g., vehicular, augmented real-

ity, but also an approach for infrastructure providers to reduce

costs while developing revenue streams. Resource allocation

in this context is more challenging than for traditional cloud

computing. Indeed, rather than drawing on a centralized pool

of resources, a network slice requires allocations across a

distributed pool of resources, e.g., base stations. The challenge

is thus to promote efficient statistical multiplexing amongst

slices over pools of shared resources.

The focus of this paper will be resource sharing amongst

slices supporting stochastic (mobile) loads. A natural approach

to sharing is static slicing, whereby resources are statically

partitioned and allocated to slices. This offers each slice a

guaranteed allocation at each base station, and protection

from each other’s traffic, but, as we will see, poor efficiency.

Instead, we consider, an alternative wherein each slice is

pre-assigned a fixed share of the pool of resources, and re-

distributes its share equally amongst its active customers. In

turn, each base station allocates resources to customers in

proportion to their shares. We refer to this sharing model

as Share Constrained Proportionally Fair (SCPF) resource

allocation. By contrast with static slicing, SCPF is dynamic
(since its resource allocations depend on the network state) but

constrained by the network slices’ pre-assigned shares (which

provides a degree of protection amongst slices).

Related work. There is an enormous amount of related work

on network resource sharing in the engineering, computer

science and economics communities. The standard framework

used in the design and analysis of communication networks

is utility maximization (see e.g., [20] and references there-

in) which has led to the design of several transport and

scheduling mechanisms and criteria, e.g., the often considered

proportional fair criterion. The SCPF mechanism, described

above, should be viewed as a Fisher market where agents

(slices), which are share (budget) constrained, bid on network

resources, see, e.g., [17] and for applications [3], [11]. The

choice to re-distribute a slice’s shares (budget) equally a-

mongst its users, can be viewed as a network mandated policy,

but also emerges naturally as the social optimal, market and

Nash equilibrium when slices exhibit (price taking) strategic

behavior in optimizing their own utility, see [7].

The novelty of our work lies in considering slice based

sharing, under stochastic loads and in particular studying

the expected performance resulting from such SCPF-based

coupling slices’ customer allocations. Other researchers who

have considered performance of stochastic networks, e.g., [5],

[9] and others, have studied networks where customers are

allocated resources (along routes) based on maximizing a sum

of customers utilities. These works focus on network stability

for ‘elastic’ customers, e.g., file transfers. Subsequently [6],

[19] extended this line of work, to the evaluation of mean

file delays, but only under balanced fair resource allocations
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(as a proxy for proportional fairness). Our focus here is

on SCPF-based sharing amongst slices with stochastic loads

and on “inelastic” or “rate-adaptive” customers, e.g., video,

voice, and more generally customers on properly provisioned

networks, whose activity on the network can be assumed to

be independent of their resource allocations.

Finally there is much ongoing work on developing the

network slicing concept, see e.g., [18], [24] and references

therein, including development of approaches to network vir-

tualization in RAN architectures, e.g, [8], [15], and SDN-based

implementation, e.g., [4]. This paper focuses on devising good

slice-based resource sharing criteria to be incorporated into

such architectures.

Contributions of this paper. This paper makes several con-

tributions centering on a simple and practical resource sharing

mechanism: SCPF. First, we consider user performance (bit

transmission delay) on slices supporting stochastic loads. In

particular we develop expressions for (i) the mean perfor-

mance seen by a typical user on a network slice; and (ii)
the achievable performance gains versus static slicing. We

show that when a slice’s load is more ‘imbalanced’ than,

and/or ‘orthogonal’ to, the aggregate network load, one will

see higher performance gains. Our analysis provides an in-

sightful picture of the “geometry” of statistical multiplexing

for SCPF-based network slicing. Second, under SCPF, tra-

ditional network dimensioning translates to a coupled share

dimensioning problem, which addresses whether there exist

feasible share allocations given slices’ expected loads and

performance requirements. We provide a solution to robust

share dimensioning for SCPF-based network slicing. Third,

we consider decentralized per-slice performance management

under SCPF sharing. In particular, we consider admission

control aimed at maximizing a slice’s carried load subject

to a performance constraint. When slice unilaterally optimize

their admission control policies, the coupling of their decisions

can be viewed as a “traffic shaping” game, which is shown

to have a Nash equilibrium. For a high load regime we

explicitly characterize the equilibrium and the associated gains

in carried load for SCPF vs static slicing. Finally, we present

detailed simulations for a shared distributed infrastructure

supporting slices with different mobility patterns which match

our analysis well, and further support our conclusions on gains

in both performance and carried loads of SCPF sharing.

II. SYSTEM MODEL

A. Network Slices, Resources and Mobile Service Traffic

We consider a collection of base stations (sectors) B shared

by a set of network slices V , with cardinalities B and V
respectively. For example, V might denote slices supporting

different services or (virtual) mobile operators etc.

We envisage each slice v as supporting a mobile service

in the region served by the base stations B. Each slice

supports a stochastic load of users (devices/customers) with an

associated mobility/handoff policy. In particular, we assume

that exogenous arrivals to slice v at base station b follow a

Poisson process with intensity γv
b and γv = (γv

b : b ∈ B)T .

Each slice v customer at base station b has an independent

sojourn time with mean μv
b after which it is randomly routed

to another base station or exits the system. As explained below

we assume that such mobility patterns do not depend on the

resources allocated to users. We let Qv = (qvi,j : i, j ∈ B)
denote a slice-dependent routing matrix where qvi,j is the

probability a slice v customer moves from base station i to

j and 1 − ∑
j∈B qvi,j is the probability it exits the system.

Throughout the paper, we assume Qv is irreducible for all

v ∈ V . This model induces an overall traffic intensity for slice

v across base stations satisfying flow conservation equations:

for all b ∈ B we have

κv
b = γv

b +
∑
a∈B

κv
aq

v
a,b,

where κv
b is the traffic intensity of slice v on base station b.

Accounting for users’ sojourn times, the mean offered load of

slice v on base station b is ρvb = κv
bμ

v
b , and ρv � (ρvb : b ∈ B)T

captures its overall system load. Letting μv = (μv
b : b ∈ B)T ,

the flow conservation equations can be rewritten in matrix

form as:

ρv = diag(μv)(I − (Qv)T )−1γv. (1)

Note that I − (Qv)T is irreducibly diagonally dominant and

thus invertible.

This model corresponds to a multi-class network of

M/GI/∞ queues (base stations), where each slice corre-

sponds to a class of customers, see, e.g., [14]. Such networks

are known to have a product-form stationary distribution, i.e.,

the numbers of customers on slice v at base station b denoted

by Nv
b are mutually independent and Nv

b ∼ Poisson(ρvb ). Since

the sum of independent Poisson random variables is again

Poisson, the total number of customers on slice v is such that

Nv =
∑

b∈B Nv
b ∼ Poisson(ρv) where ρv =

∑
b∈B ρvb .

Our network model for the numbers of customers and

mobility across base stations, assumes customer sojourn-

s/activity/mobility are independent of the network state and of

the resources a customer is allocated. This is reasonable for

properly engineered slices where the performance a customer

sees does not impact its activity, e.g., inelastic or rate adaptive
applications seeing acceptable performance. This covers a

wide range of applications including voice, video streaming,

IoT monitoring, real-time control, and even web browsing

sessions experiencing good performance. This model however

is not appropriate for customers sensitive to file download

delays, e.g., who might leave the system earlier if allocated

more resources.

There are several natural generalizations to this model

including class-based routing and user sessions (e.g. web

browsing) which are not always active at the base stations

they visit, see e.g., [14].

B. Network Slice Resource Sharing

In the sequel we consider a setting where the resources

allocated to a slice’s customers depend on the overall network

state, i.e., number of customers each slice has on each base

station, corresponding to the stochastic process described in
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Section II-A. Let us consider a snapshot of the system’s state

and let Uv
b ,Ub,Uv and U denote sets of active customers on

slice v at base station b, at base station b, on slice v and

on the overall network respectively. Thus, the cardinalities of

these sets correspond to a realization of the system ‘state’, i.e.,

|Uv
b | = nv

b and |Uv| = nv , where in a stationary regime nv

and nv
b are realizations of Poisson random variables Nv and

Nv
b , respectively.
Each base station b is modeled as a finite resource shared

by its associated users Ub. A customer u ∈ Ub can be allocated

a fraction fu ∈ [0, 1] of that resource, e.g., of resource blocks

in a given LTE frame, or allocated the resource for a fraction

of time, where
∑

u∈Ub
fu = 1. We shall neglect quantization

effects. The transmission rate to customer u, denoted by ru,

is then given by ru = fucu where cu denotes the current

peak rate for that user. To model customer heterogeneity across

slices/base stations we shall assume cu for a typical customer

on slice v at base station b is an independent realization of

a random variable with the same distribution as Cv
b . It may

depend on the slice, since slices may support different types

of customer devices (e.g., car connectivity vs mobile phone)

and depend on the base station, since typical slice v users may

have different spatial distributions with respect to base station

b or see different levels of interference.
Below we consider two resource allocation schemes. For

both we assume each slices is allocated a ‘share’ of the net-

work resources sv, v ∈ V such that sv > 0 and
∑

v∈V sv = 1.

Definition 1. Static Slicing (SS): Under SS, slice v is allo-
cated a fixed fraction sv of each base station b’s resources,
and each customer u ∈ Uv

b gets an equal share, i.e., 1/nv
b ,

of the slice v’s resources at base station b. Thus the users
transmission rate rSS

u is given by

rSS
u =

sv
nv
b

cu.

Definition 2. Share Constrained Proportionally Fair
(SCPF): Under SCPF each slice re-distributes its share of
the overall network resources equally amongst its active
customers, which thus get a sub-share (weight) wu = sv

nv
for

u ∈ Uv, ∀v ∈ V. In turn, each base station allocates resources
to customers in proportion to their weights. So a user u ∈ Uv

b

gets a transmission rate rSCPF
u given by

rSCPF
u =

wu∑
u′∈Ub

wu′
cu =

sv
nv∑

v′∈V
nv′
b sv′
nv′

cu. (2)

Thus under SCPF the overall fraction of resources slice

v is allocated at a base station b is proportional to
nv
b

nv sv ,

i.e., its share and its relative number of users at the base

station. This provides a degree of elasticity to variations in the

slice’s spatial loads. However, if a slice has a large number

of customers, its customers’ weights are proportionally de-

creased, which protects other slices. In addition to being quite

simple to implement, as mentioned in Section I SCPF resource

allocations are socially optimal, and correspond to market and

Nash equilibria for certain types of budget-constrained Fisher

Markets.

III. PERFORMANCE EVALUATION

In this section we study the expected performance seen by

a slice’s typical customer. Given our focus on inelastic/rate

adaptive traffic and tractability, we choose our customer per-

formance metric as the reciprocal transmission rate, referred

to as the Bit Transmission Delay (BTD), see e.g., [21]. This

corresponds to the time taken to transmit a ‘bit’, so lower

BTDs indicate higher rates and thus better performance. Short

packet transmission delays are roughly proportional to the

BTD. Alternatively the negative of the BTD can be viewed as

a concave utility function of the rate, which in the literature

was referred as the potential delay utility. Given the stochastic

loads on the network, we shall evaluate the average BTD seen

by a typical (i.e., randomly selected) customer on a slice,

i.e., averaged over the stationary distribution of the network

state and transmission capacity seen by typical users, e.g., Cv
b ,

at each base station. Such averages naturally place a higher

weight on congested base stations, where a slice may have

more users, best reflecting the overall performance customers

will see.

A. Analysis of BTD Performance

Consider a typical customer on slice v and let Ev denote the

expectation of the system state as seen by such a customer, i.e.,

the Palm distribution [2]. For SCPF, we let Rv be a random

variable denoting the rate of a typical customer on slice v, and

Rv
b that of such customer of slice v at base station b. Similarly,

let Rv,SS and Rv,SS
b denote these quantities under static

slicing. Thus, under SCPF the average BTD for a typical slice

v customer is given by E
v[ 1

Rv ]. The next result characterizes

the mean BTD under SCPF and SS under our traffic model.

We introduce some further notation: the normalized load
distribution of slice v is ρ̃v = (ρ̃vb : b ∈ B)T where ρ̃vb � ρv

b

ρv
;

the overall share weighted normalized load distribution is

g̃ = (g̃b : b ∈ B)T where g̃b �
∑

v∈V svρ̃
v
b ; and the mean

reciprocal resource capacity for slice v is δv = (δvb : b ∈ B)T
where δvb � E

v[ 1
Cv

b
].

Theorem 1. For network slicing based on SCPF, the mean
BTD for a typical customer on slice v is given by

E
v

[
1

Rv

]
=

∑
b∈B

ρ̃vbδ
v
b

(
1− ρ̃vb +

(ρv + 1)

sv
g̃b

)
. (3)

For network slicing based on SS, the mean BTD for a typical
customer on slice v is given by

E
v

[
1

Rv,SS

]
=

∑
b∈B

ρ̃vbδ
v
b

(
ρvb + 1

sv

)
. (4)

Proof. Recall that Poisson arrivals see time averages, i.e., see

the remaining users in the product-form stationary distribution,

given in Section II-A. Thus the distribution as seen by a typical

user on slice v at base station b is the same as the product-

form distribution plus an additional customer on slice v at

base station b. Using this fact and SCPF resource allocations
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as given by Eq. (2), the BTD of a typical slice v user at base

station b can be expressed as follows:

E
v

[
1

Rv
b

]
= E

v

[
1

Cv
b

]
E

⎡
⎣sv

Nv
b +1

Nv+1 +
∑

v′ �=v
sv′Nv′

b

Nv′
sv

(Nv+1)

⎤
⎦

= δvbE

⎡
⎣(Nv

b + 1) +
Nv + 1

sv

∑
v′ �=v

sv′Nv′
b

Nv′

⎤
⎦

= δvb

(
1− ρ̃vb +

(ρv + 1)

sv
g̃b

)
.

Where the last equality follows by noticing that (i) Nv is

independent of Nv′
b and Nv′

and (ii) E[
Nv′

b

Nv′ ] =
ρv′
b

ρv′ . The latter

result is a generalization of the following observation using

the infinite divisibility of Poisson random variables: suppose

X1, X2 i.i.d. Poisson(λ), then by symmetry we have

1 = E

[
X1 +X2

X1 +X2

]
= 2E

[
X1

X1 +X2

]
⇒ E

[
X1

X1 +X2

]
=

1

2
.

Under static slicing we have that

E
v

[
1

Rv,SS
b

]
= E

v

[
1

Cv
b

]
E

[
(Nv

b + 1)

sv

]
= δvb

ρvb + 1

sv
.

The theorem follows by taking an weighted average across

base stations – weighted by the fraction of customers at each

base station, i.e., ρ̃vb .

B. Analysis of Gain

Using the results in Theorem 1 one can evaluate the gains

in the mean BTD for a typical slice v user under SCPF versus

SS, i.e.,

Gv =
E
v
[

1
Rv,SS

]
Ev

[
1
Rv

] .

In general, one would expect Gv ≥ 1 since under SCPF typical

users should see higher allocated rates and thus lower BTDs.

One can verify that is the case when slices have uniform loads

across base stations but the general case is more subtle. For

simplicity from here on in this paper we focus on the case

where the following additional assumption is in effect:

Assumption 1. Base stations are said to be homogeneous for
slice v if for all b ∈ B: Ev

[
1
Cv

b

]
= δv.

Note that Assumption 1 only requires the average reciprocal

capacity a given slices’ customer sees across base stations is

homogenous.

Corollary 1. Under Assumption 1, the BTD gain of SCPF
over SS for slice v is given by

Gv =
ρv‖ρ̃v‖22 + 1

sv(1− ‖ρ̃v‖22) + (ρv + 1)g̃T ρ̃v
.

For fixed relative loads ρ̃v and g̃, the gain for low overall
load (ρv → 0) is positive and given by:

GL
v =

1

(g̃ − svρ̃v)T ρ̃v + sv
≥ 1,

where g̃ − svρ̃
v is the shared weighted relative load of

other slices on network. Furthermore, Gv is a nonincreasing
function of ρv , and for high loads (ρv → ∞) is given by:

GH
v =

‖ρ̃v‖2
‖g̃‖2 × 1

cos(θ(g̃, ρ̃v))
,

where θ(g̃, ρ̃v) denotes the angle between the slice’s relative
loads and the overall share weighted relative loads on the
network.

A detailed proof of Corollary 1 can be found in [23]. The

result indicates that for slice v with fixed relative loads ρ̃v , the

gains decrease in the overall load ρv , thus if GH
v > 1 SCPF

always provides a gain. A sufficient condition for gains under

high loads is that ‖g̃‖2 ≤ ‖ρ̃v‖2. Since ‖g̃‖1 = ‖ρ̃v‖1 = 1,

this follows when the overall share weighted relative load on

the network is more balanced than that of slice v. One would

typically expect aggregated traffic to be more balanced than

that of individual slices. This condition is fairly weak, i.e., it

does not depend on where the loads are placed, but on how

balanced they are. The corollary also suggests gains are higher

when cos(θ(g̃, ρ̃v)) is small. In other words, a slice with

imbalanced normalized loads whose relative load distribution

is ‘orthogonal’ to the shared weighted aggregate traffic, i.e.,

θ(g̃, ρ̃v) ≈ 0, will tend to see higher gains. The simulations

in Section V further explore these observations.

IV. PERFORMANCE MANAGEMENT

In practice each slice v ∈ V may wish to provide service

guarantees to its customers, i.e., ensure that the mean BTD

does not exceed a performance target dv . Below we investigate

how to dimension network shares to support slice loads subject

to such mean BTD requirements.

A. Share Dimensioning under SCPF
Consider a network supporting the traffic loads of a single

slice, say v, so sv = 1 and g̃ = ρ̃v and let d̃v � dv/δv
denote slice v’s normalized BTD constraint. Note that δv is

the minimum BTD achievable when a user gets all the base

station resources, so a target requirement satisfies dv > δv and

so d̃v > 1. For slice v to meet a mean BTD constraint d̃v , it

follows from Eq. (3) that :

ρv ≤ l(d̃v, ρ̃
v) � d̃v − 1

‖ρ̃v‖22
.

We can interpret l(d̃v, ρ̃
v) as the maximal admissible carried

load ρv given a fixed relative load distribution ρ̃v and require-

ment d̃v . As might be expected, if the relative load distribution

ρ̃v is more balanced, i.e., ‖ρ̃v‖22 is smaller, or if the BTD

constraint is relaxed, i.e., d̃v is higher, the slice can carry a

higher overall load ρv .
Next, let us consider SCPF based sharing amongst a set

of slices V each with its own BTD requirements. It follows

from Eq. (3) that to meet such requirements on each slice the

following should hold: for all v ∈ V

sv ≥ 1 + ρv

l(d̃v, ρ̃v)− ρv

∑
u�=v

su
‖ρ̃u‖2
‖ρ̃v‖2 cos(θ(ρ̃u, ρ̃v)). (5)

4

2017 15th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)



This can be written as: ∑
v∈V

svh
v � 0, (6)

where we refer to hv = (hv
u : u ∈ V)T as v’s share coupling

vector, given by

hv
u =

{
1 v = u

− 1+ρu

l(d̃u,ρ̃u)−ρu

‖ρ̃v‖2

‖ρ̃u‖2
cos(θ(ρ̃u, ρ̃v)) v 
= u.

We can interpret hv
v = 1 as the benefit to slice v of allocating

unit share to it. When v 
= u, hv
u depends on two factors.

The first 1+ρu

l(d̃u,ρ̃u)−ρu
captures the sensitivity of slice u to the

‘share weighted congestion’ from other slices. If ρu is close

to its limit l(d̃u, ρ̃
u), its sensitivity is naturally very high. The

second term,
‖ρ̃v‖2

‖ρ̃u‖2
cos(θ(ρ̃u, ρ̃v)) captures the impact of slice

v’s load distribution on slice u. Note that if two slices load

distributions are orthogonal, they do not affect each other.

The following result summarizes the above analysis.

Theorem 2. There exists a share allocation such that slice
loads and BTD constraints ((ρv, ρ̃

v, dv) : v ∈ V) are
admissible under SCPF sharing if and only if there exists an
s = (sv : v ∈ V)T such that ‖s‖1 = 1, s � 0 and∑

v∈V
svh

v � 0.

Admissibility can then be verified by solving the following

maxmin problem:

max
s�0

{ min
i

∑
v∈V

svh
v
i : ‖s‖1 = 1 }. (7)

If the optimal objective function is positive, the traffic pattern

is admissible. Moreover, if there are multiple feasible share

allocations, then the optimizer is a ‘robust’ choice in that it

maximizes the minimum share given to any slice, giving slices

margins to tolerate perturbations in the slice loads satisfying

Eq. (6).

If a set of network slice loads and BTD constraints are not

feasible, admission control will need to be applied. We discuss

this in the next section.

B. Admission Control and Traffic Shaping Games

A natural approach to managing performance in overloaded

systems is to perform admission control. In the context of

slices supporting mobile services where spatial loads may vary

substantially, this may be unavoidable. Below we consider ad-

mission control policies that adapt to changes in load. Specif-

ically an admission control policy for slice v is parameterized

by av = (avb : b ∈ B)T ∈ [0, 1]B where avb is the probability a

new customer at base station b is admitted. Such decisions are

assumed to be made independently thus admitted customers

for slice v at base station b still follow a Poisson Process with

rate γv
b a

v
b . Based on the flow conservation equation Eq. (1) one

can obtain the carried load ρv induced by admission control

policy av via

ρv = (Mv)−1av = diag(μv)(I − (Qv)T )−1diag(γv)av

where Mv � diag(γv)
−1(I−(Qv)T )diag(μv)

−1 is invertible

because I − (Qv)T is irreducibly diagonally dominant.1 By

contrast with Section II-A, note that ρv now represents the

load after admission control, which may have a reduced overall

load and possibly changed relative loads across base stations

– i.e., shape the traffic on the slice. We also let g̃ be the

overall share weighted relative loads after admission control,

see Section III-A. Note that we have assumed only exogenous

arrivals can be blocked, thus once a customer is admitted it

will not be dropped –the intent is to manage performance to

maintain service continuity.

Below we consider a setting where slices unilaterally opti-

mize their admission control policies in response to network

congestion, rather than a single joint global optimization. The

intent is to allow slices (which may correspond to competing

virtual operator/services) to optimize their own performance,

and/or enable decentralization in settings with SCPF based

sharing.

Suppose each slice v optimizes its admission control policy

so as to maximize its overall carried load ρv , i.e., the average

number of active users on the network, subject to a mean BTD

constraint d̃v . Under Assumption 1 the optimal policy for slice

v is the solution to the following optimization problem:

max
ρ̃v,ρv

ρv (8)

s.t. av = ρvM
vρ̃v, av ∈ [0, 1]B , 1T ρ̃v = 1 (9)

(ρv + 1)

sv
g̃T ρ̃v − ‖ρ̃v‖22 ≤ d̃v − 1. (10)

Note that Eq. (9) establishes a one-to-one mapping between

(ρ̃v, ρv) and av . We will use ρ̃v and ρv to parameterize

admission control decisions for slice v. The BTD constraint in

Eq. (10) follows from Eq. (3). Also note that this admission

control policy depends on both the overall share weighted

loads on the network g̃, the slice’s load and its customer

mobility patterns (i.e., Mv). Unfortunately this problem is

not convex due to the BTD constraint Eq. (10); however, for

high overall per slice loads it is easily shown to be convex,

hence for simplicity we will make the following additional

assumption.

Assumption 2. The network is said to see high overall slice
loads, if for all v ∈ V we have ρv � 1.

Under Assumption 2 we have that 1+ ρv ≈ ρv and the left

hand side of Eq. (10) becomes:

(ρv + 1)

sv
g̃T ρ̃v − ‖ρ̃v‖22 ≈ ρv

sv
g̃T ρ̃v = (svxv)

−1g̃T ρ̃v (11)

where we have defined xv � ρ−1
v . Further defining ρ̃−v �

(ρ̃v′
: v′ ∈ V\{v}), Eq. (10) can be replaced by:

fv(ρ̃
v; ρ̃−v) � g̃T ρ̃v ≤ sv(d̃v − 1)xv. (12)

Thus, defining yv � (ρ̃v, xv), which is equivalent to (ρ̃v, ρv),
together with y−v � (yv′

: v′ ∈ V\{v}), under Assumption 2

1If γv is not strictly positive one can reduce the dimensionality.
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each slice can unilaterally optimize its admission control

policy by solving the following problem:

Admission control for slice v under SCPF(ACv): Given

other slices’ admission decisions y−v , slice v determines its

admission control policy yv = (ρ̃v, xv) by solving

min
yv

{ xv | yv ∈ Y v(y−v) } (13)

where Y v(y−v) denotes slice v’s feasible policies and is given

by

Y v(y−v) � { yv | 1T ρ̃v = 1, 0 � Mvρ̃v � xv1,

fv(ρ̃
v; ρ̃−v) ≤ sv(d̃v − 1)xv }. (14)

Eq. (13) and (14) can be viewed as defining a game where

each slice is a player, wishing to minimize a cost xv , and

constrained to a strategic space. Such a game has a Nash

equilibrium if there exists a joint strategy y∗ = (yv,∗, v ∈ V)
such that no slice v can unilaterally decrease its cost xv . The

following result follows from Theorem 3.1 in [10].

Theorem 3. The traffic shaping game defined above has a
Nash equilibrium.

Next we study the characteristics of the resulting traffic

shaping Nash equilibrium. To make this tractable we consider

networks which are saturated and subsequently (Section V)

provide simulations to evaluate other settings.

Assumption 3. (Saturated Regime) Suppose the system is such
that for each network slice, the optimal admission control for
both SCPF and SS2 in response to other slices’ load is such
that for all v ∈ V , av ≺ 1.

Assumption 3 depends on many factors including the BTD

constraint, the mobility pattern and network slices’ shares, but

it is generally true when the exogenous traffic of all slices at

all base stations γv
b is high. When this is the case we have the

following:

Theorem 4. Under Assumptions 1, 2 and 3, the relative load
distributions at the Nash equilibrium of the traffic shaping
game ρ̃∗ � (ρ̃v,∗ : v ∈ V) are the unique solution to:

min
(ρ̃v∈Γv :v∈V)

‖
∑
v

svρ̃
v‖22 +

∑
v

s2v‖ρ̃v‖22, (15)

where Γv � { ρ̃v | 1T ρ̃v = 1,Mvρ̃v � 0 }, and the
associated carried load for slice v is ρ∗v = sv(d̃v−1)

g̃∗,T ρ̃v,∗ , where
g̃∗ corresponds to the overall share weighted relative loads
distributions at the equilibrium.

The proof of Theorem 6 follows directly by comparing the

Karush-Kuhn-Tucker (KKT) conditions for Eq. (15) versus

those associated with slices’ admission control problems.

Furthermore, in the saturated regime, BTD constraints are

binding so the total carried load can be obtained from Eq. (12).

A detailed proof is included in the extended version of this

paper, see [23].

2Admission control under SS is defined in the sequel.

The first term in the objective function in Eq. (15) rewards

balancing the overall share weighted relative loads on network.

The second term rewards a slice for balancing its own relative

loads. The Nash equilibrium in the saturated regime is thus a

compromise between these two objectives while constrained

by the network slices mobility patterns and feasible admission

control policies.

Admission control for slice v under SS (ACSSv): Under

SS slice v can determine its optimal admission control yv by

solving:

max
ρ̃v,ρv

ρv

s.t. av = ρvM
vρ̃v, av ∈ [0, 1]B

1T ρ̃v = 1 and ρv‖ρ̃v‖22 ≤ (svd̃v − 1).

Note slice admission control decisions are clearly decoupled

under SS, but paralleling Theorem 4 we have following result.

Theorem 5. Under Assumptions 1 and 3, the optimal admis-
sion control policy under SS are decoupled. The optimal choice
for slice v ρ̃v,SS,∗ is the unique solution to:

min
ρ̃v∈Γv

‖ρ̃v‖22, (16)

and the associated carried load is given by ρSS,∗
v = sv d̃v−1

‖ρ̃v,SS,∗‖2
2
.

By comparing Eq. (15) and Eq. (16), one can see that under

SS, slices simply seek to balance their own relative loads on

the network. By taking the ratio between ρ∗v and ρSS,∗
v , one

can show that under Assumptions 1, 2 and 3 the gain in carried

load for slice v is given by

Gload
v � ρ∗v

ρSS,∗
v

=
‖ρ̃v,SS,∗‖22
g̃∗,T ρ̃v,∗ × sv(d̃v − 1)

svd̃v − 1
. (17)

The first factor captures a traffic shaping dependent gain for

slice v. The second factor is a result of statistical multiplexing

gains. A simple special case is highlighted in the following

corollary.

Corollary 2. Under Assumptions 1, 2 and 3, if user mobility
patterns are such that 1

B1 ∈ Γv for all v ∈ V , the gain in
the total carried load under the SCPF traffic shaping Nash
equilibrium vs. optimal admission control for SS is given by:

Gload
v =

svd̃v − sv

svd̃v − 1
≥ 1, ∀v ∈ V. (18)

This result also follows directly from the KKT conditions

associated with the admission control problem, and the obser-

vation that ρ̃v,∗ = 1
B1, ∀v ∈ V at the Nash equilibrium. Then,

substituting this solution into the BTD constraint one obtains

the result for the gain in carried loads. The reader is referred

to the extended version for a detailed proof [23].

Note that in order for a BTD constraint to be feasible under

SS, one must require svd̃v > 1. It can be seen that the gain

exhibited in Corollary 2 can be very high when sv ↓ 1/d̃v .

Furthermore if sv ↑ 1 we have that Gload
v ↓ 1, i.e., no actual

gain. This result implies that slices with small shares or tight
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BTD constraints will benefit most from sharing, coinciding

with our observations in Corollary 1.

V. PERFORMANCE EVALUATION

We simulated a wireless network shared by multiple slices

supporting mobile customers following the IMT-Advanced

evaluation guidelines [13]. The system consists of 19 base

stations in a hexagonal cell layout with an intersite distance

of 200 meters and 3 sector antennas, mimicking a dense ‘small

cell’ deployment. Thus, in this system, B corresponds to 57

sectors. Users associate to the sector offering the strongest

SINR , where the downlink SINR is modeled as in [22]:

SINRub =
PbGub∑

k∈B,k �=b PkGuk + σ2
,

where, following [13], the noise σ2 = −104dB, the transmit

power Pb = 41dB and the channel gain between user u and BS

sector b, denoted by Gub, accounts for path loss, shadowing,

fast fading and antenna gain. Letting du,b denote the current

distance in meters from the user u to sector b, the path loss

is defined as 36.7 log10(dub) + 22.7 + 26 log10(fc)dB, for a

carrier frequency fc = 2.5GHz. The antenna gain is set to 17

dBi, shadowing is updated every second and modeled by a log-

normal distribution with standard deviation of 8dB, as in [22];

and fast fading follows a Rayleigh distribution depending on

the mobile’s speed and the angle of incidence. The downlink

rate cu currently achievable to user u is based on discrete set

modulation and coding schemes (MCS) and associated SINR

thresholds given in [1]. This MCS value is selected based on

the averaged SINRub, where channel fast fading is averaged

over a second.

We model slices’ with different spatial loads by modeling

different customer mobility patterns. Roughly uniform spatial

loads are obtained by simulating the Random Waypoint model

[12], while non-uniform loads obtained by simulating the

SLAW model [16]. These mobility models would not induce

Markovian motion amongst base stations assumed in our anal-

ysis, yet the analytical results are robust to these assumptions.

A. Statistical Multiplexing and BTD Gains

We evaluated the BTD gains of SCPF vs SS for four

simulation scenarios, each including 4 slices, each with equal

shares but different spatial load patterns. For each scenario,

we provide results for simulated BTD gains, and results from

our theoretical analysis (Corollary 1) based on the empiri-

cally obtained spatial traffic loads. More detailed information

regarding simulated scenarios and resulting empirical spatial

traffic loads for high load regime are displayed in Table I and

a snapshot of locations for the 4 slices’ users in a network

with a load of 4 users per sector is displayed in Figure 1.

The results given in Figure 2 show the BTD gains for each

scenario as the overall network load increases. In Scenario 3,

the aggregate network traffic is “smoother” than the individual

slice’s traffic, and the gains are indeed higher. This is also

the case for Slice 1 and 2 in Scenario 4, since these slices

loads are more “imbalanced” than the other two slices, they

Scenario: Slices Spatial loads ‖ρ̃v‖2 ‖g̃‖2 θ(g̃, ρ̃v) GH
v

1 Homogeneous uniform. 0.27 0.27 7.09 1.0 %

2 Homogeneous non-uniform 0.32 0.32 6.18 1.0 %

3 Heterogeneous orthogonal 0.36 0.26 41.78 83.3 %

4 Mixed Slices 1&2 non-uniform 0.36 0.23 25.52 70.4 %

3&4 uniform 0.19 0.23 48.00 23.7 %

TABLE I: Measured normalized slice and network traffic

norms and angles for highest load case of each scenario.

Fig. 1: Snapshot of users positions per slice and scenario

exhibiting the different characteristics of traffic spatial loads.

Left to right: Scenarios 1 to 4.
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Fig. 2: BTD gain for our 4 different scenarios simulation.

experience higher gains. In Scenario 2, where slices non-

homogenous spatial loads are ‘aligned’, aggregation does not

lead to smoothing and the gains are least.

As can be seen in Figure 2 the simulated and theoretical

gains (dashed lines) of Corollary 1 are an excellent match. The

theoretical model has been calibrated to the mean reciprocal

capacities seen by slice customers (i.e., γv
b ’s) and the measured

induced loads resulting from the slice mobility patterns.

B. Traffic Shaping Equilibrium and Carried Load Gains

In order to study the equilibria reached by the traffic shaping

game, we measured the underlying user mobility patterns in

Section V-A, and modeled it via a random routing matrix.

We further assumed uniform intensity of arrivals rates at

all base stations and uniform exit probabilities of 0.1. The

mean holding time at each base station was again calibrated

with the simulations in Section V-A. We considered a traffic
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Subfigure: Balancing in relative load.

shaping game for a network shared by 3 slices, where Slice

1 has uniform spatial loads and Slice 2 and 3 have different

non-uniform spatial loads. All slices have equal shares and

their capacity normalized BTD requirements are set to d̃1 =
10, d̃2 = 12, d̃3 = 15 respectively. The Nash equilibrium was

solved via the algorithm included in [23]. The convergence

is reached within 3 rounds of iterations under the parameters

given in [23]. The results shown in Figure 3 exhibit dashed

lines corresponding to the theoretical carried load gains in

the saturated regime. As can be seen, these coincide with the

Nash equilibria of the simulated traffic shaping games for high

arrival rates. For lower arrival rates the gains can be much

higher, e.g., almost 1.6x, for slices with non-uniform mobility

patterns. This was to be expected since for lower loads we

expect higher statistical multiplexing gains from sharing, and

thus relatively higher carried loads to be admitted. For very

low loads, as expected, there are no gains since all traffic can

be admitted and BTD constraints are met.

Also shown in Figure 3(subfigure) is the degree to which the

relative loads of slices ρ̃v , and the weighted aggregate traffic

on the network g̃ are balanced, as measured by || · ||2, as the

arrival rates on the network increase. As expected, based on

Theorem 4, as arrivals increase relative loads of slices and the

network become more balanced, showing the compromise the

traffic shaping game is making, balancing slices relative loads

and that of the overall network.

VI. CONCLUSIONS

This paper has thoroughly explored a relatively simple and

natural approach for resource sharing amongst network slices

– SCPF – which corresponds to socially optimal allocations in

a Fisher market. Our analysis of performance in settings where

slices support stochastic loads provides explicit formulas for

(i) the performance gains one can expect over static slicing,

(ii) how to dimension slice shares to meet performance

objectives, and (iii) how to go about performance manage-

ment through admission control. If dynamic resource sharing

amongst network slices is to be adopted, the ability to realize

disciplined engineering and performance prediction will be the

key. Our analysis of SCPF seems to meet these requirements

and at the same time reveals some intriguing insights regarding

the load interactions in such sharing models, in particular the

impact of relative load distributions on statistical multiplexing,

and the role of traffic shaping in optimizing admission control.

Finally, we note that our approach to admission control in

an SCPF shared system is novel in that each slice exploits

knowledge of its customers’ mobility patterns to optimize its

carried load and assure service continuity.
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