Computer Science > Computation and Language
[Submitted on 25 Apr 2023]
Title:State Spaces Aren't Enough: Machine Translation Needs Attention
View PDFAbstract:Structured State Spaces for Sequences (S4) is a recently proposed sequence model with successful applications in various tasks, e.g. vision, language modeling, and audio. Thanks to its mathematical formulation, it compresses its input to a single hidden state, and is able to capture long range dependencies while avoiding the need for an attention mechanism. In this work, we apply S4 to Machine Translation (MT), and evaluate several encoder-decoder variants on WMT'14 and WMT'16. In contrast with the success in language modeling, we find that S4 lags behind the Transformer by approximately 4 BLEU points, and that it counter-intuitively struggles with long sentences. Finally, we show that this gap is caused by S4's inability to summarize the full source sentence in a single hidden state, and show that we can close the gap by introducing an attention mechanism.
Submission history
From: Telmo Pessoa Pires [view email][v1] Tue, 25 Apr 2023 12:54:20 UTC (2,737 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.