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Abstract—We study stability properties of single-source single-
destination delay tolerant networks with random packet arrivals
and buffered relay nodes, using source spray and wait routing.
We derive the stability threshold, the supremum of arrival
rates for which the source queue is stable, as a function of
the buffer space at the relays. In particular, we show that the
stability threshold only doubles as the relays’ buffer size increases
from one to infinity for a network without packet delivery
feedback. For the system without packet delivery feedback, we
propose lower bounds for the average queueing delay and average
delivery delay for packets and compare with simulations. We also
obtain the stability threshold numerically for a network with
instantaneous packet delivery feedback.

I. INTRODUCTION

Delay tolerant networks (DTNs) are comprised of nodes
connected by links which have intermittent connectivity. DTN
routing and scheduling protocols such as Epidemic [1], Spray
and Wait [2], Spray and Focus [3], Maxprop [4], Rapid [5], and
Prophet [6] use the store and copy paradigm for reliable packet
delivery. Such DTN routing protocols copy packets from the
source to multiple relay nodes so that there is diversity in
the packets’ path to the destination. This leads to an improved
probability of packet delivery within a target time and average
delivery delay. However, copying of packets from a source
to a relay node requires the relay to have enough storage
or buffer space to store the packet copies until it can be
delivered or copied again. An important engineering problem
is provisioning the storage or buffer space at the nodes, which
can be used to tradeoff various quality of service metrics of
the network.

In this paper, we consider the effect of storage or buffer size
of the relays on performance metrics such as queue stability
region, average queueing delay, and average delivery delay for
a DTN with a single source and destination of packets. The
DTN uses the source Spray and Wait (SW) routing protocol
[2] to copy packets to mobile relay nodes which have finite
buffer capacity to hold the packets. We obtain conditions for
stability of the source queue, an analytical lower bound for the
average queueing delay experienced by packets at the source
queue, and a lower bound for the average delivery delay of
packets.

We assume that the source generates packets at the epochs
of a Poisson point process. In contrast to prior work on DTNs
which have assumed lone packet models (only a single packet
exists within the network at a time), we consider queueing
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stability and queueing delay for DTNs with random arrivals
as a function of the buffer size at relay nodes. We consider
Source Spray and Wait (SW) protocol [1] which copies a
single packet K times to relays. The SW protocol consists of
a spray phase and a wait phase. In the spray phase the source
copies the packet to the first K relays that it meets. But a
relay that is carrying the packet cannot copy it to another
relay. After the source copies the packet to K relays, the
protocol enters the wait phase which continues until the packet
reaches the destination. In our prior work [7] we had studied
stability and delay performance for a similar DTN model but
with extremely resource limited relay nodes which have a unit
buffer capacity. In this paper, we consider stability and delay
performance when all relay nodes have a buffer size of B. We
obtain that the stability region of the DTN at most doubles
when the buffer size B increases to infinity from one.

Lee et al. [8] study the asymptotic scaling of stability region
and delay in a DTN as the number of nodes N increases. We
note that this paper provides non-asymptotic results compared
to the scaling laws which were obtained in [8]. Also, [8]
assumes that all relays share a common buffer, while we
assume per-relay buffers which are more realistic. Herdtner
et al. [9] consider the effect of finite buffers on the sum
throughput of a mobile adhoc network and shows that the sum
throughput degrades substantially compared to systems with
infinite buffers. Mahendran et al. [10] propose an asymptotic
large-deviations based scheme to provision relay buffer sizes
in a DTN so that performance is close to a DTN with infinite
relay buffer size. Using our stability results we also show that
a buffer size of 19 is enough to achieve 95% of the maximum
achievable throughput.

We note that prior work on DTNs with packet arrivals (e.g.,
see [2], [4], [5], [6]) have used simulation tools (such as
ONE [11]) to understand the effect of protocol parameters on
quality of service for packets. Ramaiyan et al. [12] considered
a vehicular DTN with K = 1, in which packet need not be
copied to the first relay. They study the problem of discovering
the optimal relay on the go. Groenevelt et al. [13] modeled
epidemic relaying and two-hop relaying using Markov chains.
They derived the average delay and the number of copies
generated until the time of delivery. Zhang et al. [14] de-
veloped a unified framework based on ordinary differential
equations (ODEs) to study epidemic routing and its variants.
Altman et al. [15] addressed the optimal relaying problem for
a class of monotone relay strategies which includes epidemic
relaying and two-hop relaying. Singh et al. [16] considered



the tradeoff between delivery delay and number of copies in a
DTN where a single packet has to be transmitted to multiple
destinations. However, in this paper we analyze the case where
multiple packets need to be transmitted to a single destination.

Outline and contributions: We present the DTN model in
Section II. We also state the definitions of the stability region
and the delay metrics in this section. We obtain the stability
region (threshold in the case of single source-destination) for
the DTN without packet delivery feedback in Section III. The
characterization of the stability threshold as a function of
DTN parameters and especially the buffer size is our primary
contribution in this paper. We also discuss the similarities and
differences between our results and [8] in this section. We also
obtain the stability region for a DTN with unit buffer size but
with feedback of packet delivery information in Section IV;
this is a secondary contribution. We then consider the delay
performance of the DTN without packet delivery feedback in
Section V. We obtain an analytical lower bound on the average
queueing delay of packets as well as a lower bound on the
average delivery delay which form secondary contributions.
Simulations of queueing delay and delivery delay in the DTN
and their comparisons with our obtained bounds are also
presented in Section V.

II. SYSTEM MODEL AND PROBLEM STATEMENT

We consider a continuous time mobile ad-hoc network
model similar to that in [16] and [7]. Our presentation of
the model is similar to that in our prior work [7]. The time
index is denoted as t. We assume that the network consists of
N+2 mobile nodes, comprising of a source node, a destination
node, and N relay nodes. The source is assumed to have
fixed length packets arriving to it at the random points of
a Poisson point process of rate A. The packets have to be
transferred to the destination and are assumed to be queued in
an infinite length buffer at the source. The source transfers the
data packets to the destination through the mobile relay nodes
using two-hop relaying. We assume that the source does not
meet the destination directly*. We say that a relay has met
the source/destination when the relay node comes within the
communication range of the source/destination.

For improving the delivery delay, we assume that the source
copies each packet to at most K separate relays. We assume
that a relay has a finite buffer which can hold at most B € Z
packets. When a source meets a relay, the source finds out
whether the relay has a free buffer space or not. If the relay
has a free buffer space, then the source finds out the list of
packet copies that the relay is not currently carrying but which
are there in the source queue and copies one copy of such a
packet to the relay. A relay with a free buffer space is said to
be susceptible, while a relay which has a packet copy is said
to be infected by that packet.

A packet is delivered when any of relays infected with that
packet first meets the destination and copies the packet to

*This assumption is valid if we have large number of relay nodes,
since the ratio of number of source-relay meetings to the number of source-
destination meetings is O(%) which is very small.

the destination. We consider two cases: (a) no-feedback - we
assume that there is no feedback mechanism employed by the
destination by which the source and the infected relays would
get information about packet delivery, and (b) instant-feedback
- we assume that there is instantaneous feedback about packet
delivery from the destination to the source and relay. In the no-
feedback case, we assume that a packet is removed from the
source buffer just after K copies have been made and the relay
buffer space is freed after the relay copies that packet’s copy
to the destination. In the instant-feedback case, we assume that
a packet is removed from the source and relay buffers when
it is first delivered to the destination.

We assume that the intermeeting time processes of relay
nodes with the source and destination nodes are independent,
with each intermeeting time distributed as an exponential
random variable with rate § (an assumption motivated by
[13]). For the rt" relay the buffer size at time ¢ is denoted
as B"(t).

We note that a state space description of the evolution of
the DTN system is complex; the state description contains the
identities of packets in the source queue as well as the number
of packet copies that are yet to be copied to the relays in
addition to the identities of the packets that are carried by all
the relays. This state evolves according to the spray and wait
protocol described above, with the state changing at points of
packet arrivals, source-relay meetings, and relay-destination
meetings.

Our objective is to obtain analytical insights into the stability
of the source queue as well as the different types of delays
experienced by the packets arriving to the source. We denote
the number of packets queued up at the source buffer at time
t as Q(t). The average queue length is then defined as
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where the expectation is with respect to the randomness
of arrivals, intermeeting times, and choice of packets when
copying. We say that the source queue is stable if g, < co. We
define the stability threshold A* as \* = sup{\: g, < oo}.
The stability region is the set of arrival rates [0, A*).

We note that the i*" packet experiences a waiting delay from
its time of arrival till the first copy is made to a susceptible
relay. In the no-feedback case, we note that the i*" packet
stays in the source queue until K copies have been made. We
define the queueing delay D, ; experienced by the it" packet
as the total waiting time at the source node until the packet has
been copied to K susceptible relays. In the instant-feedback
case, the queueing delay is the minimum of the time from
packet arrival to either the packet delivery or the time till K
copies have been made. We define the delivery delay Dy ; as
the time from when the first copy is made to the earliest time
when any relay infected with a copy of this packet meets the
destination. The performance metrics that we are interested in
are: (a) the average queueing delay d,, and (b) the average
delivery delay dgq which are defined as the packet averages of
D, ; and Dy ; respectively over all packets.

EQ(t)dt,



In the following sections, we obtain the stability threshold
A\* for the no-feedback and instant-feedback cases. Then, for
the no-feedback case, we obtain an analytical lower bound for
d7q and a lower bound for dj.

III. STABILITY THRESHOLD FOR NO-FEEDBACK

In this section we characterize \* for the no-feedback
system. We first obtain an upper bound on \* by considering
a saturated queue system, i.e., a system with a source queue
which always has packets. We note that the average number
of packet copies made from the source queue or average
number of packet copies delivered to the destination under the
saturated queue assumption is an upper bound to K\*, since
this is the maximum rate of service or maximum throughput
of packet copies. We note that under the saturated queue
assumption each relay’s buffer length process B"(t) evolves
independently according to a CTMC with transition rates as in
Figure 1. The embedded Markov chain (EMC) corresponding
to the above CTMC has transition probabilities which are also
shown in Figure 1. We note that the EMC is periodic. Suppose
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Fig. 1: The transition diagram for the CTMC and it’s EMC for the
BT (t) process under saturated queue assumption for no-feedback.
The transition rates for the CTMC are shown along with the transition
probabilities (in parenthesis) for the EMC.

7m(0),7(1),...,m(B) denote the stationary distribution of the
EMC. Then it can be shown that

1 1
#(0) = 7(B) = 5. and 7(b) = Vi€ {1,....B—1}.
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For the EMC (or a B"(t)), we note that whenever a down-
transition occurs there is a packet copy delivery from relay r
to the destination (or whenever an uptransition occurs there
is a packet copy from the source to relay r). Assuming that
each downtransition leads to a unit reward, the average number
of downtransitions per time or the average number of packet
copies per time is given by the time average reward associated
with the EMC. The time average reward associated with the
EMC can be obtained using Markov renewal reward theorem
[17, Section D.3.3] as
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We note that the factor 3 multiplies 7(b) in the numerator

since only one out of the two transitions contributes to the

reward. We note that since there are N relays whose B"(t)

processes evolve independently of each other, an upper bound

on the packet copy throughput is given by BLEHBN . Since

this is an upper bound on the saturation throughput for packet
B

. « BN :
copies, we have that \* < BT K- We now show that this

upper bound is achievable arbitrarily closely by showing that

the average queue length g, < oo for A < BLH%V. We have
the following result

Theorem IIL.1. The stability region for the no-feedback
A A< A= B8N } where \* is the stability

system is { B K

threshold.

The proof is presented in the extended version of this paper
[18]. We note that for B = 1 we recover the stability region
result obtained in our previous work [7]. For B = 1 we have
that the stability threshold is ’g—g As B — oo we have that
the stability threshold is ﬁTN which is twice what we have for
B = 1; thus the stability threshold only doubles when the
buffer size increases from one to infinity. In fact, in order to
achieve 95% of the maximum value of stability threshold, a
buffer size of only 19 is required. We note that Lee et al.
[8]showed that the stability threshold is ©(N ) for B = oo
while we obtain that it is exactly NS for K = 1. Using a
pooled-buffer assumption [8] also showed that the stability

threshold is © <Bi;pN 6,0) (for a constant load factor p) while
we show that it is exactly Bi;l]\/ B for K = 1.

IV. STABILITY PROPERTIES FOR INSTANT-FEEDBACK

In this section we discuss the stability properties of the
instant-feedback DTN. In this case we have results only for
the case where the relays have B = 1.

We first obtain an upper bound on the stability threshold by
using a saturated queue assumption as in the case of the system
without feedback. Under the saturated queue assumption, we
have that the average rate of packet copies or the saturation
throughput of packet copies can be obtained from a CTMC
N,.(t), where N,.(t) is the number of relay nodes which are
carrying a packet at time ¢. The transition diagram of N,.(t) is
shown in Figure 2. We note that the left to right transitions at

(N-1)8

(N-298 (N-3)8 (N-4)8

Fig. 2: The transition diagram for the NN,.(t) CTMC for K = 3 under
saturated queue assumption for instant-feedback.

rate n3 in state n are due to any [N —n relays without a packet
copy (that is a free buffer space since B = 1) meeting the
source and obtaining a packet copy (there is always a packet
to be copied since the queue is assumed to be saturated). An
important feature of the N,.(¢) process is that N,.(¢) is also the
number of packet copies which are carried by the relays at a
time ¢ (since B = 1). Suppose N,.(t) =n and n = K + m,
then we can infer that there are m copies of a packet and
K copies of [ different packets in transit. Now since there is
instantaneous feedback, when a relay meets the destination,
the NN,.(t) process has a right to left transition of two types.
Again with N,.(t) = n we observe that with rate m, any relay
which is carrying one of the m copies of a packet will meet
the destination and then there is a right to left transition of m



steps. Also with rate /K3 any of the relays that are carrying
one of the K copies of one of the [ packets will meet the
destination and then there is a right to left transition of K
steps. This is illustrated in Figure 2 for K = 3.

Suppose we associate a reward of 1 unit with every down-
transition in the N,.(¢) process. Then the time average reward
is average saturation throughput of packets out of the saturated
source queue and is our upper bound on the stability threshold.
We obtain this time average saturation throughput numerically
by solving for the stationary distribution of the EMC associ-
ated with N,.(t), associating a reward with downtransitions,
and using Markov renewal reward theorem as in the no-
feedback case. However, a closed form expression is yet to
be obtained for the upper bound in this case. We compare
the throughput obtained for instant-feedback systems to no-
feedback for the same N, (3, and K values in Figure 3.
Naturally the saturation throughput for systems with instant-
feedback is more than for no-feedback. Although the plots
suggest that the saturation throughput with instant-feedback
is a constant multiple of that with no-feedback, it is not so;
there is still a residual variation with K. We note that even
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Fig. 3: Comparison of the saturation throughput (stability threshold)
for instant-feedback systems (IF) and no-feedback (NF) systems

though the upper bound is not obtained analytically, it can be
shown that the upper bound is achievable arbitrarily closely
using a multislot Lyapunov drift proof as in the no-feedback
case. Intuitively, this is because once the source queue length
is large, then the average service rate out of the source is
described by N"(t) as in the no-feedback case. Because of
space constraints, here we state without proof that any packet
arrival rate which is strictly less than the above saturation
throughput can be stabilized.

V. DELAY ANALYSIS FOR NO-FEEDBACK
A. Queueing delay

For systems with no-feedback we obtain a lower bound
on the queueing delay of packets at the source queue by
considering another system with the same arrival rate A but
with infinite relay buffer size.

We consider the arrival process of packet copies rather than
packets to the source queue. From the system model discussed
in Section II we have that the source queue has a batch Poisson
arrival process of packet copies with rate A and batch size of
K. The packet copy arrival rate is AK. From Theorem III.1
we have that \* = %ﬁ when B — oco. We note that when
the buffer size is infinite and the source queue is saturated,

each time a relay meets a source, there is a packet copy to the
relay (since a saturated source queue implies that there is a
packet copy which is not being currently carried by the relay).
Suppose we consider a scenario where the arrival rate A ~ %
Then we can assume that almost always there is a packet copy
whenever a relay meets a source. Then the service time seen
by a packet copy is exponentially distributed with rate Ng,
and each packet copy’s service time is independent of another.
Thus the source queueing process can be approximated for A
close to % by a MK1/M/1 system; ie., a M/M/1 queue
with batch arrivals of size K and exponential service times of
rate N(3. The average queue length of packet copies is then
[19, Chapter 2, Section 2.10.1]

__pK+1) MK
N

An approximation to the average queue length of packets
is then g,/K. The average queueing delay d, of packets
is then g;/K X using Little’s law. We note that the above
approximation for the queueing delay could be applied to study
the queueing delay performance of buffered systems where B
is large. For extremely constrained relays (i.e. B = 1) we have
presented delay analysis in [7].

In Figures 4 and 5 we compare the average queueing delay,
obtained using simulations, for systems with B = 1, 5, 10, 100,
and B = 500 with the approximation that we have obtained
above. We observe that the approximate average queueing
delay for B = oo is a lower bound to the average queue
lengths for finite B for the same A. We also compare

-B=1 : Y
> 30|=B=5 3 i
S% ||l*B=10 : |
28 ||~-B=100 H
3 2200~ B =500 H 1
[N —Lower bound 2
sg é
@ S 10 g ]
> L
< o’ -
’..-go°'." -
0.2 7 0.9 1

.3 0.4 0.5 0.6 0. 0.8
Arrival Rate - A (packets/sec)

Fig. 4: The average queueing delay experienced by the packets at
the source for a DTN with N = 50, K = 5, and § = 0.1. The
average delay for maximum buffer sizes B = 1, 5, 10, 100, and 500
are compared with the analytical average queue length (lower bound)
obtained for infinite buffer sizes. The stability threshold is 1 for the
infinite buffer case.

the average queueing delay, obtained using simulations, for
systems with B = 100, K = 5, 8 = 0.1 and arrival rates of 0.8
and 0.85 with the approximation as a function of the number
of relay nodes N in Figure 6. We observe that the analytical
lower bound is close to the simulated values. We compare
the average queueing delay, obtained using simulations, for
systems with B = 100, N = 50 and 100, 8 = 0.1 and arrival
rate of 0.7 with the analytical lower bound as a function of
the number of copies K in Figure 7. The deviation of the
average queueing delay from the lower bound for larger K
can be explained as follows. For larger K for a fixed N, in
the actual system the nodes would have to wait to meet a relay
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Fig. 5: The average queueing delay experienced by the packets at
the source for a DTN with N = 250, K = 20, and 5 = 0.5. The
average delay for maximum buffer sizes of B = 1,5,10, 100, and
500 are compared with the analytical average queue length (lower
bound) obtained for infinite buffer sizes. The stability threshold is
6.25 for the infinite buffer case.
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Fig. 6: The average queueing delay experienced by the packets at the
source as a function of the number of relay nodes N, for a DTN
with B =100, K = 5, = 0.1, and arrival rates of 0.8 and 0.85.

which is not carrying a duplicate copy of a packet. However,
the lower bound does not take care of this particular feature
of the actual system.
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Fig. 7: The average queueing delay experienced by the packets at the
source as a function of the number of copies K, for a DTN with
B =100, A = 0.7, 8 = 0.5, and number of nodes N being 50 and
100.

B. Delivery delay

Another component of the delay is the average delivery
delay, which is the expected time taken from the first source
to relay packet copy till the first relay to destination packet
delivery. A lower bound on the average delivery delay can be
obtained using the CTMC shown in Figure 8. The CTMC’s
state is the number of unique relays to which copies of a single
packet has been made. The CTMC models the evolution of
this number in a network with infinite buffers and under the
assumption that there is only one packet in the network at
a time (lone packet assumption). The average delivery delay
for that lone packet is the average time taken for the CTMC
starting in state 1 to hit the special terminating state ¢. When

the number of relays is 7, the maximum rate at which the
packet will be delivered will be j/ since there are j relays
which can meet the destination to deliver a packet copy. The
use of this maximum rate is one of the reasons why we obtain
a lower bound on the delivery delay in our original system.
The actual delivery would happen only if at a meeting this
particular packet is chosen amongst all the packets to be copied
to the destination; under the lone packet assumption this is
true. We also note that when the number of relays is j there
are (N — j) other relays which the source can meet to make a
new copy of the packet (since all relays are assumed to have
infinite buffer space, such a copy can happen). Suppose ¢(j)

(N-1)8 (N-K+1)8

-2

Fig. 8: The transition diagram for the CTMC modelling the number
of unique relays to which a packet has been copied. The expected
time to hit state ¢ starting from state 1 is the expected delivery delay
of the packet under the lone packet assumption.

represents the expected time to hit ¢ starting from j. We have
that ¢(1) is the expected delivery delay. The following set of
equations can be obtained by considering the transitions of the
CTMC in Figure 8.

3+ Tt

W = 5+ %

for all j € {1,...,K —1}. We also note that t(K) = g3.
We note that we spend on average 1\%3 time in every state
je{l1,...,K —1}. Then, we directly hit ¢ with probability
j/N from j, or with probability (N — j)/N we go to j + 1
from which the expected time to hit ¢ is ¢(j + 1).

For the system under consideration, the average delivery
delay would differ from the lower bound due to two reasons:
(a) the rate at which more copies of the packet is made,
once the first copy has been made would be smaller than
assumed since the relays have finite buffers and would be
carrying other packet copies, and (b) the rate at which a copy
would be delivered to the destination when a relay meets the
destination would be less since a particular packet is only one
amongst the packets that are currently carried by the relay, so
the delivery of a particular packet happens with probability
less than one at a relay-destination meeting. We compare the
simulated delivery delay with the lower bound as a function
of A in Figure 9. We observe that as stated before, the delivery
delay for the system is close to the lower bound at small
arrival rates (since the bound assumes a lone packet). We note
that the average delivery delay does not grow unbounded as a
function of X (it is always bounded above by + since this is the
average delay with just one relay). As A increases (consider
B = 1) we observe that the delivery delay approaches its
maximum value. We compare the simulated delivery delay
with the lower bound as a function of N in Figure 10. We

1 N-—j
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Fig. 9: The average delivery delay experienced by the packets at
the source for a DTN with N = 50, K = 5, and 8 = 0.1. The
average delay for maximum buffer sizes B = 1,5, 10,100, and 500
are compared with the lower bound under the lone packet assumption.

find that the simulated values and the lower bound coincide.
For large N and B = 100 we expect that the assumptions
made in our derivation of the bound hold. In Figure 11 we
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Fig. 10: The average delivery delay experienced by the packets at the
source as a function of the number of relay nodes /N. We consider a
DTN with B = 100, K = 5, f = 0.1, and arrival rates of 0.8 and
0.85.

compare the simulated delivery delay with the lower bound as
a function of K for a fixed V. For a fixed IV as K increases,
the source might not meet relays which are not carrying a
duplicate copy of the packet at the transitions rates assumed in
the CTMC shown in Figure 8. We observe that as K increases
the simulated delivery delay deviates from the lower bound.
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Fig. 11: The average delivery delay experienced by the packets at the
source as a function of the number of copies K. We consider a DTN
with B =100, A = 0.7, 8 = 0.5, and number of nodes N being 50
and 100.

VI. CONCLUSIONS

In this paper, we considered the stability properties of a
single source single destination DTN with multiple relay nodes
employing two hop relaying. We considered the effect of the
buffer size employed at the relay on the stability threshold and
obtained that the stability threshold is at most doubled for a
DTN with infinite buffer relays as compared to a DTN with
unit buffer relays. We employed a multi-slot Lyapunov drift
criterion for obtaining the stability threshold. We also studied

the average queueing delay and average delivery delay in
systems with buffered relays and found that simple analytical
approximations for the average queueing delay can be obtained
for the case where the buffer size is large (compared to our
previous work [7] where we considered unit buffer size). We
also obtained a lower bound on the average delivery delay,
which is observed to be close to the actual when the number
of nodes N is large.
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