
Spectral Kernel Learning for Semi-Supervised Classification

Wei Liu

The Chinese University

of Hong Kong

wliu5@ie.cuhk.edu.hk

Buyue Qian

University of California

Davis

qianbuyue@gmail.com

Jingyu Cui

Stanford University

jycui@stanford.edu

Jianzhuang Liu

The Chinese University

of Hong Kong

jzliu@ie.cuhk.edu.hk

Abstract

Typical graph-theoretic approaches for semi-
supervised classification infer labels of unlabeled
instances with the help of graph Laplacians.
Founded on the spectral decomposition of the graph
Laplacian, this paper learns a kernel matrix via
minimizing the leave-one-out classification error
on the labeled instances. To this end, an efficient al-
gorithm is presented based on linear programming,
resulting in a transductive spectral kernel. The idea
of our algorithm stems from regularization method-
ology and also has a nice interpretation in terms of
spectral clustering. A simple classifier can be read-
ily built upon the learned kernel, which suffices to
give prediction for any data point aside from those
in the available dataset. Besides this usage, the
spectral kernel can be effectively used in tandem
with conventional kernel machines such as SVMs.
We demonstrate the efficacy of the proposed algo-
rithm through experiments carried out on challeng-
ing classification tasks.

1 Introduction

A hot stream of broad research interests in recent years is
semi-supervised learning (SSL) [Chapelle et al., 2006] which
deals with the situations of sparse labeled data together with
abundant unlabeled data and utilizes both labeled and unla-
beled data in algorithms. SSL has been proved effective in
a lot of practical cases, since it is often cheap to obtain un-
labeled data by an automatic procedure or scripts but quite
expensive to identify the labels of data. Incorporating unla-
beled data into learning tasks, SSL triggers a wide range of
real-world machine learning applications where labeled sam-
ples are very scarce.

Current research on semi-supervised learning is mostly at-
tracted by semi-supervised classification. A family of graph-
based approaches [Belkin et al., 2006][Sindhwani et al.,
2005][Zhou et al., 2004][Zhu et al., 2003][Zhu et al., 2005],
founded on spectral graph theory [Chung, 1997], either put
forward new semi-supervised kernels or propose new graph-
based regularization frameworks with labeled and unlabeled
data. Although graph-based semi-supervised learning has

been studied extensively, so far there are few comprehen-
sive techniques to integrate graph-theoretic regularization and
nonparametric kernel learning effectively together for classi-
fication tasks. To this end, we present a flexible as well as
scalable algorithm for learning spectral kernels through tak-
ing advantage of regularization methodology and nonpara-
metric kernel construction piloted by graph Laplacians.

2 Related Work

It is pointed out in [Sindhwani et al., 2005] that establishing
data-dependent kernels will be more and more important for
supervised or semi-supervised learning tasks. As a paradigm,
building kernels with graph Laplacians receives increasing
attention in the contexts of clustering [Saerens et al., 2004]

and classification [Zhang and Ando, 2006]. [Saerens et al.,
2004] shows that the average commute time between any two
data points can be computed using the pseudoinverse L+ of
the graph Laplacian matrix L. It turns out that L+ is a valid
kernel and can be utilized for kernel k-means clustering and
SVM classification. We call L+ the graph Laplacian kernel
or Laplacian kernel in what follows.

Since the nature of L+ is parametric with respect to the
eigenspectrum of L, we herewith refer to it as the parametric
spectral kernel. Another parametric spectral kernel proposed
in the early work [Kondor and Lafferty, 2002] is the Lapla-
cian diffusion kernel exp(−αL). As opposed to the paramet-
ric kernels, we would desire to obtain more flexible kernels
in order to avoid tedious selection among different paramet-
ric families. This objective motivates a novel topic of kernel
learning, namely nonparametric kernel learning. For exam-
ple, [Lanckriet et al., 2004] uses kernel-target alignment to
learn nonparametric kernel matrices in a supervised mode.
The seminal works [Zhu et al., 2005][Hoi et al., 2006] con-
duct semi-supervised kernel alignment.

These optimization problems involved in kernel alignment
are generally solved using semidefinite programming (SDP)
[Boyd and Vandenberge, 2004]. However, the computa-
tional complexity of SDPs has restricted their applications to
small scale problems, and thus prevented nonparametric ker-
nel learning from being applicable to large scale problems,
e.g., large scale semi-supervised learning. Alternatively, [Zhu
et al., 2005] and [Hoi et al., 2006] show that these optimiza-
tion problems can be more efficiently solved by quadratically
constrained quadratic programming (QCQP) or quadratic
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programming (QP). Nonetheless, a significant limitation for
all these nonparametric kernel approaches is that they only
support transductive settings and cannot be extended to un-
seen data points.

3 Regularized Spectral Kernels

[Zhou et al., 2004] proposed a transductive inference algo-
rithm to impose label smoothness along graphs, which co-
ordinates the local and global consistency within the label
propagation process. Suppose we have a data set X =
{x1, · · · ,xl,xl+1 · · · ,xn} ⊂ R

d of which the first l points
belonging to c classes are labeled as yi ∈ Y = {1, · · · , c}
and the rest points are unlabeled. Intuitively, we define a la-
beling function f : X → R to assign a discrete label to each
data point according to particular class, i.e., f(xi) = k if and
only if xi belongs to the kth class.

Given l labeled examples, we define a class indicator ma-
trix as C ∈ R

n×c in which Cik = 1 if yi = k ∈ Y and
Cik = 0 otherwise. We intend to seek a real-valued matrix
F ∈ R

n×c to express a full classification on the entire dataset
X so that the exact labeling is launched by

f(xi) = arg max
1≤k≤c

Fik. (1)

Let us construct an undirected, weighted graph G(V, W )
that exposes the underlying manifold structure of the data.
Each data point in X corresponds to a node in V . An edge
is established between two nodes vi and vj if the correspond-
ing two points xi and xj are among k nearest neighbors of
each other. For convenience, we adopt the trick proposed
in [Hein and Maier, 2007] to construct G as a k-nearest
neighbor (k-NN) graph. Let us define a distance function

h(x) = ‖x − x
(k)‖ where x

(k) is the kth nearest neighbor
of x in X . The weight matrix W ∈ R

n×n associated with G
is formed subsequently as

Wij = W (xi,xj) = exp

(
− ‖xi − xj‖2

max{h(xi)2, h(xj)2}
)

,

if ‖xi − xj‖ ≤ max{h(xi), h(xj)}, (2)

and Wij = 0 otherwise. Note that we set Wii = 0 to avoid
self-loops. We further denote the diagonal degree matrix D ∈
R

n×n with Dii =
∑n

j=1 Wij .

The regularization framework proposed by [Zhou et al.,
2004] can learn a global classification as

F ∗ = (1 − α)(I − αS)−1C, (3)

where 0 < α < 1 is the regularization parameter and

S = D−1/2WD−1/2 symmetrically normalizes W . The cal-
culated matrix F ∗ stacks the final class assignment.

Now we revisit Zhou et al.’s approach from the perspective
of kernels, still exploiting the expression of eq. (3). The graph
Laplacian matrix L = D − W is the central ingredient of
spectral graph theory [Chung, 1997]. In this paper, we choose

the normalized graph LaplacianL = D−1/2LD−1/2 = I−S
and perform eigenvalue decomposition on it, yielding the
eigensystem {(λi,vi)}n

i=1 such that L = V ΛV T , where

0 ≤ λ1 ≤ λ2 · · · ≤ λn, Λ = diag(λ1, · · · , λn), and
V = [v1, · · · ,vn]. Then we can rewrite eq. (3) as follows

F ∗ = (1 − α) ((1− α)I + α(I − S))−1 C

=

(
I +

α

1− α
L

)−1

C = V

(
I +

α

1− α
Λ

)−1

V T C

= V ΘV T C = KrC, (4)

where Θ is a diagonal matrix with entries in the diagonal
being θi = 1−α

1−α+αλi
. Because λi ∈ [0, 2] [Chung, 1997],

we have θ1 ≥ θ2 ≥ · · · ≥ θn ≥ 0. Hence the matrix
Kr = V ΘV T ∈ R

n×n is positive semidefinite and herewith
behaves as a kernel matrix.

Specially, we call Kr the regularized spectral kernel since
it is derived from the regularization framework and also built
upon spectral transformation of L, i.e., Λ → Θ. By engaging
Kr, it is not difficult to translate eq. (1) into

f(xi) = arg max
1≤k≤c

∑
yj=k

Kr
ij , (5)

which is a multi-class classifier directly derived from the reg-
ularized kernel matrix.

4 Transductive Spectral Kernels

In this section, we describe how to learn an effective data-
dependent kernel for semi-supervised learning. Prior work
on producing data-dependent kernels may be roughly clas-
sified into two categories: (i) choosing parametric families
of Laplacian kernels, and (ii) learning a nonparametric kernel
matrix over the seen data points alone. Here we present a new
algorithm for learning a nonparametric spectral kernel based
on the spectral decomposition of the graph Laplacian.

Our kernel learning algorithm introduces a universal pro-
cedure allowing: (1) to compute similarities between nodes
in an undirected, weighted graph in a nonparametric mode,
(2) to maintain a similarity gap between nodes with different
labels in the graph, and (3) to compute similarities between
an unseen node1 and any node in the graph. Computing sim-
ilarities between node pairs including unseen ones enables
searching the data point which is most relevant (i.e., similar)
to a given point, thus making clustering or classification feasi-
ble. This paper focuses on the application of such a technique
to semi-supervised classification.

Motivated by the Laplacian kernel [Saerens et al.,
2004][Zhang and Ando, 2006] and its nonparametric spectral
transform [Zhu et al., 2005], we have the following theorem.

Theorem 1. If a positive semidefinite matrix L ∈ R
n×n

has an eigensystem {(λi,vi)}n
i=1 (0 ≤ λ1 ≤ · · · ≤ λn), then

the family of matrices K =
∑n

i=1 μiviv
T
i (μi ≥ 0) produces

nonparametric kernels with K as kernel matrices.
Proof. Because μi ≥ 0 and

K = [v1, · · · ,vn]

[ √
μ1

· · ·√
μn

]2

[v1, · · · ,vn]T

= (V U
1

2 )(V U
1

2 )T (6)

1An unseen node or data point means a data point not in the
dataset X .
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where U = diag(μ1, · · · , μn), K is certainly positive
semidefinite and thus a valid kernel matrix. �

The elicited kernel matrix K is a linear combination of a
set of basic kernels {Ki = viv

T
i }n

i=1. So far, we are able
to formulate the problem of nonparametric kernel learning
into finding a nonparametric spectral transform τ : λi → μi

such that optimizing K can be transferred to optimizing the
spectral coefficients {μi}.
4.1 Spectral Constraints

[Zhu et al., 2005] imposed a decreasing order on the spectral
coefficients μi = τ(λi) for the sake of encouraging smooth
components of the target kernel. The smaller λi, the more Ki

should be favored in K , which motivates the order constraints

μi ≥ μi+1, i = 1, · · · , n− 1. (7)

The regularized spectral kernel also satisfies the decreas-
ing spectral order since θ1 ≥ θ2 ≥ · · · ≥ θn. Nonetheless,
a lot of order constraints may not suit the task at hand, re-
sulting in overly constrained kernels. Hence, we only impose
these constraints over the more smooth components of K that
correspond to the m smallest eigenvalues {λi}m

i=1 (m < n)
of the graph Laplacian L with λi 	= 1. Why the condition
λi 	= 1 is imposed will be investigated in Subsection 4.3.

Following [Hoi et al., 2006], we adopt the decaying con-
straints

μi ≥ ημi+1, i = 1, · · · , m− 1. (8)

η ≥ 1 is introduced as a decay factor that is an important
parameter to control the decaying rate of spectral coefficients
and influence the outcome performance of the learned kernel
K .

4.2 Learning with Linear Programming

The target spectral kernel is herewith generated by

K =

m∑
i=1

μiKi =

m∑
i=1

μiviv
T
i = (V̄ Ū

1

2 )(V̄ Ū
1

2 )T , (9)

in which V̄ = [v1, · · · ,vm] and Ū = diag(μ1, · · · , μm).

Eq. (9) discloses a spectral embedding Ū
1

2 V̄ T ∈ R
m×n for

the raw sample matrix X = [x1, · · · ,xn] ∈ R
d×n. We de-

note the spectral embedding as Φ = [φ1, · · · , φn] = Ū
1

2 V̄ T

and have φT
i φj = Kij . φi is exactly the m-dimensional spec-

tral representation of xi through eigen-decomposing L. This
type of spectral embedding originates from the well-know
spectral clustering algorithm [Ng et al., 2002]. Now, we hope
that the spectral embedding is sufficiently smooth over the
graph G, and then form the smoothness measure as

Q1(K) =
1

2

n∑
i,j=1

∥∥∥∥∥ φi√
Dii

− φj√
Djj

∥∥∥∥∥
2

Wij = tr(ΦLΦT )

= tr(LΦT Φ) = tr(LK), (10)

where tr(.) stands for the matrix trace operator. Importantly,
minimizing Q1(K) encourages the smoothness of the spec-
tral embedding Φ, which is actually embodied in the desired
spectral kernel K = ΦT Φ.

Let us set up two sets S and D to capture pairwise
similarities and dissimilarities. Formally, we set S =
{(i, j)|xi and xj share the same label (yi = yj, i 	= j)} and
D = {(i, j)|xi and xj are differently labeled (yi 	= yj)}. By
engaging eq. (10) and the idea of soft margin introduced by
SVMs [Schölkopf and Smola, 2002], we suggest a convex
optimization criterion as follows

min
K

Q(K) = tr(LK)+

β
l∑

i=1

⎡⎢⎢⎢1 +
∑

j,(i,j)∈D

Kij −
∑

j,(i,j)∈S

Kij

⎤⎥⎥⎥
+

(11)

where 
x�+ = max(x, 0) denotes the hinge loss as used in
SVMs and β > 0 is the trade-off parameter. The two compet-
ing terms in the above equation are both critical to achieving
a good spectral kernel under transductive settings. The first
one penalizes large variations of the kernel matrix along the
graph G, while the second one penalizes a small gap between
the total similarity among the same labeled points and the to-
tal similarity among the differently labeled points.

Furthermore, minimizing Q(K) is equivalent to minimiz-
ing the leave-one-out classification error on the labeled in-
stances when using eq. (5) as the classifier. Therefore, the
kernel we are pursuing truly incorporates semi-supervised in-
formation as opposed to the Laplacian kernel, the regularized
spectral kernel, and the other composite kernels, all of which
are unsupervised in terms of construction mechanism.

It is not difficult to show Q1(K) = tr(LK) =∑m
i=1 λiμi.

2 Let form an indicator matrix as E = (eij)ij =
[e1, · · · , en] ∈ R

n×n where eij = 1 if (i, j) ∈ S, eij = −1
if (i, j) ∈ D, and eij = 0 otherwise. The target kernel matrix
with the spectral constraints can hitherto be put forward as
the solution to the following linear program

min
{μt,ξi}

m∑
t=1

λtμt + β

l∑
i=1

ξi (12)

subject to

n∑
j=1

eijKij ≥ 1− ξi, i = 1, · · · , l

μt ≥ ημt+1, t = 1, · · · , m− 1

μt ≥ 0, t = 1, · · · , m
ξi ≥ 0, i = 1, · · · , l

where ξi’s are introduced as slack variables.

Let vec(P ) denote the column vectorization of a matrix P

and let M = [vec(K1), · · · , vec(Km)] ∈ R
n2×m. Rewrite

M = [MT
1 , · · · , MT

n ]T in which Mi ∈ R
n×m, and then de-

fine an l ×m matrix as

T =

⎡⎣ e
T
1 M1

· · ·
e

T
l Ml

⎤⎦ . (13)

2Let U = diag(μ1, · · · , μm, 0, · · · , 0) and then tr(LK) =
tr(V ΛV T V UV T ) = tr(ΛU) =

P
m

i=1
λiμi.
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Table 1: The semi-supervised classification algorithm via
learning a transductive spectral kernel.

Algorithm. Semi-Supervised Classification Using TSK

Step 1. Construct a k-NN graph G(V, W ) upon samples

X = {x1, · · · ,xn} ⊂ R
d from c classes, and

compute the normalized graph Laplacian L.
Step 2. Solve the sparse eigenvalue problem Lv = λv

and retain the m < n smallest eigenvalues {λi}
and corresponding eigenvectors {vi} such that
λ1 ≤ · · · ≤ λm and λi 	= 1.

Step 3. Solve the linear program eq. (14) and obtain

the TSK K =
∑m

i=1 μiviv
T
i .

Step 4. For each unlabeled point xi, infer its label as
f(xi) = arg max1≤k≤c

∑
yj=k Kij . For an un-

seen point x, use eq. (19) to predict its label as
f(x) = arg max1≤k≤c

∑
yj=k Kx,j.

Consequently, the linear program eq. (12) can be succinctly
rewritten as follows

min
μμμ,ξξξ

λλλTμμμ + β1
Tξξξ (14)

subject to Tμμμ ≥ 1− ξξξ

Γμμμ ≥ 0

μμμ ≥ 0

ξξξ ≥ 0

where λλλ = [λ1, · · · , λm]T , μμμ = [μ1, · · · , μm]T , ξξξ =
[ξ1, · · · , ξl]

T , 1 = [1, · · · , 1]T ∈ R
l, and Γ ∈ R

(m−1)×m

with nonzero entries being Γii = 1 and Γi,i+1 = −η
(1 ≤ i ≤ m− 1).

Since all of the objective function and the constraints are
linear with respect to [μμμT , ξξξT ]T ∈ R

m+l, the linear program
eq. (14) is substantially efficient. Linear programming is one
of the most thoroughly studied algorithmic fields and many
excellent software packages are available for it. We opt for
MATLAB to solve this linear program.

After the optimal kernel matrix is learned, we are capa-
ble of setting up a classifier like eq. (5). The only change is
to replace the regularized spectral kernel Kr in eq. (5) with
the learned nonparametric kernel K which is referred to as
the transductive spectral kernel (TSK) as it carries out trans-
ductive inference via introducing the hinge loss in eq. (11).
We depict the algorithm for learning a TSK along with semi-
supervised classification in Table 1. This algorithm can read-
ily be implemented via invoking a sparse eigenvalue solver
and a linear program both of which scale well to hundred
thousands of data points including the labeled and unlabeled
ones.

4.3 Out-of-Sample Extension

Whatever the theme of learning is, it must be clearly stated
that the issues surrounding the learning paradigm are univer-
sal, and not just customized to available samples. Since previ-
ous nonparametric kernels are rather restrictive to seen points,
we show that we can overcome the limitation of non-inductive

inference associated with previous nonparametric kernel ap-
proaches. By investigating the structure of K , we find out for
each pair of points xi and xj in the dataset it holds that

Kij =

m∑
t=1

μtvitvjt = V̄i.Ū V̄ T
j. , K = V̄ Ū V̄ T , (15)

where vit denotes the ith entry of the eigenvectorvt and V̄i. =
[vi1, · · · , vim] is the ith row vector of the matrix V̄ ∈ R

n×m.
In order to classify an unseen point x, we have to know

K(x,xj) = Kx,j = V̄x.Ū V̄ T
j. (16)

for all xj’s. The kernel function K(, ) should be induced
from the seen point cloud as well as the learned kernel ma-
trix K . Eq. (16) reveals that induction can be achieved once
the spectral representation V̄x. ∈ R

1×m of an unseen point
x is known, in other words, semi-supervised induction can
be realized by utilizing the out-of-sample extension trick of
spectral clustering. Fortunately, the formalized out-of-sample
extension for spectral clustering has been presented in [Ben-
gio et al., 2004], which we use to derive

V̄x,t =
1

1− λt

n∑
i=1

Wx,i√
DxxDii

vit, t = 1, · · · , m (17)

where the inductive weights Wx,i = W (x,xi) are simi-
larly computed using eq. (2), and Dxx is thus computed
by Dxx =

∑n
i=1 Wx,i. Let wx = [Wx,1/

√
DxxD11, · · · ,

Wx,n/
√

DxxDnn]T ∈ R
n and then simplify eq. (17) as

V̄x. = w
T
x V̄ (I − Λ̄)−1, (18)

where Λ̄ = diag(λ1, · · · , λm) ∈ R
m×m.

By doing so, we are able to predict the label for any unseen
point x by

f(x) = arg max
1≤k≤c

∑
yj=k

Kx,j = arg max
1≤k≤c

∑
yj=k

V̄x.Ū V̄ T
j. ,

(19)
where V̄x. is induced from the point cloud residing on the
dataset X , while V̄ and Ū has been learned in Step 2 and
Step 3 of the presented algorithm, respectively. Finally, we
augment the inductive inference eq. (19) in Table 1.

To verify the inductive inference formula eq. (19) as well
as guarantee the generalization capability of the TSK K , we
claim the following theorem which shows that the TSK used
in either transductive or inductive setting is definitely positive
semidefinite.

Theorem 2. If λi 	= 1 for 1 ≤ i ≤ m, the expanded sym-

metric matrix K̃ = (K(xi,xj))
n+s
i,j=1 based on n seen sam-

ples {x1, · · · ,xn} and s new samples {xn+1, · · · ,xn+s} is
still a kernel matrix.

Proof. After learning the kernel matrix K = V̄ Ū V̄ T on
the available dataset, we have to infer V̄(n+1)., · · · , V̄(n+s).

for the coming s new samples to compute K̃. Corresponding
to each new point xn+t, we first obtain the induced weight
vector wt (t = 1, · · · , s) and afterwards form a matrix J =
[w1, · · · ,ws] ∈ R

n×s.
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When 1 ≤ i, j ≤ n, K̃ij = Kij . When n < i ≤ n + s and
1 ≤ j ≤ n, we apply eq. (18) to derive

K̃ij = V̄i.Ū V̄ T
j. = w

T
i−nV̄ (I − Λ̄)−1Ū V̄ T

j. .

When 1 ≤ i ≤ n and n < j ≤ n + s, we also have

K̃ij = V̄i.Ū V̄ T
j. = V̄i.Ū(I − Λ̄)−1V̄ T

wj−n.

When n < i, j ≤ n + s, we can arrive in

K̃ij = w
T
i−nV̄ (I − Λ̄)−2Ū V̄ T

wj−n.

Hence, we complete the expanded matrix K̃ by

K̃ =

[
V̄ Ū V̄ T V̄ Ū(I − Λ̄)−1V̄ T J
JT V̄ (I − Λ̄)−1Ū V̄ T JT V̄ (I − Λ̄)−2Ū V̄ T J

]
=

[
V̄ 0
0 JT V̄

] [
Ū (I − Λ̄)−1Ū
(I − Λ̄)−1Ū (I − Λ̄)−2Ū

] [
V̄ T 0
0 V̄ T J

]
= PQPT , (20)

where Q ∈ R
2m×2m is symmetric and has 2m eigenvalues of

{μi + μi

(1−λi)2
}m

i=1 and m 0’s. Because μi ≥ 0 and λi 	= 1,

Q is positive semidefinite; consequently, K̃ is also positive
semidefinite and becomes a valid kernel matrix. �

5 Experimental Results

In this section, we conduct experiments on real-world
datasets to testify our algorithm which we notate as TSK
for semi-supervised learning (SSL) using transductive spec-
tral kernels. We compare it with the state-of-the-art SSL al-
gorithms: the Gaussian fields and harmonic functions [Zhu
et al., 2003], the local and global consistency [Zhou et al.,
2004], and LapSVM [Belkin et al., 2006]. By applying SVM
as the final classifier, we also contrast TSK with two compet-
itive spectral kernels, the order-constrained spectral kernel,
abbreviated as “OSK” [Zhu et al., 2005], and the fast-decay
spectral kernel, abbreviated as “DSK” [Hoi et al., 2006].

In detail, we use four UCI datasets [Asuncion and New-
man, 2007] and the WebKB dataset [Sindhwani et al., 2005]

as our experimental testbeds. Table 2 describes the funda-
mental information about these benchmark datasets. Empiri-
cally, we fix η = 2 throughout all our experiments.

Table 2: Dataset Information: the numbers of features, sam-
ples and classes.

DATASET # FEATURES # SAMPLES # CLASSES

HEART 13 270 2
IONOSPHERE 34 351 2
SONAR 60 208 2
WINE 13 178 3
WEBKB 4840 1051 2

5.1 UCI Datasets

We experiment seven methods on four UCI datasets: HEART,
IONOSPHERE, SONAR and WINE. The input features are nor-
malized to range [0, 1]. Results are averaged over 20 ran-
dom selection of 20 labeled data points of which there is one

Table 3: Transductive classification accuracies on UCI
datasets.

CRR (%) HEART IONOSPHERE SONAR WINE

harmonic 59.86±4.07 76.83±6.84 60.82±6.35 67.78±3.20

consistency 60.30±3.68 70.17±9.07 62.18±6.03 68.39±3.03

TSK 64.06±4.42 77.89±6.37 68.38±4.56 72.28±1.24

LapSVM 73.66±1.60 82.95±1.84 68.24±1.28 93.77±1.10

OSK+SVM 65.88±1.69 83.04±2.10 64.68±1.57 92.72±1.32

DSK+SVM 76.30±1.33 88.55±1.32 71.76±1.07 95.63±0.45

TSK+SVM 78.40±1.30 90.25±2.10 72.80±0.95 96.34±0.33

sample at least for each class. We construct k-NN graphs
with k = 6 for all datasets. For HEART and WINE, we take
m = 10 eigenvectors for spectral kernel learning. For IONO-
SPHERE and SONAR, we take m = 30 eigenvectors. The
width of the RBF kernel for LapSVM and the initial kernel for
DSK learning are set by cross validation. For the harmonic
function method, the consistency method, and LapSVM, we
also construct the same k-NN graph using eq. (2), which fa-
cilitates fair comparison with our method.

The classification results are shown in Table 3. It can be
clearly observed that transductive classification accuracy on
the unlabeled samples achieved by TSK consistently outper-
forms those achieved by the harmonic and consistency meth-
ods. TSK+SVM consistently outperforms the other three ker-
nel machines. These results validate that our method uses
information from labeled and unlabeled data pertinently to
improve the performance of nonparametric kernels.

5.2 WebKB Dataset

WebKB dataset is a subset of web documents of the computer
science departments at four universities. This dataset exten-
sively used for semi-supervised learning experiments consists
of two categories: course and non-course. For each docu-
ment, there are two representations: the textual content of
the webpage (which we will call page representation) and the
anchortext on links on other webpages pointing to the web-
page (link representation). We generate bag-of-words fea-
ture vectors for both representations. For the page represen-
tation, 3000 features were selected according to information
gain. For the link representation, 1840 features were gener-
ated with no feature selection. The columns of the document-
word matrix were scaled based on inverse document fre-
quency weights (IDF) for each word and the resulting term
frequency (TF)-IDF feature vectors were length normalized.

We use the two categories as two classes, and their two rep-
resentations, page and link, for two groups of experiments.
This time the cosine kernel is adopted for running SVM. The
same 100-NN graph for the harmonic method, the consis-
tency method, and our method is constructed. The regular-
ization parameter α in the consistency method and RSK is
fixed at 0.99. We set the number of basic kernels m to 800.
We uniformly divide this WebKB dataset into two disjoint
sets of which 80% data are used for transductive setting and
the rest for inductive setting. In the transductive setting, we
compare TSK with 1NN, SVM, the harmonic method, and
the consistency method. Otherwise in the inductive setting,
we compare TSK with 1NN, SVM, and the regularized spec-
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Figure 1: The average transductive and inductive classification error rates on the WebKB dataset composed of two classes.

tral kernel (RSK) stated in Section 3 which is a parametric
spectral kernel and may be thought as an inductive version of
the consistency method.

Fig. 1 displays comparative results over WebKB. Our TSK-
based SSL algorithm is clearly superior to the other algo-
rithms whether in the transductive setting or in the inductive
setting.

6 Conclusion

We have proposed an algorithm that efficiently learns a non-
parametric kernel called a transductive spectral kernel (TSK)
which allows to compute similarities between any pair of seen
samples in the available dataset, in the meantime maintain a
similarity gap between any pair of seen samples taking differ-
ent labels, and induce similarities between an unseen sample
and any seen sample. A simple yet effective multi-class clas-
sifier can be constructed from TSK directly. In addition, TSK
works well in conceit with conventional kernel machines such
as SVMs. Experiments performed on real-world datasets val-
idate that the learned spectral kernel is quite beneficial to
semi-supervised classification.
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