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Abstract

Syntax-based semantic spaces are more
flexible and can potentially better model
semantic relatedness than bag-of-words
spaces. Their application is however lim-
ited by sparsity and restricted coverage.
We address these problems by smoothing
syntax-based with word-based spaces and
investigate when to choose which predic-
tion. We obtain the best results by picking
the maximal predicted similarity for each
word pair, taking advantage of the tendency
of unreliable models to underestimate simi-
larity. We show that smoothing can substan-
tially improve coverage while maintaining
prediction quality on two German bench-
mark tasks.

1 Introduction

Distributional semantics (Turney and Pantel, 2010)
assumes that the semantic similarity between words
is correlated with usage in the same linguistic con-
texts. Words can be represented by vectors of their
co-occurrence frequencies with context elements.

Two major types of models used today are (a)
bag-of-words (BOW) models, which use words
within a surface window around the target word
as contexts, and (b) syntax-based models, whose
contexts include dependency information. These
two types can be found among count models such
as those studied here as well as newer predictive
models (Mikolov et al., 2013; Levy and Goldberg,
2014).

There is an inherent trade-off between BOW
models and syntax-based models: Syntax-based
models build on a rich, structured notion of con-
text and can capture fine-grained semantic phenom-
ena such as predicate-argument plausibility (Ba-
roni and Lenci, 2010) and can be considered as
allowing more representative semantic similarity

predictions. At the same time, syntax-based spaces
are more prone to sparsity problems: Syntactic co-
occurrences are less frequent, and the spaces are
very high-dimensional. Vectors for rare words can
be so sparse that there is no overlap with any other
word, and the words effectively fall out of coverage,
resulting in less reliable performance. In contrast,
BOW models have almost perfect coverage, but
provide a more coarse-grained semantic similarity.

This situation raises the question of how differ-
ent models of differing levels of granularity can be
combined in a globally beneficial manner. There
is a research tradition that has developed strategies
to unify different input vector spaces into a joint
output representation. Andrews et al. (2009) com-
bine feature norms with distributional information.
Bruni et al. (2011) experiment with textual and
visual distributional features. Fyshe et al. (2013)
use word-based and dependency-based features as
sources of topical and relational information. All of
these studies assume that the information provided
by the “input” spaces is of comparable quality, but
contains different types of information, and can
therefore be combined on equal footing – by di-
mensionality reduction, feature collation, or even
simple addition.

Our work assumes a different point of view,
namely that there is an accuracy-coverage trade-
off among our input spaces, as described above.
This resembles the situation in n-gram language
modeling where models are typically combined by
smoothing. We also frame the combination of dis-
tributional models a as smoothing problem, com-
bining models not at the level of co-occurrence
information, but at the level of predictions. To our
knowledge, few studies have taken this perspective,
with the exception of Utt and Padó (2014) who com-
bine cross-lingual and monolingual syntax-based
models, and Padó et al. (2013) who use morpho-
logical information for smoothing.

We experiment with two smoothing strategies:
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shoot play gun car

hunter

game

deer

Table 1: Example of a bag-of-words space.

Backoff and a score maximization strategy, which
chooses the highest predicted score. Its intuition
is that unreliable distributional models tend to un-
derestimate semantic similarity. Experiments on
two German benchmark tasks (semantic similarity
prediction and synonym choice) show that score
maximization can combine the high precision of
syntax-based spaces with the high coverage of
BOW spaces.

2 Smoothing Vector Spaces

2.1 Types of Vector Spaces
We concentrate on the two major types: bag-of-
words (BOW) and syntax-based models.

BOW models represent target words in terms of
context words co-occurring within a surface win-
dow. These models are simple, robust, and can be
built from any tokenized corpus. They typically
have a very high coverage (close to 100%). Dif-
ferent tasks require different context window sizes
(Peirsman et al., 2008). Applying dimensionality
reduction methods like Singular Value Decomposi-
tion (SVD) generally improves space quality.

Syntax-based models are based on word-link-
word triples, typically dependency links. This ver-
satile context makes them applicable to languages
with free word order and allows them to capture
structure-dependent semantic phenomena (Baroni
and Lenci, 2010). At the same time, they are
much sparser than BOW models, with a lower
coverage overall (often 50–70%), which in par-
ticular makes the modeling of rare targets prob-
lematic. Also, their construction requires a large,
well-parsed corpus, which has limited large-scale
construction of syntax-based models to few lan-
guages (Baroni and Lenci, 2010; Padó and Utt,
2012; Šnajder et al., 2013). Utt and Padó (2014)
proposed a cross-lingual method to induce syntax-
based models without a parsed corpus, essentially
“translating” existing English models. The filter
effect created by the use of bilingual lexicon in-
formation amplifies the properties of syntax-based

〈shoot,sub j〉 〈shoot,ob j〉 〈play,sub j〉 〈play,ob j〉
hunter

game

deer

Table 2: Example of a syntax-based space.

models: an even higher quality at the cost of a
lower coverage.

2.2 Combining Vector Spaces

As stated above, we assume that there is an
accuracy-coverage tradeoff between types of vec-
tor spaces. Thus, we do not want to unify the
individual spaces, but combine their predictions in
a sensible way.

Backoff. Backoff and interpolation are two meth-
ods that are standardly applied for smoothing in
language modeling (Chen and Goodman, 1998).
Given our assumptions, Backoff is a straightfor-
ward baseline method for combining semantic
spaces. It simply defines a linear order on the mod-
els and predicts the first model in this order that
makes a prediction. This approach was also fol-
lowed by Utt and Padó (2014).

Score maximization. We propose a second
smoothing strategy, score maximization or MAX,
which chooses the maximum score from the predic-
tions of individual models for each word pair. This
strategy is motivated by the hypothesis described
in Section 4.

3 Experimental Setup

Tasks. We evaluate on two German lexical-
semantic benchmark tasks. The first one is seman-
tic similarity prediction on the Gur350 wordsim
dataset (Zesch et al., 2007).1 It consists of 350
German word pairs with human relatedness ratings
on a five-point scale.

The second task is synonym choice: For a tar-
get word, its synonym has to be picked from a list
of four candidates. We use the German Reader’s
Digest Word Power dataset (Wallace and Wallace,
2005)2 with 984 items. It is comparable to the En-
glish TOEFL dataset (Landauer and Dumais, 1997),
but includes some short phrases as candidates.

1Available from: http://goo.gl/3Dflf1
2Available from: http://goo.gl/PN42E
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Models. We experiment with three state-of-the-
art count models. (1), the BOW space was
built from the 800M-token German web corpus
SDEWAC (Faaß et al., 2010) using a symmetric
context window of size two. A space was extracted
with 10k nouns, verbs and adjectives as dimen-
sions, and reduced to 500 dimensions using SVD.
(2), the monolingual syntax-based space, “DM”, is
the German version of Distributional Memory (Ba-
roni and Lenci, 2010), DM.de (Padó and Utt, 2012),
induced from a dependency-parsed version of the
same corpus. (3), the cross-lingual DM, “tDM”,
was obtained via translation of the English DM
(Utt and Padó, 2014) using the dict.cc EN-DE
translation lexicon.

We apply both Backoff and score maximiza-
tion. Model predictions are standardized before
smoothing. For Backoff, we assume the linear or-
der (3)>(2)>(1), since (3) has the highest quality,
(1) the largest coverage, and (2) assumes an inter-
mediate position. MAX is order-invariant.

Points of Comparison. We consider random
(for synonym choice) and frequency baselines.
For word similarity, the frequency baseline pre-
dicts the smaller of the two words’ frequencies,
min( f (w1), f (w2)). For synonym choice, it pre-
dicts the candidate with the highest frequency. We
also compare against current results from the lit-
erature, namely UP14 (Utt and Padó, 2014) and
PSZ13 (Padó et al., 2013).

Prediction and Evaluation. We compute se-
mantic similarity as cosine similarity. In the case of
phrases, we compute the maximum pairwise word
similarity. We make a prediction if both words are
represented in the model and their vectors have a
non-zero cosine. For synonym choice, we make a
prediction for an item if we can make a prediction
for at least one target–candidate pair.

On both tasks, we compute model coverage, de-
fined as the percentage of items for which a pre-
diction is made. On the similarity task, we mea-
sure quality as the Pearson correlation between
human rating and model prediction. On the syn-
onym choice task, we compute the accuracy of the
covered items with partial credit for ties, following
Mohammad et al. (2007). We report performance
on all items as well as on the respective subset of
covered items. We perform significance testing
with bootstrap resampling (Efron and Tibshirani,
1993) on all items.

4 Underestimation Hypothesis

Informally, we believe that noise (e.g., from
preprocessing) and sparsity (a perennial issue
in distributional semantics) are quite unlikely
to increase similarity by chance. To the best
of our knowledge, this hypothesis has not been
considered yet in the literature:

Underestimation hypothesis (UEH). Unre-
liable distributional models are more likely
to underestimate rather than overestimate
semantic similarity.

We first develop a geometrical intuition and then
corroborate our intuitions with an empirical study.

Geometrical argument . We assume that unre-
liable distributional models essentially mismeasure
co-occurrence frequencies: They do not yield the
ideal vector v for a given word, but an empirical
vector v̂ = v+ ε that includes a noise vector ε .

We are interested in knowing when cosine
similarity decreases due to noise (cos(v,w) >
cos(v̂,w)). This can be determined by assuming
(without loss of generality) that v, v̂, and w are
normalized. This makes them points on the unity
hypersphere. Then the cosine decreases if and only
if the “empirical” angle α̂ between v̂ and w is larger
than the “ideal” angle α between v and w. As Fig-
ure 1 shows, this is the case outside a hypersphere
segment of width 2α centered on w. If this segment
is maximally wide (180◦) if α = 90◦, it is equally
likely that the cosine decreases or increases (in the
absence of assumptions on ε). For all smaller an-
gles α , the segment shrinks, and it becomes ever
more likely that the cosine decreases, until it neces-
sarily decreases for α = 0◦ (cf. Fig. 1).

Experimental support for UEH. In order to
substantiate the claim of UEH, we designed the
following experiment. Ideal vectors are simulated
using the entire SDeWaC corpus, giving ‘full sims’
for our word pairs. We also construct two halved
subspaces by randomly assigning sentences to each
half. Word similarities obtained from these two
subspaces are termed ‘half sims’. If UEH is true,
we would expect the half sims to be, more often
than not, lower than the corresponding full sim.
A t-test on Gur350 word pairs between full sims
and half sims3 shows a highly significant underes-

3As we have two half-sized subspaces, we double the num-
ber of wordpairs, pairing each full sim once with half sims
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Figure 1: Underestimation hypothesis: ideal and
empirical vectors (v, v̂), point of comparison (w),
noise vector (ε). Segments of the hypersphere
where angle decreases (dark grey) and increases
(light grey). Left: α = 90◦ (lower α̂), Right:
α = 0◦ (higher α̂).
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Figure 2: Differences between full and half sims by
log frequency of word pairs. (Significance levels
are shown for paired t-tests within each bin.)

timation (t =−4.3647,df = 675, p = 1.473e−05,
mean difference: −0.003277829).

In a second analysis, we test further whether
we can further isolate lower frequency word pairs
as more reliably showing underestimation. This
would correspond to the subnotion with UEH that
less evidence for – or more noise in – the represen-
tations will intensify the underestimation.

Upon binning word pairs by minimum log fre-
quency, we see that (cf. Figure 2) indeed lower
frequency word pairs suffer more from underesti-
mation.

We conclude that, if any of the models predicts a
higher similarity, this is a more reliable signal and
should be used at the exclusion of others.

from the first subspace, as well as the second. Uncovered
items are excluded, in total df +1 = 676 similarity pairs are
tested.

Word similarity Synonym choice

Model r rcov cov acc acccov cov

Random – – – .25 .25 1
Frequency .13 .13 1 .31 .31 1
BOW .34 .34 .97 .52 .53 .95
DM .38 .43 .60 .48 .53 .84
tDM .33 .49 .49 .46 .61 .58

Smoothed models (sequence tDM>DM>BOW)

Backoff .40 .41 .98 .56 .57 .97
MAX .49 .50 .98 .57 .59 .97

Results from the literature

[UP14] .42 .47 .69 .55 .59 .89
[PSZ13] .47 NA .89 .51 NA .87

Table 3: Results for baselines and individual mod-
els (top), smoothed models (middle) and literature
(bottom). Best results per column shown in bold-
face.

5 Results and Discussion

Table 3 shows the results. All individual models
clearly outperform the baselines. Their individual
performance matches our accuracy-coverage trade-
off assumptions from above. For example, on the
word similarity task, coverage ranges between 97%
(BOW) and 49% (tDM). On the covered items, the
quality of the tDM predictions outperforms DM,
which in turn outperforms BOW (r=.49/.43/.34).
The patterns for synonym choice are parallel but
less extreme.

The smoothing combination of the three mod-
els (tDM>DM>BOW) improves substantially over
individual models.4 In terms of the combination
strategy, MAX yields higher results than Backoff.5

For both tasks, MAX improves highly significantly
on all items over the best individual model (word
similarity: +.11 r vs. DM; synonym choice: +.05
accuracy vs. BOW; both significant at p<0.01).
MAX also outperforms smoothing studies from the
literature.

We see different results for the two tasks. On
word similarity, smoothing has a larger impact, and
the benefit of MAX over Backoff is significant only
here (p<0.01). This can be explained by their prop-
erties. For word similarity, a regression task, each

4In preliminary experiments with the alternative approach
of model unification (cf. Section 1), we did not find a compa-
rable benefit for vector concatenation and PCA. This further
bolsters our argument from Section 1.

5Other combination functions such as arithmetic, geomet-
ric and harmonic mean were also tested which however did
not provide improvements, in line with UEH.
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Figure 3: Performance of incremental smoothing (tDM, tDM>DM, tDM>DM>BOW) using score
maximization (MAX) for the word similarity (left) and synonym choice (right) tasks

changed prediction influences the evaluation. In
synonym choice, a classification task, it only mat-
ters which candidate has the highest similarity to
the target – the similarities and margins are irrele-
vant. Consequently, classification is less sensitive
to vector changes. This can be observed in prac-
tice: Backoff and MAX predictions differ on 155
of 350 word similarity pairs, while the predicted
synonym changes only for 52 of 984 targets, i.e.,
the predictions are almost identical.

Figure 3 shows a more detailed analysis of
smoothing. It plots the performance and coverage
of MAX for incremental smoothing steps starting
from tDM through tDM>DM to tDM>DM>BOW.
The plots notably show that the quality on all items
increases when adding more models while the qual-
ity on the covered items stays almost constant. This
shows the robustness of MAX smoothing: The re-
sultant models combine the almost perfect coverage
of BOW models with the quality of syntax-based
models.

6 Conclusions

This paper investigates the combination of accurate
but sparse syntax-based semantic spaces with high-
coverage BOW spaces, framing this problem as a
smoothing task. We have shown how to reliably
smooth by choosing the maximal prediction made
by any model. This approach, a “winner-take-all”
strategy, exploits the tendency of unreliable distri-
butional models to underestimate semantic similar-
ity making it possible to combine the benefits of
different model types, improving both accuracy and
coverage across two different semantic tasks and
outperforming previous smoothing results. Due
to the general nature of the factors giving rise to
the underestimation – noise and sparsity in vector

representations – we believe that our insights are
applicable beyond the models considered in this pa-
per, e.g., to syntax-based continuous vector spaces
(Levy and Goldberg, 2014) and document-level
models (Landauer and Dumais, 1997).
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Sebastian Padó, Jan Šnajder, and Britta Zeller. 2013.
Derivational smoothing for syntactic distributional
semantics. In Proceedings of ACL, pages 731–735,
Sofia, Bulgaria.

Yves Peirsman, Kris Heylen, and Dirk Geeraerts. 2008.
Size matters: Tight and loose context definitions in
English word space models. In Proceedings of the
ESSLLI Workshop on Distributional Lexical Seman-
tics – Bridging the Gap Between Semantic Theory
and Computational Simulations, pages 34–41, Ham-
burg, Germany.
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