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Abstract. Simulation for team training has a long history of success in 

medical care and emergency response. In fields where individuals work 

together to make decisions and perform actions under extreme time 

pressure and risk (as in military teams), simulations offer safe and repeat- 

able environments for teams to learn and practice without real-world  

consequences. In our team-based training simulation, we use intelligent 

agents to represent individual learners and to autonomously generate 

behavior while learning to perform a joint task. Our agents are built upon 

PsychSim, a social-simulation framework that uses decision theory to 

provide domain-independent, quantitative algorithms for representing and 

reasoning about uncertainty and conflicting goals. We present a 

collaborative learning testbed in which two PsychSim agents performed a 

joint “capture-the-flag” mission in the presence of an enemy agent.  The 

testbed supports a reinforcement-learning capability that enables the 

agents to revise their decision-theoretic models based on their experiences 

in performing the target task. We can “train” these agents by having them 

repeatedly perform the task and refine their models through reinforcement 

learning. We can then “test” the agents by measuring their performance 

once their learning has converged to a final policy. Repeating this train-

and-test cycle across different parameter settings (e.g., priority of 

individual vs. team goals) and learning configurations (e.g., train with the 

same teammate vs. train with different teammates) yields a reusable 

methodology for characterizing the learning outcomes and measuring the 

impact of such variations on training effectiveness. 

 

Keywords: collaborative learning, team-based training, intelligent agent, reinforcement 

learning, social simulation 

 

1 Introduction 
 

A good team is more than a collection of individuals. In an effective team, each team 

member masters its individual role and coordinates with other team members to 

accomplish complex tasks. Good teams do not happen by accident. Team members train 

individually and together in order to do well as a team. Although team tasks are
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ubiquitous in today’s society, team-based training, particularly with the use of 

simulations, has a long history in medical care, emergency responses, and the military 

(e.g., [1], [2], and [3]). Realistic simulations can offer safe and repeatable environments 

for teams to practice without the real-world consequences. However, simulations alone 

are often not enough to ensure learning. Instructional support is often needed to help the 

team and individuals in case of mistakes and impasse, and guide the team on the path to 

success. Instructional support in teams has its unique challenges, compared to such 

support delivered in individual learning settings. Decisions on the target (individual vs. 

team), channel (private vs. public), and timing of the feedback (immediate vs. delayed) 

and many more issues can greatly impact how such support is received by the team and 

the efficacy of the feedback [4]. The type of support and how and when it should be 

delivered depends on the team structure (e.g., with leadership or leaderless) and what the 

team is trying to learn (e.g., task-related vs. teamwork related, for review, see [5] and 

[6]). Mismatch between the support and the team needs can result in tutorial feedback 

being ignored at best and interfering with the team learning at worst [7]. 

Instead of testing with human participants, a simulation of how teams train together 

and how instructional feedback influences team members and a team is desired. Inspired 

by the challenge in the design of instructional support for team training, we have 

developed a testbed to simulate how team members learn together. In the current 

implementation of the testbed, team members are modeled as intelligent agents in a 

collaborative learning setting where they can learn from experience to improve team 

performance. Collaborative learning is often considered a type of team training, with 

emphasis on the team training how to collaborate to improve as a whole [6]. It is different 

from cooperative learning in that the agent does not try to maximize learning of other 

team members. However, our simulation testbed is not limited to collaborative learning 

only— each member of the team can learn to improve its own action, in addition to 

learning to collaborate with others, to improve team performance. 

Instructional support in team tutoring can take many forms and often depends on the 

team structure. For example, tutorial feedback for a team with a vertical leadership structure 

is more likely to differ based on members at different levels. For a leaderless team, the 

feedback is likely to be structured more for peers [9]. When a team is actively engaged in 

learning, team members communicate among themselves to discuss best actions, ask each 

other questions, and explain their reasoning. In our simulation testbed, we build upon 

feedback from peers. Instead of receiving instructional support from a tutor, the 

simulated team members learn from their own experience and from each other. 

In this paper, we present a reconfigurable testbed with three agents training in a 

joint capture-the-flag scenario. We propose a methodology by which the agents train 

through repeated practice of the task and refine their models through reinforcement 

learning. The agents then test their learning outcome by measuring the efficacy of a final 

policy. Repeating this train-and-test cycle across different parameter settings yields a 

reusable methodology for characterizing the learning outcomes and measuring 
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the impact of such variations on training effectiveness. The testbed can thus serve as a 

sandbox to test instructional feedback and other alternative strategies of value in team-

tutoring research. 

 

2 Related Work 
 

While there is a vibrant research community on automatically-generated instructional 

support for learning in an individual setting (for review, see [9]), research on such 

support in the context of team training is relatively scarce. Early research in team-based 

simulation focused on creating an environment that allows teams to practice together. 

The Advanced Embedded Training System (AETS) is one such effort [10]. AETS is an 

intelligent tutoring system built for an Air Defense Team on a ship’s Combat Information 

Center to learn how to utilize the command and control system. While AETS enables 

multiple users to train as a team, assessment and feedback were given on an individual 

basis. Such feedback was then relayed to a human tutor, who offered team-based 

feedback. A similar effort is the Steve agent-based training simulation for emergency 

response on a military vessel [3]. In the training simulation, Steve agents can serve as a 

tutor as well as an individual team member, thus allowing the simulation to support a 

team of any combination of Steve agents and humans to train together. In the training 

simulation, Steve agents and humans learn to complete tasks through communication 

between team members. 

More recently, there has been a resurgence of research into automated tutorial 

support for team training. One of the team training simulation testbeds implements a 

Multiple Errands Test, where a team of three completes errands following a shipping list 

in a virtual mall [7]. Using this testbed, a study on the influence of privacy (Public vs. 

Private) and audience (Direct vs. Group) of feedback showed no significant influences 

of such variables on team performance. A more recent effort is the Recon testbed that 

was built with the Generalized Intelligent Framework for Tutoring (GIFT) [5]. It 

supports the collaborative team task of reconnaissance [11]. Using the Recon testbed, 

researchers again experimented with variables in feedback to the teams, specifically 

target (individual vs. team), within 2-person teams [12]. 

Our testbed is used not for training but to simulate the training process. Agents 

learn to improve both their own and the team’s performance from their own experience, 

by observing other agents, and by communicating with teammates. We draw upon the 

body of multiagent research on simulating teamwork and learning. Existing formalisms 

represent team goals, plans, and organizations that operationalize decision-making found 

in human teams [13, 14, 15]. Embedding these mechanisms within intelligent agents has 

enabled the construction of high- fidelity simulations of team behavior (e.g., simulated 

aircraft performing a joint mission [16]). The uncertainty and conflicting goals that are 

ubiquitous in most team settings led to decision-theoretic extensions of these models to 

incorporate quantitative probability and utility functions [17, 18]. More recently, agents 

have incorporated reinforcement learning (among other methods) to derive these models 

through experience and in a decentralized fashion, allowing individual agents to arrive 

at a coordinated strategy through experience [19, 20, 21].
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3 PsychSim 
 

We have built our testbed using the multiagent social simulation framework, PsychSim 

[22, 23]. PsychSim grew out of the prescriptive teamwork frameworks cited in Section 

2 (especially [18]), but with a different aim toward being a descriptive model of human 

behavior. PsychSim represents people as autonomous agents that integrate two 

multiagent technologies: recursive models [24] and decision-theoretic reasoning [25]. 

Recursive modeling gives agents a Theory of Mind [26], to form complex attributions 

about others and incorporate such beliefs into their own behavior. Decision theory 

provides the agents with domain-independent algorithms for making decisions under 

uncertainty and in the face of conflicting objectives. We have used PsychSim to model 

a range of cognitive and affective biases in human decision-making and social behavior 

(e.g., [27, 28]). 

Another motivation behind the use of PsychSim is its successful application within 

multiple simulation-based learning environments. The Tactical Language Training 

System (TLTS) is an interactive narrative environment in which students practice their 

language and culture skills by talking to non-player characters built upon PsychSim 

agents [29]. We also used PsychSim’s mental models and quantitative decision-theoretic 

reasoning to model a spectrum of negotiation styles within the ELECT BiLAT training 

system [30]. Additionally, UrbanSim used a PsychSim-driven simulation to put trainees 

into the role of a battalion commander undertaking an urban stabilization operation [31]. 

In SOLVE, PsychSim agents populate a virtual social scene where people could practice 

techniques for avoiding risky behavior [32, 33]. 

We have also used PsychSim to build experimental testbeds for studying human 

teamwork. In one such testbed, we used a PsychSim agent to autonomously generate 

behaviors for a simulated robot that teamed with a person, in a study of trust within 

human-robot interaction [34, 35]. Another PsychSim-based testbed gave four human 

participants a joint objective of defeating a common enemy, but with individual scores 

that provided some impetus for competitive behavior within the ostensible team setting 

[36]. We build upon PsychSim’s capability for such experimental use in the expanded 

interaction of the current investigation. 

 

4 Team-based Training Simulation 
 

In our testbed, we implement a “capture-the-flag” scenario. In the scenario, a team of 

trainees learn how to work together to attack a goal location being defended by a team 

of enemies. Both the trainees and enemies are represented as PsychSim agents. In the 

preliminary testing described here, the blue team consists of three agents, while the red 

team consists of only one (denoted as Enemy). The three blue agents are assigned to three 

distinct roles: the Attacker tries to reach the goal location, the Decoy tries to lure 
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the enemy away from the Attacker, and the Base decides whether or not to deploy the 

Decoy. Ideally, the Attacker should proceed to the goal while maintaining a safe distance 

from the Enemy. If the Enemy detects the Attacker and approaches it, the Base should 

deploy the Decoy. The Decoy should then approach the Enemy to draw its attention away 

from the Attacker. Such a coordinated strategy will maximize the chance that the team 

achieves its objective, while minimizing the chance that the Enemy captures any team 

members (see Figure 1). 

PsychSim represents the decision-making problem facing the agents as a Partially 

Observable Markov Decision Process (POMDP) [25]. Partial observability accounts for 

the fact that the agents cannot read each other’s minds and that they may have incomplete 

or noisy observations of the environment. However, in this presentation, we make the 

environment itself completely observable, reducing the domain to a Markov Decision 

Process (MDP) instead. An MDP is a tuple <S, A, P, R>, with S being the set of states, 

A the set of actions, P the transition probability representing the effects of the actions on 

the states, and R the reward function that expresses the player’s preferences. 

 

 

 

 

Fig. 1. A mid-mission screenshot of the “capture-the-flag” scenario. The Attacker, Base 

and Decoy are located at [3,5], [1,1] and [3,1], while the Enemy and the goal are located at 

[3,3] and [6,5]. 

 

 

The state of the world, S, represents the evolution of the game state over time. We use a 

factored representation [37] that allows us to separate the overall game state into 

orthogonal features that are easier to specify and model. The locations of the agents and 

of the goal are specified by x and y coordinates on a grid. The grid is 5 x 8 in the specific 

configuration described here, but obviously other grid sizes are possible. There is also a 

cost associated with deploying the Decoy agent, as opposed to letting the other
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agent go solo. The actions, A, available to the Attacker, Decoy, and Enemy agents are 

moves in one of the four directions or waiting in their current location. The Base can 

either deploy the Decoy agent or wait. The transition probability, P, represents the effect 

of the agents’ movement decisions, which we specify here to succeed with 100% 

reliability. In general, the P function can capture any desired stochastic error (e.g., due 

to terrain or visual conditions). 

The Attacker agent has two potentially conflicting objectives within its reward 

function, R: minimizing its distance to the goal (i.e., to try and reach the goal) and 

maximizing its distance from the Enemy (i.e., to avoid capture). More precisely, the 

Attacker’s reward function is a weighted sum of the difference between its x and y values 

and the goal’s and between its x and y values and the Enemy’s. The Decoy agent also has 

two potentially conflicting objectives: minimizing its distance from Enemy and 

maximizing the distance between the Attacker and Enemy. It thus tries to lure the Enemy 

toward itself and away from the Attacker. The Base agent’s conflicting objectives consist 

of also minimizing the distance between the Decoy and Enemy, while also minimizing 

the cost of deploying the Decoy. Finally, the Enemy agent seeks to minimize its distance 

to the Attacker and Decoy agents (i.e., to capture them if possible, or at least drive them 

away). Thus, each agent has two conflicting objectives within its reward function, and 

the weights assigned to each determine their relative priority. Modifying these weights 

will change the incentives that each agent perceives. 

Having specified the game within the PsychSim language, we can apply existing 

algorithms to autonomously generate decisions for individual agents [25]. Such 

algorithms enable the agent to consider possible moves (both immediate and future), 

generate expectations of the responses of the other agents, and compute an expected 

reward gain (or potentially loss) for each such move. It then chooses the move that 

maximizes this expected reward. Importantly, this algorithm can autonomously generate 

behavior without any additional specification, allowing us to observe differences in 

behavior that result from varying modeling parameters (e.g., the relative priority between 

objectives). 

 

5 Evaluation 
 

To evaluate the testbed’s suitability for studying collaborative learning, we simulated the 

scenario with alternate configurations of the Attacker agent to explore the space of team 

behavior and outcomes. Our goal is to verify that varying the agent’s model (especially 

its reward function) will lead to different individual behaviors and team outcomes and 

uncover what and how the team should train to improve. To quantify the team outcome, 

the blue team is given a score that is a weighted sum of the distance between Attacker 

and the goal (0 means success), distance between Attacker and Enemy (0 means capture 

and immediate failure), the cost incurred from Decoy deployment, and the duration of 

the task as a function of total number of turns. During the experiment, each mission has 

a maximum duration of 20 turns, as that length was generally sufficient for a specific 

configuration to succeed if it ever would.
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Missions where the Attacker reached the goal in fewer than 10 turns were given a bonus 

score. Figure 2 shows the overall team score (blue means better, red means worse) as a 

function of the Attacker’s reward weights. The X axis represents the weight of getting 

closer to the goal, while the Y axis represents the weight of getting closer to the Enemy. 

In other words, in the right (left) half of the graph, it wants to move toward (away from) 

the goal, and in the bottom (top) half, it wants to move away from (toward) the enemy. 

 

 

 

 
Fig. 2. Blue team’s overall performance as a function of Attacker reward weights 

 

 

Not surprisingly, the team’s top performance is in the bottom right, where the Attacker 

minimizes its distance to the goal and maximizes its distance to the Enemy —i.e., it tries 

to reach the goal while avoiding capture. The success at point (-1,1) gives equal weight 

to the two objectives of team actions, but we can see that the team can achieve similarly 

high performance at other weightings along the diagonal in the bottom-right region. This 

balance is a function of our scoring metric that gave equal weight (in magnitude) to those 

two outcomes. 

We can also see where the blue team needs to improve by learning a better balance 

(i.e. the reward weights) of its objectives. In particular, there is a large light-blue region 

of positive results on the left of the graph, i.e., where Attacker instead carries out actions 

to maximize distance from the goal. By staying away from the goal, the agent also 

generally stays away from the Enemy, who starts off near the goal. Thus, capture is very 

rare in this region, but mission success is also rare. This region provides a challenge for 

the team’s training, which must ensure that the Attacker agents who start 
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off in this light-blue region move through the intervening light-red regions (where they 

will achieve bad outcomes) to get to the superior, but relatively hard-to-find, dark blue 

points in the bottom right. 

 

 

6 Discussion 
 

The existing testbed thus provides an interesting space of team behaviors, even within 

this small-scale configuration. By representing this scenario on top of a general 

multiagent framework, we gain access to a wide space of possible reconfiguration 

dimensions that can be used for future investigations. In this section, we propose a series 

of such reconfigurations that would be valuable for studying collaborative learning and 

team training. For example, the testbed provides a challenging environment for 

reinforcement learning, where individual trainees learn from their own experience to 

balance their objectives. We can incorporate reinforcement learning into our PsychSim 

agents to simulate how each teammate can improve its behavior through its own 

experience [38]. Using model-based reinforcement learning, the agents can change the 

weights within their reward function based on the outcomes of their decisions. For 

example, if the Attacker gets captured, it will increase the weight associated with moving 

away from the enemy. If it does not get captured, but fails to reach the goal, it will 

increase the weight associated with nearing the goal. Such a procedure will allow the 

Attacker to dynamically learn a reward function that is optimized with respect to mission 

objectives. 

However, the Decoy and Base agents receive less direct feedback for their 

decisions. We can instead allow them to learn by observing the outcomes for their 

Attacker teammate. For example, if the goal is not achieved even after avoiding capture, 

the Decoy could give a higher weight to drawing the Enemy to itself. Alternatively, it 

could introduce a new objective of minimizing the distance between the Attacker and 

goal, giving the Decoy an explicit model of the goal objective. By updating these three 

weights, we can explore the ability for the Attacker’s teammates to learn from its direct 

feedback. We can thus vary the feedback (i.e., the reinforcement learning signal) 

received by the agents in terms of the credit and blame for outcomes. Alternatively, we 

can broadcast the feedback to the entire team, causing the agents to update their models 

of their teammates as well using PsychSim’s Theory of Mind capability. In general, this 

mechanism allows us to experiment with different feedback signals to give individual 

team members based on mission outcomes and team learning. 

One key advantage of using an agent framework like PsychSim is that we have 

many dimensions along which we can enrich the reasoning of our learners. For example, 

in the current configuration, all of the agents know each other’s objectives. This is not a 

realistic model of human teamwork, where people rarely know exactly how important 

team vs. individual objectives are to their teammates. Fortunately, PsychSim’s Theory 

of Mind reasoning allows us to easily give the agents uncertainty about the reward 

function of other agents. We can thus expand our agents’ learned behaviors to consider
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not just the locations of their teammates, but also their subjective perspectives. 

Introducing uncertainty also necessitates communication among teammates. 

Successful teamwork uses communication to maintain shared situational awareness 

about task progress, teammate status, etc. [13, 14, 15]. We can leverage our underlying 

agent architecture’s existing algorithms for belief update [25] and communication [22] 

to explore alternate communication strategies to establish coherent joint beliefs among 

team members. In other words, our learning agents would expand their action space to 

include possible messages, such as “There is a 90% chance that the Enemy is at (3,3)”. 

They would subsequently arrive at a learned behavior that specifies the best conditions 

under which to send such messages (e.g., if no one has found the enemy yet, then report 

your estimated location of the Enemy when your confidence is > 75%). 

We can reuse this mechanism to explore the effect of post-mission communication 

as well. Upon learning to maximize their individual performance, agents can 

communicate their learned policy to other team members, particularly those still 

performing suboptimally. Such communication would simulate a form of peer tutoring 

[39] commonly seen in collaborative learning. We could also enrich this communication 

to include an agent’s explanation of its optimal policy (e.g., using [40]) to justify its 

choice to its teammates. We can also investigate alternate channels for this team 

communication, for example, allowing messages addressed to an individual agent vs. 

messages broadcast to the whole team. 

Once our agents are learning about teammates, we can use our testbed to study 

different team training configurations. For example, we could let a team of agents “train” 

by repeating missions until they learn a good coordination policy. Then, we could “test” 

the team by replacing a team member with an agent that had not performed any learning. 

Alternatively, we could have each agent train separately with continually changing team 

members, and then test a team of agents that have trained in such a fashion. By 

quantifying the performance outcomes of these different training methods under 

different task and environment configurations, we can gain potential insight into the 

conditions under which each can be expected to improve team performance. For 

example, we could measure the benefit of introducing an “experienced” team member 

(an agent who has learned about the domain in prior iterations) into an “inexperienced” 

team (agents who have never operated in the domain before). Simulating the 

performance of such a team might (for example) show that the experienced agent 

provides a “tutoring” benefit when post-mission communication is allowed to support 

learning, but can actually hinder performance (because of expectation mismatches) 

without such communication. 

While the work discussed here focuses on simulations of how team trains together 

with virtual agents, it can help inform the design of intelligent team tutoring systems for 

real human teams. For example, one of the decisions an intelligent tutor needs to make 

is when to provide the feedback. Immediate feedback may help the team on the task at 

hand but interfere with team building. Delayed feedback may result in frustration after 

the team exhausts options and fails. Outcomes from simulations of tutorial feedback 
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given at different times (immediate vs. delayed vs. a combination of the two) can help 

the designers of such intelligent tutors weigh the trade-offs between the choices of 

timing. Additionally, using PsychSim agents, we can simulate teams made up of 

members of varied characteristics, e.g., prior knowledge and motivation, and experiment 

with how decisions on tutorial feedback, such as target, channel and timing, impact the 

team’s learning. In conclusion, the multiagent testbed we have constructed uses a 

relatively simple coordination scenario as a jumping-off point for a wide variety of 

potential simulations of collaborative learning and team training that can have 

implications for intelligent tutoring systems for real-human teams. 
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