
36

Simulating Collaborative Learning through Decision-

Theoretic Agents

David V. Pynadath1, Ning Wang1, and Richard Yang2

1 Institute for Creative Technologies, University of Southern California

{pynadath, nwang}@ict.usc.edu

Stanford University

richard.yang@cs.stanford.edu

Abstract. Simulation for team training has a long history of success in

medical care and emergency response. In fields where individuals work

together to make decisions and perform actions under extreme time

pressure and risk (as in military teams), simulations offer safe and repeat-

able environments for teams to learn and practice without real-world

consequences. In our team-based training simulation, we use intelligent

agents to represent individual learners and to autonomously generate

behavior while learning to perform a joint task. Our agents are built upon

PsychSim, a social-simulation framework that uses decision theory to

provide domain-independent, quantitative algorithms for representing and

reasoning about uncertainty and conflicting goals. We present a

collaborative learning testbed in which two PsychSim agents performed a

joint “capture-the-flag” mission in the presence of an enemy agent. The

testbed supports a reinforcement-learning capability that enables the

agents to revise their decision-theoretic models based on their experiences

in performing the target task. We can “train” these agents by having them

repeatedly perform the task and refine their models through reinforcement

learning. We can then “test” the agents by measuring their performance

once their learning has converged to a final policy. Repeating this train-

and-test cycle across different parameter settings (e.g., priority of

individual vs. team goals) and learning configurations (e.g., train with the

same teammate vs. train with different teammates) yields a reusable

methodology for characterizing the learning outcomes and measuring the

impact of such variations on training effectiveness.

Keywords: collaborative learning, team-based training, intelligent agent, reinforcement

learning, social simulation

1 Introduction

A good team is more than a collection of individuals. In an effective team, each team

member masters its individual role and coordinates with other team members to

accomplish complex tasks. Good teams do not happen by accident. Team members train

individually and together in order to do well as a team. Although team tasks are

2

mailto:richard.yang@cs.stanford.edu

37

ubiquitous in today’s society, team-based training, particularly with the use of

simulations, has a long history in medical care, emergency responses, and the military

(e.g., [1], [2], and [3]). Realistic simulations can offer safe and repeatable environments

for teams to practice without the real-world consequences. However, simulations alone

are often not enough to ensure learning. Instructional support is often needed to help the

team and individuals in case of mistakes and impasse, and guide the team on the path to

success. Instructional support in teams has its unique challenges, compared to such

support delivered in individual learning settings. Decisions on the target (individual vs.

team), channel (private vs. public), and timing of the feedback (immediate vs. delayed)

and many more issues can greatly impact how such support is received by the team and

the efficacy of the feedback [4]. The type of support and how and when it should be

delivered depends on the team structure (e.g., with leadership or leaderless) and what the

team is trying to learn (e.g., task-related vs. teamwork related, for review, see [5] and

[6]). Mismatch between the support and the team needs can result in tutorial feedback

being ignored at best and interfering with the team learning at worst [7].

Instead of testing with human participants, a simulation of how teams train together

and how instructional feedback influences team members and a team is desired. Inspired

by the challenge in the design of instructional support for team training, we have

developed a testbed to simulate how team members learn together. In the current

implementation of the testbed, team members are modeled as intelligent agents in a

collaborative learning setting where they can learn from experience to improve team

performance. Collaborative learning is often considered a type of team training, with

emphasis on the team training how to collaborate to improve as a whole [6]. It is different

from cooperative learning in that the agent does not try to maximize learning of other

team members. However, our simulation testbed is not limited to collaborative learning

only— each member of the team can learn to improve its own action, in addition to

learning to collaborate with others, to improve team performance.

Instructional support in team tutoring can take many forms and often depends on the

team structure. For example, tutorial feedback for a team with a vertical leadership structure

is more likely to differ based on members at different levels. For a leaderless team, the

feedback is likely to be structured more for peers [9]. When a team is actively engaged in

learning, team members communicate among themselves to discuss best actions, ask each

other questions, and explain their reasoning. In our simulation testbed, we build upon

feedback from peers. Instead of receiving instructional support from a tutor, the

simulated team members learn from their own experience and from each other.

In this paper, we present a reconfigurable testbed with three agents training in a

joint capture-the-flag scenario. We propose a methodology by which the agents train

through repeated practice of the task and refine their models through reinforcement

learning. The agents then test their learning outcome by measuring the efficacy of a final

policy. Repeating this train-and-test cycle across different parameter settings yields a

reusable methodology for characterizing the learning outcomes and measuring

38

the impact of such variations on training effectiveness. The testbed can thus serve as a

sandbox to test instructional feedback and other alternative strategies of value in team-

tutoring research.

2 Related Work

While there is a vibrant research community on automatically-generated instructional

support for learning in an individual setting (for review, see [9]), research on such

support in the context of team training is relatively scarce. Early research in team-based

simulation focused on creating an environment that allows teams to practice together.

The Advanced Embedded Training System (AETS) is one such effort [10]. AETS is an

intelligent tutoring system built for an Air Defense Team on a ship’s Combat Information

Center to learn how to utilize the command and control system. While AETS enables

multiple users to train as a team, assessment and feedback were given on an individual

basis. Such feedback was then relayed to a human tutor, who offered team-based

feedback. A similar effort is the Steve agent-based training simulation for emergency

response on a military vessel [3]. In the training simulation, Steve agents can serve as a

tutor as well as an individual team member, thus allowing the simulation to support a

team of any combination of Steve agents and humans to train together. In the training

simulation, Steve agents and humans learn to complete tasks through communication

between team members.

More recently, there has been a resurgence of research into automated tutorial

support for team training. One of the team training simulation testbeds implements a

Multiple Errands Test, where a team of three completes errands following a shipping list

in a virtual mall [7]. Using this testbed, a study on the influence of privacy (Public vs.

Private) and audience (Direct vs. Group) of feedback showed no significant influences

of such variables on team performance. A more recent effort is the Recon testbed that

was built with the Generalized Intelligent Framework for Tutoring (GIFT) [5]. It

supports the collaborative team task of reconnaissance [11]. Using the Recon testbed,

researchers again experimented with variables in feedback to the teams, specifically

target (individual vs. team), within 2-person teams [12].

Our testbed is used not for training but to simulate the training process. Agents

learn to improve both their own and the team’s performance from their own experience,

by observing other agents, and by communicating with teammates. We draw upon the

body of multiagent research on simulating teamwork and learning. Existing formalisms

represent team goals, plans, and organizations that operationalize decision-making found

in human teams [13, 14, 15]. Embedding these mechanisms within intelligent agents has

enabled the construction of high- fidelity simulations of team behavior (e.g., simulated

aircraft performing a joint mission [16]). The uncertainty and conflicting goals that are

ubiquitous in most team settings led to decision-theoretic extensions of these models to

incorporate quantitative probability and utility functions [17, 18]. More recently, agents

have incorporated reinforcement learning (among other methods) to derive these models

through experience and in a decentralized fashion, allowing individual agents to arrive

at a coordinated strategy through experience [19, 20, 21].

39

3 PsychSim

We have built our testbed using the multiagent social simulation framework, PsychSim

[22, 23]. PsychSim grew out of the prescriptive teamwork frameworks cited in Section

2 (especially [18]), but with a different aim toward being a descriptive model of human

behavior. PsychSim represents people as autonomous agents that integrate two

multiagent technologies: recursive models [24] and decision-theoretic reasoning [25].

Recursive modeling gives agents a Theory of Mind [26], to form complex attributions

about others and incorporate such beliefs into their own behavior. Decision theory

provides the agents with domain-independent algorithms for making decisions under

uncertainty and in the face of conflicting objectives. We have used PsychSim to model

a range of cognitive and affective biases in human decision-making and social behavior

(e.g., [27, 28]).

Another motivation behind the use of PsychSim is its successful application within

multiple simulation-based learning environments. The Tactical Language Training

System (TLTS) is an interactive narrative environment in which students practice their

language and culture skills by talking to non-player characters built upon PsychSim

agents [29]. We also used PsychSim’s mental models and quantitative decision-theoretic

reasoning to model a spectrum of negotiation styles within the ELECT BiLAT training

system [30]. Additionally, UrbanSim used a PsychSim-driven simulation to put trainees

into the role of a battalion commander undertaking an urban stabilization operation [31].

In SOLVE, PsychSim agents populate a virtual social scene where people could practice

techniques for avoiding risky behavior [32, 33].

We have also used PsychSim to build experimental testbeds for studying human

teamwork. In one such testbed, we used a PsychSim agent to autonomously generate

behaviors for a simulated robot that teamed with a person, in a study of trust within

human-robot interaction [34, 35]. Another PsychSim-based testbed gave four human

participants a joint objective of defeating a common enemy, but with individual scores

that provided some impetus for competitive behavior within the ostensible team setting

[36]. We build upon PsychSim’s capability for such experimental use in the expanded

interaction of the current investigation.

4 Team-based Training Simulation

In our testbed, we implement a “capture-the-flag” scenario. In the scenario, a team of

trainees learn how to work together to attack a goal location being defended by a team

of enemies. Both the trainees and enemies are represented as PsychSim agents. In the

preliminary testing described here, the blue team consists of three agents, while the red

team consists of only one (denoted as Enemy). The three blue agents are assigned to three

distinct roles: the Attacker tries to reach the goal location, the Decoy tries to lure

40

the enemy away from the Attacker, and the Base decides whether or not to deploy the

Decoy. Ideally, the Attacker should proceed to the goal while maintaining a safe distance

from the Enemy. If the Enemy detects the Attacker and approaches it, the Base should

deploy the Decoy. The Decoy should then approach the Enemy to draw its attention away

from the Attacker. Such a coordinated strategy will maximize the chance that the team

achieves its objective, while minimizing the chance that the Enemy captures any team

members (see Figure 1).

PsychSim represents the decision-making problem facing the agents as a Partially

Observable Markov Decision Process (POMDP) [25]. Partial observability accounts for

the fact that the agents cannot read each other’s minds and that they may have incomplete

or noisy observations of the environment. However, in this presentation, we make the

environment itself completely observable, reducing the domain to a Markov Decision

Process (MDP) instead. An MDP is a tuple <S, A, P, R>, with S being the set of states,

A the set of actions, P the transition probability representing the effects of the actions on

the states, and R the reward function that expresses the player’s preferences.

Fig. 1. A mid-mission screenshot of the “capture-the-flag” scenario. The Attacker, Base

and Decoy are located at [3,5], [1,1] and [3,1], while the Enemy and the goal are located at

[3,3] and [6,5].

The state of the world, S, represents the evolution of the game state over time. We use a

factored representation [37] that allows us to separate the overall game state into

orthogonal features that are easier to specify and model. The locations of the agents and

of the goal are specified by x and y coordinates on a grid. The grid is 5 x 8 in the specific

configuration described here, but obviously other grid sizes are possible. There is also a

cost associated with deploying the Decoy agent, as opposed to letting the other

41

agent go solo. The actions, A, available to the Attacker, Decoy, and Enemy agents are

moves in one of the four directions or waiting in their current location. The Base can

either deploy the Decoy agent or wait. The transition probability, P, represents the effect

of the agents’ movement decisions, which we specify here to succeed with 100%

reliability. In general, the P function can capture any desired stochastic error (e.g., due

to terrain or visual conditions).

The Attacker agent has two potentially conflicting objectives within its reward

function, R: minimizing its distance to the goal (i.e., to try and reach the goal) and

maximizing its distance from the Enemy (i.e., to avoid capture). More precisely, the

Attacker’s reward function is a weighted sum of the difference between its x and y values

and the goal’s and between its x and y values and the Enemy’s. The Decoy agent also has

two potentially conflicting objectives: minimizing its distance from Enemy and

maximizing the distance between the Attacker and Enemy. It thus tries to lure the Enemy

toward itself and away from the Attacker. The Base agent’s conflicting objectives consist

of also minimizing the distance between the Decoy and Enemy, while also minimizing

the cost of deploying the Decoy. Finally, the Enemy agent seeks to minimize its distance

to the Attacker and Decoy agents (i.e., to capture them if possible, or at least drive them

away). Thus, each agent has two conflicting objectives within its reward function, and

the weights assigned to each determine their relative priority. Modifying these weights

will change the incentives that each agent perceives.

Having specified the game within the PsychSim language, we can apply existing

algorithms to autonomously generate decisions for individual agents [25]. Such

algorithms enable the agent to consider possible moves (both immediate and future),

generate expectations of the responses of the other agents, and compute an expected

reward gain (or potentially loss) for each such move. It then chooses the move that

maximizes this expected reward. Importantly, this algorithm can autonomously generate

behavior without any additional specification, allowing us to observe differences in

behavior that result from varying modeling parameters (e.g., the relative priority between

objectives).

5 Evaluation

To evaluate the testbed’s suitability for studying collaborative learning, we simulated the

scenario with alternate configurations of the Attacker agent to explore the space of team

behavior and outcomes. Our goal is to verify that varying the agent’s model (especially

its reward function) will lead to different individual behaviors and team outcomes and

uncover what and how the team should train to improve. To quantify the team outcome,

the blue team is given a score that is a weighted sum of the distance between Attacker

and the goal (0 means success), distance between Attacker and Enemy (0 means capture

and immediate failure), the cost incurred from Decoy deployment, and the duration of

the task as a function of total number of turns. During the experiment, each mission has

a maximum duration of 20 turns, as that length was generally sufficient for a specific

configuration to succeed if it ever would.

42

Missions where the Attacker reached the goal in fewer than 10 turns were given a bonus

score. Figure 2 shows the overall team score (blue means better, red means worse) as a

function of the Attacker’s reward weights. The X axis represents the weight of getting

closer to the goal, while the Y axis represents the weight of getting closer to the Enemy.

In other words, in the right (left) half of the graph, it wants to move toward (away from)

the goal, and in the bottom (top) half, it wants to move away from (toward) the enemy.

Fig. 2. Blue team’s overall performance as a function of Attacker reward weights

Not surprisingly, the team’s top performance is in the bottom right, where the Attacker

minimizes its distance to the goal and maximizes its distance to the Enemy —i.e., it tries

to reach the goal while avoiding capture. The success at point (-1,1) gives equal weight

to the two objectives of team actions, but we can see that the team can achieve similarly

high performance at other weightings along the diagonal in the bottom-right region. This

balance is a function of our scoring metric that gave equal weight (in magnitude) to those

two outcomes.

We can also see where the blue team needs to improve by learning a better balance

(i.e. the reward weights) of its objectives. In particular, there is a large light-blue region

of positive results on the left of the graph, i.e., where Attacker instead carries out actions

to maximize distance from the goal. By staying away from the goal, the agent also

generally stays away from the Enemy, who starts off near the goal. Thus, capture is very

rare in this region, but mission success is also rare. This region provides a challenge for

the team’s training, which must ensure that the Attacker agents who start

43

off in this light-blue region move through the intervening light-red regions (where they

will achieve bad outcomes) to get to the superior, but relatively hard-to-find, dark blue

points in the bottom right.

6 Discussion

The existing testbed thus provides an interesting space of team behaviors, even within

this small-scale configuration. By representing this scenario on top of a general

multiagent framework, we gain access to a wide space of possible reconfiguration

dimensions that can be used for future investigations. In this section, we propose a series

of such reconfigurations that would be valuable for studying collaborative learning and

team training. For example, the testbed provides a challenging environment for

reinforcement learning, where individual trainees learn from their own experience to

balance their objectives. We can incorporate reinforcement learning into our PsychSim

agents to simulate how each teammate can improve its behavior through its own

experience [38]. Using model-based reinforcement learning, the agents can change the

weights within their reward function based on the outcomes of their decisions. For

example, if the Attacker gets captured, it will increase the weight associated with moving

away from the enemy. If it does not get captured, but fails to reach the goal, it will

increase the weight associated with nearing the goal. Such a procedure will allow the

Attacker to dynamically learn a reward function that is optimized with respect to mission

objectives.

However, the Decoy and Base agents receive less direct feedback for their

decisions. We can instead allow them to learn by observing the outcomes for their

Attacker teammate. For example, if the goal is not achieved even after avoiding capture,

the Decoy could give a higher weight to drawing the Enemy to itself. Alternatively, it

could introduce a new objective of minimizing the distance between the Attacker and

goal, giving the Decoy an explicit model of the goal objective. By updating these three

weights, we can explore the ability for the Attacker’s teammates to learn from its direct

feedback. We can thus vary the feedback (i.e., the reinforcement learning signal)

received by the agents in terms of the credit and blame for outcomes. Alternatively, we

can broadcast the feedback to the entire team, causing the agents to update their models

of their teammates as well using PsychSim’s Theory of Mind capability. In general, this

mechanism allows us to experiment with different feedback signals to give individual

team members based on mission outcomes and team learning.

One key advantage of using an agent framework like PsychSim is that we have

many dimensions along which we can enrich the reasoning of our learners. For example,

in the current configuration, all of the agents know each other’s objectives. This is not a

realistic model of human teamwork, where people rarely know exactly how important

team vs. individual objectives are to their teammates. Fortunately, PsychSim’s Theory

of Mind reasoning allows us to easily give the agents uncertainty about the reward

function of other agents. We can thus expand our agents’ learned behaviors to consider

44

not just the locations of their teammates, but also their subjective perspectives.

Introducing uncertainty also necessitates communication among teammates.

Successful teamwork uses communication to maintain shared situational awareness

about task progress, teammate status, etc. [13, 14, 15]. We can leverage our underlying

agent architecture’s existing algorithms for belief update [25] and communication [22]

to explore alternate communication strategies to establish coherent joint beliefs among

team members. In other words, our learning agents would expand their action space to

include possible messages, such as “There is a 90% chance that the Enemy is at (3,3)”.

They would subsequently arrive at a learned behavior that specifies the best conditions

under which to send such messages (e.g., if no one has found the enemy yet, then report

your estimated location of the Enemy when your confidence is > 75%).

We can reuse this mechanism to explore the effect of post-mission communication

as well. Upon learning to maximize their individual performance, agents can

communicate their learned policy to other team members, particularly those still

performing suboptimally. Such communication would simulate a form of peer tutoring

[39] commonly seen in collaborative learning. We could also enrich this communication

to include an agent’s explanation of its optimal policy (e.g., using [40]) to justify its

choice to its teammates. We can also investigate alternate channels for this team

communication, for example, allowing messages addressed to an individual agent vs.

messages broadcast to the whole team.

Once our agents are learning about teammates, we can use our testbed to study

different team training configurations. For example, we could let a team of agents “train”

by repeating missions until they learn a good coordination policy. Then, we could “test”

the team by replacing a team member with an agent that had not performed any learning.

Alternatively, we could have each agent train separately with continually changing team

members, and then test a team of agents that have trained in such a fashion. By

quantifying the performance outcomes of these different training methods under

different task and environment configurations, we can gain potential insight into the

conditions under which each can be expected to improve team performance. For

example, we could measure the benefit of introducing an “experienced” team member

(an agent who has learned about the domain in prior iterations) into an “inexperienced”

team (agents who have never operated in the domain before). Simulating the

performance of such a team might (for example) show that the experienced agent

provides a “tutoring” benefit when post-mission communication is allowed to support

learning, but can actually hinder performance (because of expectation mismatches)

without such communication.

While the work discussed here focuses on simulations of how team trains together

with virtual agents, it can help inform the design of intelligent team tutoring systems for

real human teams. For example, one of the decisions an intelligent tutor needs to make

is when to provide the feedback. Immediate feedback may help the team on the task at

hand but interfere with team building. Delayed feedback may result in frustration after

the team exhausts options and fails. Outcomes from simulations of tutorial feedback

45

given at different times (immediate vs. delayed vs. a combination of the two) can help

the designers of such intelligent tutors weigh the trade-offs between the choices of

timing. Additionally, using PsychSim agents, we can simulate teams made up of

members of varied characteristics, e.g., prior knowledge and motivation, and experiment

with how decisions on tutorial feedback, such as target, channel and timing, impact the

team’s learning. In conclusion, the multiagent testbed we have constructed uses a

relatively simple coordination scenario as a jumping-off point for a wide variety of

potential simulations of collaborative learning and team training that can have

implications for intelligent tutoring systems for real-human teams.

7 Acknowledgment

This project is funded by the U.S. Army Research Laboratory. Statements and opinions

expressed do not necessarily reflect the position or the policy of the United States

Government, and no official endorsement should be inferred.

References

1. Heinrichs, W.L., Youngblood, P., Harter, P.M., Dev, P.: Simulation for team train-

ing and assessment: case studies of online training with virtual worlds. World

Journal of Surgery 32(2), 161–170 (2008).

2. Merién, A., Van de Ven, J., Mol, B., Houterman, S., Oei, S.: Multidisciplinary

team training in a simulation setting for acute obstetric emergencies: a systematic

review. Obstetrics & Gynecology 115(5), 1021–1031 (2010).

3. Rickel, J., Johnson, W.L.: Virtual humans for team training in virtual reality. In:

AIED. p. 585 (1999).

4. Walton, J., Dorneich, M.C., Gilbert, S., Bonner, D., Winer, E., Ray, C.: Modality

and timing of team feedback: Implications for GIFT. In: GIFT Users Symposium.

pp. 190–198 (2014).

5. Gilbert, S.B., Slavina, A., Dorneich, M.C., Sinatra, A.M., Bonner, D., Johnston, J.,

Holub, J., MacAllister, A., Winer, E.: Creating a team tutor using gift. IJAIED pp.

1–28 (2017).

6. Sottilare, R.A., Burke, C.S., Salas, E., Sinatra, A.M., Johnston, J.H., Gilbert, S.B.:

Designing adaptive instruction for teams: A meta-analysis. IJAIED pp. 1–40 (2017).

7. Walton, J., Gilbert, S.B., Winer, E., Dorneich, M.C., Bonner, D.: Evaluating dis-

tributed teams with the team multiple errands test. In: I/ITSEC (2015).

8. Bonner, D., Gilbert, S., Dorneich, M.C., Burke, S., Walton, J., Ray, C., Winer, E.:

Taxonomy of teams, team tasks, and tutors. In: GIFT Users Symposium. p. 189

(2015).

9. du Boulay, B.: Recent meta-reviews and meta–analyses of aied systems. IJAIED

26(1), 536–537 (2016).

10. Zachary, W., Cannon-Bowers, J.A., Bilazarian, P., Krecker, D.K., Lardieri, P.J.,

Burns, J.: The advanced embedded training system (AETS): An intelligent

embedded tutoring system for tactical team training. IJAIED 10, 257–277 (1998).

11. Bonner, D., Walton, J., Dorneich, M.C., Gilbert, S.B., Sottilare, R.A.: The

development of a testbed to assess an intelligent tutoring system for teams. In: AIED

Workshop on Developing a GIFT (2015).

12. MacAllister, A., Kohl, A., Gilbert, S., Winer, E., Dorneich, M., Bonner, D., Slavina,

A.: Analysis of team tutoring training data. In: MODSIM World (2017).

46

13. Cohen, P.R., Levesque, H.J.: Teamwork. Nous 25(4), 487–512 (1991).

14. Grosz, B.J., Kraus, S.: Collaborative plans for complex group action. AIJ 86(2),

269–357 (1996).

15. Tambe, M.: Towards flexible teamwork. JAIR 7, 83–124 (1997).
16. Tambe, M., Johnson, W.L., Jones, R.M., Koss, F., Laird, J.E., Rosenbloom, P.S.,

Schwamb, K.: Intelligent agents for interactive simulation environments. AI

Magazine 16(1), 15–40 (1995).

17. Tambe, M., Zhang, W.: Towards flexible teamwork in persistent teams. JAAMAS

3(2), 159–183 (2000).

18. Pynadath, D.V., Tambe, M.: The communicative multiagent team decision prob-
lem: Analyzing teamwork theories and models. JAIR 16, 389–423 (2002).

19. Stone, P., Veloso, M.: Multiagent systems: A survey from a machine learning per-

spective. Autonomous Robots 8(3), 345–383 (2000).

20. Panait, L., Luke, S.: Cooperative multi-agent learning: The state of the art. JAA-

MAS 11(3), 387–434 (2005).

21. Busoniu, L., Babuska, R., De Schutter, B.: A comprehensive survey of multiagent

reinforcement learning. IEEE Transactions on SMC 38(2), 156–172 (2008).

22. Marsella, S.C., Pynadath, D.V., Read, S.J.: PsychSim: Agent-based modeling of

social interactions and influence. In: ICCM. pp. 243–248 (2004).

23. Pynadath, D.V., Marsella, S.C.: PsychSim: Modeling theory of mind with decision-

theoretic agents. In: IJCAI. pp. 1181–1186 (2005).

24. Gmytrasiewicz, P.J., Durfee, E.H.: A rigorous, operational formalization of recur-

sive modeling. In: ICMAS. pp. 125–132 (1995).

25. Kaelbling, L.P., Littman, M.L., Cassandra, A.R.: Planning and acting in partially

observable stochastic domains. AIJ 101(1), 99–134 (1998).

26. Whiten, A., Byrne, R.: Natural theories of mind: Evolution, development and sim-

ulation of everyday mindreading. B. Blackwell Oxford, UK (1991).

27. Pynadath, D.V., Marsella, S.C.: Socio-cultural modeling through decision-theoretic

agents with theory of mind. In: Nicholson, D.M., Schmorrow, D.D. (eds.) Advances

in Design for Cross-Cultural Activities, pp. 417–426. CRC Press (2013).

28. Pynadath, D.V., Si, M., Marsella, S.C.: Modeling theory of mind and cognitive

appraisal with decision-theoretic agents. In: Gratch, J., Marsella, S. (eds.) Social

emotions in nature and artifact: Emotions in human and human-computer inter-

action, chap. 5, pp. 70–87. Oxford University Press (2014).

29. Si, M., Marsella, S.C., Pynadath, D.V.: Thespian: Using multi-agent fitting to craft

interactive drama. In: AAMAS. pp. 21–28 (2005).

30. Kim, J.M., Hill, Jr., R.W., Durlach, P.J., Lane, H.C., Forbell, E., Core, M., Marsella,

S., Pynadath, D., Hart, J.: BiLAT: a game-based environment for practicing

negotiation in a cultural context. IJAIED 19(3), 289–308 (2009).

31. McAlinden, R., Pynadath, D., Hill, Jr., R.W.: UrbanSim: Using social simulation to

train for stability operations. In: Ehlschlaeger, C. (ed.) Understanding Megacities

with the Reconnaissance, Surveillance, and Intelligence Paradigm, pp. 90–99 (2014).

32. Klatt, J., Marsella, S., Kramer, N.C.: Negotiations in the context of aids prevention:

an agent-based model using theory of mind. In: IVA. pp. 209–215 (2011).

33. Miller, L.C., Marsella, S., Dey, T., Appleby, P.R., Christensen, J.L., Klatt, J., Read,

S.J.: Socially optimized learning in virtual environments (SOLVE). In: ICIDS. pp.

182–192 (2011).

34. Wang, N., Pynadath, D.V., Shankar, S., K.V., U., Merchant, C.: Intelligent agents

for virtual simulation of human-robot interaction. In: HCI. pp. 228–329 (2015).

47

35. Wang, N., Pynadath, D.V., Hill, S.G.: Building trust in a human-robot team. In:

I/ITSEC (2015).

36. Pynadath, D.V., Wang, N., Merchant, C.: Toward acquiring a human behavior

model of competition vs. cooperation. In: I/ITSEC (2015).

37. Boutilier, C., Dean, T., Hanks, S.: Decision-theoretic planning: Structural

assumptions and computational leverage. JAIR 11(1), 94 (1999).

38. Sutton, R.S., Barto, A.G.: Reinforcement learning: An introduction. MIT Press

(1998).

39. Topping, K.J.: The effectiveness of peer tutoring in further and higher education: A

typology and review of the literature. Higher Education 32(3), 321–345 (1996).

40. Wang, N., Pynadath, D.V., Hill, S.G.: The impact of POMDP-generated

explanations on trust and performance in human-robot teams. In: AAMAS (2016).

