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ABSTRACT
We focus on the problem of query rewriting for sponsored
search. We base rewrites on a historical click graph that
records the ads that have been clicked on in response to
past user queries. Given a query q, we first consider Sim-
rank [7] as a way to identify queries similar to q, i.e., queries
whose ads a user may be interested in. We argue that Sim-
rank fails to properly identify query similarities in our ap-
plication, and we present two enhanced versions of Simrank:
one that exploits weights on click graph edges and another
that exploits “evidence.” We experimentally evaluate our
new schemes against Simrank, using actual click graphs and
queries from Yahoo!, and using a variety of metrics. Our
results show that the enhanced methods can yield more and
better query rewrites.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Retrieval
models

General Terms
Algorithms, Experimentation, Theory

Keywords
sponsored search, link analysis, similarity metric, click graph

1. INTRODUCTION
In sponsored search, paid advertisements (ads) relevant

to a user’s query are shown above or along-side traditional
web search results. The placement of these ads is in general
related to a ranking score which is a function of the semantic
relevance to the query and the advertiser’s bid.

Ideally, a sponsored search system would appear as in
Figure 1. The system has access to a database of available
ads and a set of bids. Conceptually, each bid consists of a
query q, an ad α, and a price p. With such a bid, the bidder
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Figure 1: General sponsored search system archi-
tecture.

offers to pay if the ad α is both displayed and clicked when a
user issues query q. For many queries, there are not enough
direct bids, so the sponsored search system attempts to find
other ads that may be of interest to the user who submitted
the query. Even though there is no direct bid, if the user
clicks on one of these ads, the search engine will make some
money (and the advertiser will receive a customer). The
challenge is then to find ads related to incoming queries
that may yield user click throughs.

For a variety of practical and historical reasons, the spon-
sored search system is often split into two components, as
shown in Figure 2. A front-end takes an input query q and
periodically produces a list of re-writes, i.e., of other queries
that are “similar” to q. For example, for query “camera,”
the queries “digital camera” and “photography” may be use-
ful because the user may also be interested in ads for those
related queries. The query “battery” may also be useful be-
cause users that want a camera may also be in the market
for a spare battery. The query and its rewrites are then con-
sidered by the back-end, which displays ads that have bids
for the query or its rewrites. The split approach reduces the
complexity of the back-end, which has to deal with rapidly
changing bids. The work of finding relevant ads, indirectly
through related queries, is off-loaded to the front-end.

Figure 2: A common sponsored search system ar-
chitecture.

At the front-end, queries can be rewritten using a variety
of techniques (reviewed in our Related Work section) devel-
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oped for document search. However, these techniques often
do not generate enough useful rewrites. Part of the problem
is that in our case “documents” (the ads) have little text,
and queries are very short, so there is less information to
work with, as compared with larger documents. Another
part of the problem is that there are relatively few queries
in the bid database, so even if we found all the textually re-
lated ones, we may not have enough. Thus, it is important
to generate additional rewrites, using other techniques.

In this paper we focus on query rewrites based on the re-
cent history of ads displayed and clicked on. The back-end
generates a historical click graph that records the clicks that
were generated by ads when a user inputs a given query.
The click graph is a weighted bi-partite graph, with queries
on one side and ads on the other (details in Section 3).
The schemes we present analyze the connections in the click
graph to identify rewrites that may be useful. Our tech-
niques identify not only queries that are directly connected
by an ad (e.g., users that submit either “mp3” or “i-tunes”
click on an ad for “iPod.”) but also queries that are more
indirectly related (Section 4). Our techniques are based on
the notion of SimRank [7], which can compute query simi-
larity based on the connections in a bi-partite click-graph.
However, in our case we need to extend SimRank to take
into account the specifics of our sponsored search applica-
tion. We present Simrank++ as a query rewriting technique
and we compare it with existing query rewriting techniques.
Since the query rewriting problem falls into the category of
collaborative filtering problems, Simrank++ is essentially a
new collaborative filtering technique.

Briefly, the contributions of this paper are as follows.

• We present a framework for query rewriting in a spon-
sored search environment.

• We identify cases where SimRank fails to transfer cor-
rectly the relationships between queries and ads into
similarity scores.

• We present two SimRank extensions: one that takes
into account the weights of the edges in the click graph,
and another that takes into account the “evidence”
supporting the similarity between queries.

• We experimentally evaluate these query rewriting tech-
niques, using an actual click graph from Yahoo!, and
a set of queries extracted from Yahoo! logs. We eval-
uate the resulting rewrites using several metrics. One
of the comparisons we perform involves manual eval-
uation of query-rewrite pairs by members of Yahoo!’s
Editorial Evaluation Team. Our results show that we
can significantly increase the number of useful rewrites
over those produced by SimRank and by another basic
technique.

2. RELATED WORK
The query rewriting problem has been extensively stud-

ied in terms of traditional web search. In traditional web
search, query rewriting techniques are used for recommend-
ing more useful queries to the user and for improving the
quality of search results by incorporating users’ actions in
the results’ ranking of future searches. Given a query and
a search engine’s results on this, the indication that a user
clicked on some results can be interpreted as a vote that

these specific results are matching the user’s needs and thus
are more relevant to the query. This information can then be
used for improving the search results on future queries. Ex-
isting query rewriting techniques for traditional web search,
include relevance feedback and pseudo-relevance feedback,
query term deletion [8], substituting query terms with re-
lated terms from retrieved documents [15], dimensionality
reduction such as Latent Semantic Indexing (LSI) [6], ma-
chine learning techniques [17, 16, 3] and techniques based
on the analysis of the click graph [4].

Pseudo-relevance feedback techniques involve submitting
a query for an initial retrieval, processing the resulting docu-
ments, modifying the query by expanding it with additional
terms from the documents retrieved and then performing an
additional retrieval on the modified query. However, pseudo-
relevance feedback requires that the initial query retrieval
procedure returns some results, something that is not always
the case in sponsored search, as described before. In addi-
tion, pseudo-relevance has many limitations in effectiveness
[13]. It may lead to query drift, as unrelated terms might be
added to the query and is also computationally expensive.
Query relaxation or deleting query terms leads to a loss of
specificity from the original query.

In LSI, a collection of queries is represented by a terms
queries matrix where each column corresponds to the vector
space representation of a query. The column space of that
matrix is approximated by a space of much smaller dimen-
sion that is obtained from the leading singular vectors of the
matrix and then similarity scores between different queries
can be computed. LSI is frequently found to be very effective
even though the analysis of its success is not as straightfor-
ward [10]. The computational kernel in LSI is the singular
value decomposition (SVD). This provides the mechanism
for projecting both the queries on a lower-dimensional space
spanned by the leading left singular vectors. In addition to
performing dimensionality reduction, LSI captures hidden
semantic structure in the data and resolves problems caused
by synonymy and polysemy in the terms used. However, a
well known difficulty with LSI is the high cost of the SVD
for the large, sparse matrices appearing in practice.

3. PROBLEM DEFINITION
Let Q denote a set of n queries and A denote a set of m

ads. A click graph for a specific time period is an undirected,
weighted, bipartite graph G = (Q,A, E) where E is a set of
edges that connect queries with ads. G has an edge (q, α)
if at least one user that issued the query q during the time
period also clicked on the ad α. Each edge (q, α) has three
weights associated with it. The first one is the number of
times that α has been displayed as a result for q and is
called the impressions of α given q. The second weight is the
number of clicks that α received as a result of being displayed
for the query q. This second weight is less than or equal to
the first weight. The number of clicks divided by the number
of impressions gives us the likelihood that a displayed ad will
be clicked on. However, to be more accurate, this ratio needs
to be adjusted to take into account the position where the
ad was displayed. That is, an ad α placed near the top of the
sponsored results is more likely to be clicked on, regardless
of how good an ad it is for query q. Thus, the third weight
associated with an edge (q, α) is the expected click rate, an
adjusted clicks over impressions rate. The expected click
rate is computed by the back-end (Figure 2), and we do
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not discuss the details here. The interested reader can find
more information in the rich related literature (e.g. [11, 12]).
Finally, for a node v in a graph, we denote by E(v) the set
of neighbors of v. We also define N(v) = |E(v)| that is N(v)
denotes the number of v’s total neighbors.

As discussed in the introduction, our goal is to find queries
that are similar, in the sense that the ads clicked on for one
query are likely to be clicked on when displayed for a user
that entered the second query. We will predict similarity
based on the information in the click graph: The intuition is
that if an ad received clicks when displayed for both queries
q1 and q2, then the queries are similar. Furthermore, if q2

is related to q3 in the same way but through some other
ad, then q1 and q3 are also similar, although possibly to a
lesser degree. We discuss our notion of similarity more in
the following section.

Note that if the click graph does not contain an ad α that
received clicks when q1 and q2 were issued, then we cannot
infer that q1 and q2 are not similar. The queries could very
well be similar (in our sense), but while the click-graph was
collected, the back-end did not display ads that would have
shown this similarity. (Perhaps there were no bids for those
ads at the time.) As we will see later, even without the
common ad α, we may still be able to discover the similarity
of q1 and q2 through other similarity relationships in the
click-graph.

Also note that in this paper we are not addressing prob-
lems of click or ad fraud. Fraud is a serious problem, where
organizations or individuals generate clicks or place ads with
the intent of defrauding or misleading the advertiser and/or
the search engine. Query rewriting strategies may need to
be adjusted to protect from fraud, but we do not consider
such issues here.

Finally, notice that our query rewriting problem is a type
of collaborative filtering (CF) problem. We can view the
queries as “users” who are recommending “ads” by clicking
on them. When we identify similar queries, we are finding
queries that have similar recommendations, just like in CF,
where one finds users that have similar tastes. In our set-
ting, we are only trying to find similar queries (users), and
not actually predicting recommended ads. Furthermore, as
we will see, we are tuning our similarity metrics so they
work well for sponsored search, as opposed to generic rec-
ommendations. However, we believe that the idea of using
link analysis algorithms for the development of collaborative
filtering techniques can be proven a powerful tool.

4. SIMILAR QUERIES
In this section we discuss the notion of query similarity

that we are interested in. As we mentioned earlier, we will be
saying that two queries are similar if they tend to make the
search engine users to click on the same ads. Let us illustrate
this with an example. Figure 3 shows a small click graph;
for simplicity we have removed the weights from the edges
and thus an edge indicates the existence of at least one click
from a query to an ad. In this graph, the queries “pc” and
“camera” are connected through a common ad and thus can
be considered similar. Notice that this notion of similarity is
not related to the actual similarity of the concepts described
by the query terms. Now, we can observe that the queries
“camera” and “digital camera” are connected through two
common ads and thus can be considered similar. In contrast,
queries “pc” and “tv” are not connected through any ad.

Table 1: Query-query similarity scores for the sam-
ple click graph of Figure 3. Scores have been com-
puted by counting the common ads between the
queries

pc camera digital camera tv flower

pc - 1 1 0 0
camera 1 - 2 1 0

digital camera 1 2 - 1 0
tv 0 1 1 - 0

flower 0 0 0 0 -

However, both “pc” and “tv” are connected through an ad
with the queries “digital camera” and “camera” which we
already saw that are similar. Thus, we have a small amount
of evidence that “pc” and “tv” are somehow similar, because
they are both similar with queries that bring clicks to the
same ads. In that case we will be saying that “pc” and
“tv” are one hop away from queries that have a common
ad. There might actually be cases where two queries will
be two or more hops away from queries that bring clicks to
the same ad. Finally, let us consider the queries “tv” and
“flower”. There is no path in the click graph that connects
these two queries and thus we conclude that these queries
are not similar.

Figure 3: Sample unweighted click graph. An edge
indicates the existence of at least one click from a
query to an ad.

Thus, a naive way to measure the similarity of a pair of
queries would be to count the number of common ads that
they are connected to. Table 1 presents the resulting simi-
larity scores for our sample click graph. As we can see there,
“pc” has a similarity score 1 both with “camera” and “digi-
tal camera” but no similarity with “tv” and “flower”. How-
ever, “camera” has a similarity score 2 with “digital camera”
which indicates a stronger similarity. Also, “tv” has similar-
ity 0 both with “pc” and “flower”. Notice also that flower
has similarity 0 with all the other queries. It is obvious that
this naive technique cannot capture the similarity between
“pc” and “tv” (as it does not look at the whole graph struc-
ture) and determines that their similarity is zero. In the
following section we will see how we can compute similarity
scores that take into account all the interactions appearing
in the graph.
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5. SIMRANK-BASED QUERY SIMILARITY
Simrank [7] is a method for computing object similari-

ties, applicable in any domain with object-to-object rela-
tionships, that measures similarity of the structural context
in which objects occur, based on their relationships with
other objects. Specifically, in the case where there are two
types of objects, bipartite Simrank is an iterative technique
to compute the similarity score for each pair of objects of
the same type. Bipartite Simrank is based on the underly-
ing idea that two objects of one type are similar if they are
related to similar objects of the second type. In our case, we
can consider the queries as one type of objects and the ads
as the other and use bipartite Simrank to compute similarity
scores for each query-query pair.

Let s(q, q′) denote the similarity between queries q and q′,
and let s(α, α′) denote the similarity between ads α and α′.
For q 6= q′, we write the equation:

s(q, q′) =
C1

N(q)N(q′)

∑

i∈E(q)

∑

j∈E(q′)

s(i, j) (1)

where C1 is a constant between 0 and 1. For α 6= α′, we
write:

s(α, α′) =
C2

N(α)N(α′)

∑

i∈E(α)

∑

j∈E(α′)

s (i, j) (2)

where again C2 is a constant between 0 and 1.
If q = q′, we define s(q, q′) = 1 and analogously if α = α′

we define s(α, α′) = 1. Neglecting C1 and C2, equation 1
says that the similarity between queries q and q′ is the aver-
age similarity between the ads that were clicked on for q and
q′. Similarly, equation 2 says that the similarity between ads
α and α′ is the average similarity between the queries that
triggered clicks on α and α′.

In the SimRank paper [7], it is shown that a simultaneous
solution s(∗, ∗) ∈ [0, 1] to the above equations always exists
and is unique. Also notice that the SimRank scores are
symmetric, i.e. s(q, q′) = s(q′, q).

In order to understand the role of the C1, C2 constants, let
us consider a simple scenario where two ads α and α′ were
clicked on for a query q (which means that edges from q
towards α and α′ exist), so we can conclude some similarity
between α and α′. The similarity of q with itself is 1, but we
probably don’t want to conclude that s(α, α′) = s(q, q) = 1.
Rather, we let s(α, α′) = C2 · s(q, q), meaning that we are
less confident about the similarity between α and α′ than
we are between q and itself.

Let us look now at the similarity scores that Simrank
computes for our simple click graph of Figure 3. Table 2
presents the similarity scores between all query pairs. If we
compare these similarity scores with the ones in Table 1, we
can make the following observations. Firstly, “camera” and
“digital camera” have now the same similarity score with all
other queries except for “flower”. Secondly, “tv” has sim-
ilarity 0.437 with “pc”, 0.619 with “camera” and “digital
camera” and zero with “flower”. Notice that Simrank takes
into account the whole graph structure and thus correctly
produces a nonzero similarity score for the pair “tv” - “pc”.
Also notice that “camera” has two common ads with “digi-
tal camera” and only one common ad with “tv”. However,
Simrank does not produce different similarity scores for the
“camera”-“digital camera” and “camera”-“tv” pairs. We
will come back to this issue in detail in Section 6.

Table 2: Query-query similarity scores for the sam-
ple click graph of Figure 3. Scores have been com-
puted by Simrank with C1 = C2 = 0.8

pc camera digital
camera tv flower

pc - 0.619 0.619 0.437 0
camera 0.619 - 0.619 0.619 0

digital camera 0.619 0.619 - 0.619 0
tv 0.437 0.619 0.619 - 0

flower 0 0 0 0 -

We close our presentation of Simrank by presenting Algo-
rithm 1 which computes the Simrank scores of a click graph.
Appendix A explains the matrix notation used.

Algorithm 1 Simrank Computation

Require: transition matrix P , decay factor C, number of
iterations k

Ensure: similarity matrix S
1: [N ,N ] = size(P );
2: S = IN ;
3: for i = 1 : k, do
4: temp = C ∗ P T ∗ S ∗ P ;
5: S = temp + IN −Diag(diag(temp));
6: end for

6. SIMRANK IN COMPLETE BIPARTITE
GRAPHS

Since we are trying to infer query similarities by analyzing
the structure of the click graph (through Simrank), in this
section we focus on a simple class of bipartite graphs; the
complete, unweighted bipartite graphs. Our goal is to get
insight of how well-suited Simrank scores are in this simple
class, with respect to our notion of query similarity. Our
focus here is two-fold. Firstly, Simrank scores in complete
graphs can be easily computed and thus their appropriate-
ness can be more easily analyzed. Actually, as we show in
Appendix B (Lemma 1), the iterative equations 1,2 can be
transformed to a closed-form formula. This simplifies the
analysis. Secondly, since complete bipartite graphs appear
as subgraphs in any click graph, the correctness of the Sim-
rank scores on any click graph depends on the correctness of
the scores that Simrank computes on the graph’s complete
subgraphs.

A complete bipartite graph is a special kind of bipartite
graph where every vertex of the first node set is connected
to every vertex of the second nodes set. In the click graph
of Figure 3, the subgraphs consisting of the nodes “flower”,
“Teleflora.com”, “orchids.com” and “camera”, “digital cam-
era”, “hp.com”, “bestbuy.com” are two examples of com-
plete bipartite subgraphs. Formally, a complete bipartite
graph G = (V1, V2, E) is a bipartite graph such that for
any two vertices v1 ∈ V1 and v2 ∈ V2, (v1, v2) is an edge
in E. The complete bipartite graph with partitions of size
|V1| = m and |V2| = n, is denoted Km,n. Figure 4(a) shows
a K2,2 graph from a click graph and Figure 4(b) shows a
K2,1 click graph.

Let us look at the similarity scores that Simrank computes
for the pairs “camera” - “digital camera” and “pc” - “cam-
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Figure 4: Sample complete bipartite graphs (K2,2

and K1,2) extracted from a click graph.

Table 3: Query-query similarity scores for the sam-
ple click graphs of Figure 4. Scores have been com-
puted by Simrank with C1 = C2 = 0.8

Iteration sim(“camera”, sim(“pc”,
“digital camera”) “camera”)

1 0.4 0.8
2 0.56 0.8
3 0.624 0.8
4 0.6496 0.8
5 0.65984 0.8
6 0.663936 0.8
7 0.6655744 0.8

era” from the graphs of Figure 4. Table 3 tabulates these
scores for the first 7 iterations. As we can see sim(“camera”,
“digital camera”) is always less than sim(“pc”, “camera”)
although we observe that sim(“camera”, “digital camera”)
increases as we include more iterations. In fact, we can
prove that sim(“camera”, “digital camera”) becomes even-
tually equal to sim(“pc”, “camera”) as we include more it-
erations. We can actually prove the following two Theorems
for the similarity scores that Simrank computes in complete
bipartite graphs (refer to Appendix B for the proofs).

Theorem 1. Consider the two complete bipartite graphs
G = K1,2 and G′ = K2,2 with nodes sets V1 = {a}, V2 =
{A, B} and V ′

1 = {b, c} and V ′
2 = {C, D} correspondingly.

Let sim(k)(A, B) and sim(k)(C, D) denote the similarity scores
that bipartite Simrank computes for the node pairs (A, B)

and (C, D) after k iterations. Then, sim(k)(A, B) ≥
sim(k)(C, D), ∀ k > 0.

Theorem 2. Consider the two complete bipartite graphs
G = Km,2 and G′ = Kn,2 with m < n and nodes sets
V1, V2 = {A, B} and V ′

1 , V ′
2 = {C, D} correspondingly. Let

sim(k)(A, B) and sim(k)(C, D) denote the similarity scores
that bipartite Simrank computes for the node pairs (A, B)
and (C, D) after k iterations. Then,

(i) sim(k)(A, B) > sim(k)(C, D), ∀ k > 0, and

(ii) limk→∞ sim(k)(A, B) = limk→∞ sim(k)(C, D) if and
only if C1 = C2 = 1, where C1, C2 are the decay
factors of the bipartite Simrank equations.

These Theorems provide us two pieces of evidence that Sim-
rank scores are not intuitively correct in complete bipartite
graphs. First, as in practice Simrank computations are lim-
ited to a small number of iterations, we would reach the

conclusion that the pair “pc”-“camera” is more similar than
the pair “camera” - “digital camera” which is obviously not
correct. Second, even if we had the luxury to run Simrank
until it converges, we would reach the conclusion that the
similarity scores of the two pairs are the same. However,
the fact that there are two advertisers that are connected
with the queries “camera” and “digital camera” (versus the
one that connects “pc” with “camera”) is an indication that
their similarity is stronger. We will try to fix such cases
by introducing the notion of “evidence of similarity” in the
following section.

7. REVISING SIMRANK
Consider a bipartite graph G = (V1, V2, E) and two nodes

a, b ∈ V1. We will denote as evidence(a, b) the evidence
existing in G that the nodes a, b are similar. The definition
of evidence(a, b) we use is shown on Equation 3.

evidence(a, b) =

|E(a)
⋂

E(b)|
∑

i=1

1

2i
(3)

The intuition behind choosing such a function is as follows.
We want the evidence score evidence(a,b) to be an increas-
ing function of the common neighbors between a and b. In
addition we want the evidence scores to get closer to one as
the common neighbors increase.

We can now incorporate the evidence metric into the Sim-
rank equations. We modify the equations 1 and 2 as follows:

For q 6= q′, we write the equation:

sevidence(q, q
′) = evidence(q, q′) · s(q, q′) (4)

where s(q, q′) is the Simrank similarity between q and q′.
For α 6= α′, we write:

sevidence(α, α′) = evidence(α, α′) · s(α, α′) (5)

where again s(α, α′) is the Simrank similarity between α and
α′.

Notice that we could use k only iterations to compute the
Simrank similarity scores and then multiply them by the
evidence scores to come up with evidence-based similarities
after k iterations. We will be loosely referring to these scores
as evidence-based similarity scores after k iterations and we

will be denoting them by s
(k)
evidence(q, q

′).
Let us see now what the new Simrank equations com-

pute for our sample click graphs. Table 4 tabulates these
scores. As we can see sim(“camera”, “digital camera”) is
greater than sim(“pc”, “camera”) after the first iteration.
We can actually prove the following Theorem for the simi-
larity scores that evidence-based Simrank computes in com-
plete bipartite graphs (refer to [2] for the proof).

Theorem 3. Consider the two complete bipartite graphs
G = Km,2 and G′ = Kn,2 with m < n and nodes sets
V1, V2 = {A, B} and V ′

1 , V ′
2 = {C, D} correspondingly. Let

sim(k)(A, B) and sim(k)(C, D) denote the similarity scores
that bipartite evidence-based Simrank computes for the node
pairs (A, B) and (C, D) after k iterations and let C1, C2 > 1

2
,

where C1, C2 are the decay factors of the bipartite Simrank
equations. Then,

(i) sim(k)(A, B) < sim(k)(C, D), ∀ k > 1, and

(ii) limk→∞ sim(k)(A, B) < limk→∞ sim(k)(C, D).
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Table 4: Query-query similarity scores for the sam-
ple click graphs of Figure 4. Scores have been com-
puted by the evidence-based Simrank with C1 = C2 =
0.8

Iteration sim(“camera”, sim(“pc”,
“digital camera”) “camera”)

1 0.3 0.4
2 0.42 0.4
3 0.468 0.4
4 0.4872 0.4
5 0.49488 0.4
6 0.497952 0.4
7 0.4991808 0.4

This Theorem indicates that the evidence-based Simrank
scores in complete bipartite graphs will be consistent with
the intuition of query similarity (as we discussed it in Section
4) even if we effectively limit the number of iterations we
perform.

8. WEIGHTED SIMRANK
In the previous sections we ignored the information con-

tained in the edges of a click graph and we tried to de-
rive similarity scores for query pairs by just using the click
graph’s structure. In this section, we focus on weighted click
graphs. We explore ways to derive query-query similarity
scores that (i) are consistent with the graph’s weights and
(ii) utilize the edge weights in the computation of similarity
scores.

8.1 Consistent similarity scores
We illustrate the notion of consistency between similar-

ity scores and the graph’s weights with the following two
examples. First, consider the two weighted click graphs
in Figure 5. Apparently the queries “flower”-“orchids” of
the left graph are more “similar” than the queries “flower”-
“teleflora” of the right graph. This observation is true be-
cause the number of clicks varies greatly for the second pair.
If we now try to use Simrank (or even the evidence-based
Simrank)we see that it will output the exact same similar-
ity scores for both pairs. It is thus obvious that Simrank
scores are not consistent with the weights on the graph.
Now, consider the two graphs of Figure 6. The spread of

Figure 5: Sample weighted click graphs

values is the same in both graphs. However, it is also obvi-
ous that now the queries “flower-orchids” are more similar
than the queries “flower-teleflora” since there are more clicks
that connect the first pair with an ad. Again, Simrank or
evidence-based Simrank will output the exact same similar-
ity scores for both pairs.

In general, we define the notion of consistency as follows:

Definition 1. [Consistent similarity scores] Consider a
weighted bipartite graph G = (V1, V2, E). Consider also

Figure 6: Sample weighted click graphs

four nodes i1, j1, i2, j2 ∈ V1 and two nodes v1, v2 ∈ V2.
We now define the sets W (v1) = {w(i1, v1), w(j1, v1)} and
W (v2) = {w(i2, v2), w(j2, v2)} and let variance(v1) (vari-
ance(v2)) denote a measure of W (v1)’s (W (v2)’s) variance
respectively. We will be saying that a set of similarity scores
sim(i, j)∀i, j ∈ V1 is consistent with the graph’s weights if
and only if ∀i1, j1, i2, j2 ∈ V1 and ∀v1, v2 ∈ V2 such that
∃(i1, v1), (j1, v1), (i2, v2), (j2, v2) ∈ E both of the following
are true:

(i) If variance(v1) < variance(v2) and w(i1, v1) > w(i2, v2))
then sim(i1, j1) > sim(i2, j2)

(ii) If variance(v1) = variance(v2) and w(i1, v1) > w(i2, v2))
then sim(i1, j1) > sim(i2, j2)

This definition utilizes the notion of the set variance which
can be computed by averaging the squared distance of all the
values belonging to the set from their mean value.

8.2 Revising Simrank
We can now modify the underlying random walk model

of Simrank. Again we use the evidence scores as defined
in Section 7, but now we will perform a different random
walk. Remember that Simrank’s random surfers model im-
plies that a Simrank score sim(a, b) for two nodes a, b mea-
sures how soon two random surfers are expected to meet at
the same node if they started at nodes a, b and randomly
walked the graph. In order to impose the consistency rules in
the similarity scores we perform a new random walk where
its transition probabilities p(α, i), ∀α ∈ V1, i ∈ E(α) are
defined as follows:

p(α, i) = spread(i) · normalized weight(α, i), ∀i ∈ E(α), and

p(α, α) = 1−
∑

i∈E(α)

p(α, i)

where:

spread(i) = e−variance(i), and

normalized weight(α, i) =
w(α, i)

∑

j∈E(α) w(α, j)

The value variance(i) corresponds to the variance of the
weights of all edges that are connected with the node i.

The intuition behind choosing an exponential spread func-
tion is as follows. We want the evidence score evidence(a,b)
to be an increasing function of the common neighbors be-
tween a and b. In addition we want the evidence scores to
get closer to one as the common neighbors increase.

Notice how the new transition probability p(α, i) between
two nodes α ∈ V1, i ∈ V2 utilizes both the spread(i) value
and the w(α, i) value in order to satisfy the consistency
rules. Actually, we can prove the following Theorem that
ensures us that weighted Simrank produces consistent simi-
larity scores.
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Theorem 4. Consider a weighted bipartite graph G =
(V1, V2, E) and let w(e) denote the weight associated with
an edge e ∈ E. Let also sim(i, j) denote the similarity score
that weighted Simrank computes for two nodes i, j ∈ V1.
Then, ∀i, j ∈ V1, sim(i, j) is consistent with the graph’s
weights.

The actual similarity scores that weighted Simrank gives
after applying the modified random walk are:

sweighted(q, q′) = evidence(q, q′) · C1 ·
∑

i∈E(q)

∑

j∈E(q′)

W (q, i)W (q′, j)sweighted(i, j)

sweighted(α, α′) = evidence(α, α′) · C2 ·
∑

i∈E(α)

∑

j∈E(α′)

W (α, i)W (α′, j)sweighted(i, j)

where the factors W (q, i) and W (a, i) are defined as follows:

W (q, i) = spread(i) · normalized weight(q, i)

W (α, i) = spread(i) · normalized weight(α, i)

Algorithm 2 (written using Matlab notation) computes the
weighted Simrank. The entries of the weighted transition
matrix P ′ correspond to the new transition probabilities and
for the entries of the evidence matrix V we have V (i, j) =
evidence(i, j).

Algorithm 2 Simrank++ Computation

Require: weighted transition matrix P ′, evidence matrix
V , decay factor C, number of iterations k

Ensure: similarity matrix S′

1: [N ,N ] = size(P ′);
2: S′ = IN ;
3: for i = 1 : k, do
4: temp = C ∗ P ′T ∗ S′ ∗ P ′;
5: S′ = temp + IN −Diag(diag(temp));
6: end for
7: S′ = V. ∗ S′;

9. SCALABILITY OF OUR TECHNIQUES
The basic advantage of using query rewriting in sponsored

search is that we offload the ad-serving system by comput-
ing offline and in batch the rewrites (by analyzing the click
graph). Since the query rewrite work is separate, the ad-
serving system can use all of its resources to find in real-time
relevant ads for those rewritten queries. The query rewrit-
ing process usually has a window of several weeks to analyze
the click graph.

Let us analyze the time and space requirements of Algo-
rithm 2 for the computation of the Simrank++ similarity
scores. Let N = n + m denote the total number of query
and ad nodes in the graph. The space required is O(N 2)
to store the results in the matrix S′. The time required is
O(kN3), where k is the number of iterations. A more care-
ful implementation (similar to one introduced in the original
Simrank paper [7]) of Algorithm 2 can reduce the required
time to O(kN2d), where d is the average of N(a)N(b) over
all node-pairs (a, b) (both query and ad nodes). This result
follows from the observation that at each iteration, the sim-
ilarity score of every node-pair is updated only using values

from its neighbor pairs, which will be d on average. Since
the value of d corresponds to the square of the average node
degree in the graph, d does not grow with n. Also, the space
required can be reduced to O(n2 + m2) by maintaining the
results in two separate matrices, one for query and another
for ad nodes. In addition, typical values for k are k = 7.
Using such an implementation and a click graph with 15
million distinct queries, 14 million distinct ads and 28 mil-
lion edges our Simrank++ method completes in 6 hours, on
a single machine.

However, N2 can be still prohibitively large in some ap-
plications. Distributed implementations of Algorithm 2 and
pruning techniques (as the one presented in the original Sim-
rank paper [7]) may be needed in this case; such implemen-
tations are beyond the scope of this paper. However, we
mention that Algorithm 2 can become easily a distributed al-
gorithm using programming paradigms like Map/Reduce [5].

Thus we believe that relatively large graphs can be ana-
lyzed in the 1-2 weeks available time period.

10. EXPERIMENTS
We conducted experiments to compare the performance

of Simrank, evidence-based Simrank and weighted Simrank
as techniques for query rewriting. Our baselines were three
query rewriting technique based on the Pearson correlation,
the Jaccard similarity and the cosine similarity respectively.

10.1 Baselines
The Pearson correlation between two queries q and q′ is

defined as: simpearson(q, q′) =
∑

α∈E(q)
⋂

E(q′)(w(q, α)− wq)(w(q′, α)− wq′)
√

∑

α∈E(q)
⋂

E(q′)(w(q, α)− wq)2w(q′, α)− wq′)2

where wq =
∑

i∈E(q)
w(q,i)
|E(q)|

is the average weight of all edges

that have q as an endpoint. If E(q)
⋂

E(q′) = Ø then
simpearson(q, q′) = 0. The Pearson correlation indicates the
strength of a linear relationship between two variables. In
our case, we use it to measure the relationship between two
queries. Notice, that simpearson takes values in the interval
[−1, 1] and it requires that the two queries q and q′ have at
least one common neighbor in the click graph.

The Jaccard similarity between two queries q and q′ is
defined as the size of the intersection divided by the size of
the union of the sets E(q), E(q′). Thus:

simJaccard(q, q′) = |E(q) ∩ E(q′)|/|E(q) ∪ E(q′)|
Finally, the cosine similarity between two queries q and

q′ corresponds to the angle between their vector represen-
tation. We represent each query q as a vector v(q) where
each coefficient corresponds to a node i of the graph and the
coefficient takes the value 1 if the edge (q, i) exists or zero
otherwise. We then have:

simcosine(q, q
′) = arccos

v(q) · v(q′)

‖v(q)‖‖v(q′)‖

10.2 Dataset
We started from a two-weeks click graph from US Yahoo!

search, containing approximately 15 million distinct queries,
14 million distinct ads and 28 million edges. An edge in this
graph connects a query with an ad if and only if the ad
had been clicked at least once from a user that issued the
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Table 5: Dataset statistics
# of Queries # of Ads # of Edges

subgraph 1 585,218 434,938 1,280,920
subgraph 2 530,797 374,243 1,130,314
subgraph 3 322,252 214,952 713,253
subgraph 4 313,951 243,406 703,747
subgraph 5 91,195 87,442 216,828

Total 1,843,413 1,354,981 4,045,062

query. In addition, each edge contains the number of clicks,
the number of impressions, as well as the expected click
rate. This graph consists of one huge connected component
and several smaller subgraphs. In all our experiments that
required the use of an edge weight we used the expected
click rate.

To make the dataset size more manageable, we used the
subgraph extraction method described in [1] to further de-
compose the largest component and we produced five smaller
subgraphs. In summary, the algorithm in [1] is an efficient
local graph partitioning algorithm that uses the PageRank
vectors. Given a graph and an initial node, it tries to find a
cut with small conductance 1 near that starting node. We
started from different nodes and ran the algorithm itera-
tively in order to discover big enough, distinct subgraphs.
Table 5 tabulates the total number of nodes (queries and
ads) and edges contained in the five-subgraphs dataset. We
also observed a number of power-law distributions, includ-
ing ads-per-query, queries-per-ad and number of clicks per
query-ad pair. We used this dataset as the input click graph
for all query rewriting techniques we experimented with.
The query set for evaluation is sampled, with uniform prob-
ability, from live traffic during the same two-weeks period.
This traffic contains all queries issued at Yahoo! during
that period; even the ones that did not bring any clicks on
a sponsored search result. More specifically, we used a stan-
dardized 1200 query sample that has been generated by the
above procedure and is currently being used as a benchmark
at Yahoo!. We looked at these 1200 queries and extracted
only the ones that actually appear in our five-subgraphs
dataset as only for those our query rewriting methods would
be able to provide rewrites. We found out that these are 120
queries and these are the queries that constitute our evalu-
ation set. Using such an evaluation query selection proce-
dure we made sure that queries issued rarely had a smaller
probability of appearing in the evaluation set whereas more
popular queries could appear with higher probability. We
made this decision since we are interested in comparing the
query rewriting techniques using a realistic query set. In
other words, we prefer a rewriting technique that provides
high quality rewrites for popular queries from another one
that does the same only for rare queries.

10.3 Evaluation Method and Metrics
We run each method on the five-subgraphs dataset and

recorded the top 100 rewrites for each query on our queries

1The conductance is a way to measure how hard it is to leave a
small set of a graph’s nodes. If ΦS is the conditional probability
of leaving a set of nodes S given that we started from a node in S,
then the conductance is defined as the minimal ΦS over all sets
S that have a total stationary probability of at most 1/2. More
information can be found in [14].

sample. We then use stemming to filter out duplicate rewrites
(since such rewrites might appear in the click graph). In ad-
dition we perform bid term filtering, i.e., we remove queries
that are not in a list of all queries that saw bids in the two-
week period when the click graph was gathered. This list
contains any query that received at least one bid at any point
in the period; hence, if a query is not in the list it is unlikely
to have bids currently. (Note that such queries with no bids
may still be connected to ads in the click graph. These ads
were displayed and clicked on because of query rewriting
that took place when the query was originally submitted.)

The queries that remain after duplicate elimination and
bid term filtering are considered for our evaluation. How-
ever, we limit ourselves to at most 5 rewrites per query per
method because of the cost of the manual evaluation we de-
scribe next. Note that a method may generate fewer than
5 rewrites after filtering. We call the number of remaining
rewrites the depth of a method.

To evaluate the quality of rewrites, we consider four meth-
ods. The first is a manual evaluation, carried out by profes-
sional members of Yahoo!’s editorial evaluation team. Each
query – rewrite pair is considered by an evaluator, and is
given a score on a scale from 1 to 4, based on their rele-
vance judgment. (The scoring is the same as used in [9,
18]). The query rewrites that were more relevant with the
original query assigned a score of 1, and the least related
assigned a score of 4. Table 6 summarizes the interpretation
of the four grades. The judgment scores are solely based on
the evaluator’s knowledge, and not on the contents of the
click graph. We interpret the rewrites with scores 1-2 as rel-
evant queries and the rewrites with scores 3-4 as irrelevant
queries. We can then consider an IR task where we define
the precision of method m for query q, precision(q, m) =

relevant rewrites of q that m provides

number of rewrites for q that m provides

and the recall(q, m) =

relevant rewrites of q that m provides

number of relevant rewrites for q among all methods

The second evaluation metric is based on the query cov-
erage. We are interested in the absolute number of queries
(from our 120 query sample) for which each method man-
ages to provide at least one rewrite. We call this number
query coverage. In general, we prefer methods that cover as
many as possible queries.

The third metric is the query rewriting depth. Here, we
are interested in the total number of query rewrites that a
method provides for a given query. This is called the depth
of a query rewriting technique. Again, we are interested in
methods that have larger rewriting depth.

Finally, our fourth evaluation method addresses the ques-
tion of whether our methods made the “right” decision based
on the evidence found in the click graph. Since the mo-
tivation behind using Simrank is to take into account the
whole graph structure in defining the notion of query sim-
ilarity, we want to quantify how well our techniques per-
form with respect to the graph structure and not the eval-
uation of a human expert. The basic idea is to remove
certain edges from the click graph and to see if using the
remaining data our schemes can still make useful inferences
related to the missing data. Since, only techniques that
look at the whole graph can be evaluated in this way, we
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do not include here our baselines and we only focus on
the Simrank-based techniques. In particular, consider Fig-

Figure 7: Sample setup for testing the ability
of a rewriting method to compute correct query
rewrites. By removing the red, dashed edges, we
remove all direct similarity evidence between q1 and
q2, q3.

ure 7, showing two queries q2 and q3 that share at least
one common arc with a query q1. In order to distinguish
which query between q2 and q3 is a preferable rewrite for
q1, we define the desirability of query q2 for query q1 as
des(q1, q2) =

∑

i∈E(q1)
⋂

E(q2)
1

|E(q2)|
· w(q2, i). By comput-

ing the desirability scores des(q1, q2), des(q1, q3) we can de-
termine the most desirable rewrite for q1. That is, given
the evidence in the graph, if des(q1, q2) > des(q1, q3) then q2

would be a better rewrite for q1 than q3.
Given our definition of desirability, we can now conduct

the following experiment. First, we remove the edges that
connect q1 to ads that are also connected with q3 or q2. In
Figure 7 these are the red, dashed edges. Then, we run each
variation of Simrank on the remaining graph and record the
similarity scores sim(q1, q2) and sim(q1, q3) that the method
gives. Finally, we test whether the ordering for q2, q3 that
these similarity scores provide is consistent with the order-
ing derived from the desirability scores. In our example, if
des(q1, q2) > des(q1, q3) and sim(q1, q2) > sim(q1, q3) then
we would say that the similarity score was successful in pre-
dicting the desirable rewrite.

We repeated this edge removal experiment for 50 queries
randomly selected from our five-subgraphs dataset. These
queries played the role of query q1 as described above. For
each of those queries we identified all the queries from the
dataset that shared at least one common ad with it and we
randomly selected two of them. Those were the q2 and q3

queries. We then report the fraction of the 50 queries for
which a method was able to correctly predict the desirability
of q2 (or q3) over the other query. In order to make sure that
a Simrank similarity score can be computed after the dele-
tion of the edges in our experiment, we selected the queries
q2, q3 after making sure that after edge removal there would
still exist a path from q2 to q1 and from q3 to q1 through
other edges in the graph.

11. RESULTS

11.1 Baseline comparison
We first evaluated our baselines. We found the technique

that is based on the Pearson correlation consistently better
compared to the other two (Jaccard, cosine). In particular,

Figure 8 presents the precision/recall graphs for Pearson,
Jaccard and cosine as well as the precision at 1-5 queries
(P@X). For the computation of precision and recall the ed-
itorial scores were used in a binary classification manner;
scores 1-2 were the positive class and scores 3-4 the negative
class. For instance, in Figure 8 (bottom graph) we see that
Pearson has 70% precision for 2 rewrites, meaning that 70%
of its rewrites in the top two ranks were given scores of 1 or
2 by the evaluators.
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Figure 8: Precision at 11 standard recall levels (top)
and precision after X = 1, 2, . . . , 5 query rewrites
(P@X) (bottom)
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Figure 9: Comparing the query coverage of Pearson
and Simrank

The query coverage, the query rewriting depth and the
desirability prediction of all three baselines were identical.
This is due to the fact that all of them require for two queries
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Table 6: Editorial scoring system for query rewrites.
Score Definition Example (query - re-write)
1 Precise Match near-certain match corvette car - chevrolet corvette
2 Approximate Match probable, but inexact match with user intent apple music player - ipod shuffle
3 Marginal Match distant, but plausible match to a related topic glasses - contact lenses
4 Mismatch clear mismatch time magazine - time & date magazine

to have at least one common neighbor, in order to report a
non-zero similarity value.

In what follows, we compare the Simrank based techniques
with the Pearson-based baseline.

11.2 Query Coverage
Figure 9 illustrates the percentage of queries from the 120

queries sample that Pearson and Simrank provide rewrites
for. Simrank provides rewrites almost for all queries (98%)
when Pearson gives rewrites only for the 41% of the queries.
This can be considered as expected, since Pearson can only
measure similarity between two queries if they share a com-
mon ad, whereas Simrank takes into account the whole graph
structure and does not require something similar. Also no-
tice, that evidence-based Simrank further improves the cov-
erage to 99%.

11.3 Precision-Recall
Figure 10 presents the precision/recall graphs for Pear-

son and Simrank as well as the precision at 1-5 queries
(P@X). The values of the precision/recall we report here cor-
respond to the average precision/recall among all the evalua-
tion queries of our dataset. For the computation of precision
and recall the editorial scores were used in a binary classifi-
cation manner; scores 1-2 were the positive class and scores
3-4 the negative class. For instance, in Figure 10 (bottom
graph) we see that Weighted Simrank has 93% precision for
2 rewrites, meaning that 93% of its rewrites in the top two
ranks were given scores of 1 or 2 by the evaluators.

Also, we see that simple Simrank substantially improves
the precision of the rewrites compared to Pearson. In addi-
tion, the use of the evidence score and the exploitation of
the graph weights further boosts the precision, as expected.

11.4 Rewriting Depth
Figure 11 compares the rewriting depth of Pearson and the

variations of Simrank. Note that our two enhanced schemes
can provide the full 5 rewrites for over 85% of the queries.
As mentioned earlier, the more rewrites we can generate,
the more options the back-end will have for finding ads with
active bids.

11.5 Desirability prediction
Figure 12 provides the results of our experiments for iden-

tifying the correct order of query rewrites as described in
Section 10.3. Weighted Simrank is able to predict a surpris-
ingly large number of the desirable rewrites (92% or 46 out
of 50 cases). The methods that do not take edge weights
into account (simple Simrank and evidence-based Simrank)
do substantially worse (54% or 27 out of 50 cases). In spite
of its low performance on this test, evidence-based Simrank
is still able to generate many rewrites that the evaluators
found relevant (previous results).
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Figure 10: Precision at 11 standard recall lev-
els (top) and precision after X = 1, 2, . . . , 5 query
rewrites (P@X) (bottom)
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11.6 Discussion
As we can see, simple Simrank outperforms Pearson both

in query coverage, rewriting depth and precision/recall. No-
tice here that this version of Simrank does not utilize at all
the qualitative information in the click graph, whereas Pear-
son does.

The introduction of evidence scores increases query cover-
age slightly (by 1%) and substantially improves the quality
of the rewrites. For instance, the precision at 5 rewrites of
simple Simrank is 75% whereas the precision after 5 rewrites
of evidence-based Simrank is 80% (Figure 10). In addition,
in the P@X rewrites diagram (Figure 10) the line corre-
sponding to the precision of evidence-based Simrank is al-
ways above the one corresponding to the precision of sim-
ple Simrank. Finally, evidence-based Simrank increases the
rewriting depth. For example, simple Simrank provides five
rewrites for 79% of the queries, whereas evidence based Sim-
rank gives five rewrites for the 89% of the queries (Figure
11).

Weighted Simrank builds upon evidence-based Simrank
and utilizes the graph weights. It maintains the query cov-
erage percentage of evidence-based Simrank at 99% (Figure
9) and substantially improves the quality of the rewrites.
Figure 10 shows that the P@X line of weighted Simrank
is always above the one of evidence-based Simrank. The
precision at 5 rewrites of weighted Simrank goes from 80%
(evidence-based Simrank) to 86%. Also, 96% of the queries
have a high-quality top rewrite when we use weighted Sim-
rank (P@1, Figure 10) when the corresponding percent-
ages for evidence-based Simrank, simple Simrank and Pear-
son are 81%, 80% and 70%. In our desirability experi-
ment, weighted Simrank predicted successfully the desirable
rewrite for 92% of the cases (Figure 12). Finally, weighted-
based Simrank maintains the rewriting depth of evidence-
based Simrank (Figure 11).

12. CONCLUSIONS
In this paper we focused on the problem of query rewriting
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Figure 12: Comparing the ability of query rewrit-
ing methods to correctly predict the order of query
rewrite candidates

for sponsored search. We proposed Simrank to exploit the
click graph structure and we introduced two extensions: one
that takes into account the weights of the edges in the click
graph, and another that takes into account the “evidence”
supporting the similarity between queries. Our experimental
results show that weighted-based Simrank is the overall best
method for generating rewrites based on a click graph. In
addition, the combination of increase in the query coverage
and the rewriting depth that it brings can be interpreted as
a huge potential of revenue increase for the search engine.

There are several query rewriting issues that we did not
address in our analysis. Spam clicks can mislead our tech-
niques and thus spam-resistant variations of our techniques
would be useful. Also, methods for combining our simi-
larity scores with semantic text-based similarities could be
considered. Finally, techniques for updating the Simrank
similarity scores when a click graph changes will be useful.

Even though our new schemes were developed and tested
for query rewriting based on a click graph, we suspect that
the weighted and evidence-based Simrank methods could be
of use in other applications that exploit bi-partite graphs.
We plan to experiment with these schemes in other domains,
including collaborative filtering.
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APPENDIX
A. SIMRANK IN MATRIX NOTATION

Consider a click graph G = (Q,A, E). Let A denote the
vertex adjacency matrix of G, that is Aij = 1 iff (i, j) ∈ E.
Notice that A is a symmetric matrix and thus A = AT . We
also construct the transition matrix P for the graph G by
normalizing the columns of A so that the elements of each
column sum to 1. P is a stochastic matrix.

Let e(k) = [1 1 1 · · · 1]T denote a vector with k coeffi-

cients; all equal to one. Let also e
(k)
i = [0 · · · 0 1 0 · · · 0]T

denote the j-column of an identity matrix Ik, that is a vec-
tor with k coefficients that has its i-th coefficient set to 1
and all the rest equal to 0. In the rest of the paper, we will
be neglecting the superscript of the e vectors when their size
is perceived by the context they appear in. Using these two
vectors we can express the elements of P in terms of the
elements of A. Specifically, we have Pij = Aij/(eT

i Ae).
Finally, for a matrix X, diag(X) is a vector of diagonal

entries in X; for a vector x, Diag(x) is the diagonal matrix
such that x = diag(Diag(x)).

Let S ∈ R|Q∪A|×|Q∪A| denote the similarity matrix for
the nodes in G, where Si,j = sim(i, j), ∀i ∈ Q ∪ A. S is
symmetric since sim(i, j) = sim(j, i). Also, since sim(i, i) =
1, ∀i ∈ Q∪A, all the diagonal elements of S are equal to 1.
We will be denoting as S(k) the similarity matrix containing
the similarity values after k Simrank iterations, where k > 0.
We also define S(0) = I, where I is an (appropriately sized)
unary matrix.

Using this notation, equations 1, 2 become:

S(k) = CP T S(k−1)P + I −Diag(diag(CP T S(k−1)P )) (6)

Based on equation 6, Algorithm 1 computes the Simrank
scores of a given click graph.

B. PROOF OF THEOREMS 1, 2 (SECT. 5)
Lemma 1. Consider the complete bipartite graph K2,2 with

nodes sets V1 = {a, b} and V2 = {A, B}. Let sim(k)(A, B)
denote the similarity between nodes A, B that bipartite Sim-
rank computes after k iterations and let C1, C2 denote the
Simrank decay factors. Then:

(i) sim(k)(A, B) = C2
2

∑k

i=1
1

2i−1 C
b i
2
c

1 C
d i−1

2
e

2

(ii) limk→∞ sim(k)(A, B) ≤ C2

Proof. (i) We omit the proof. It follows by induction
from the Definition of Simrank. (ii) We know that C1 ≤ 1
and C2 ≤ 1. Thus:

C2

2

k
∑

i=1

1

i
C

b i
2
c

1 C
d i−1

2
e

2 ≤ C2

2

k
∑

i=1

1

2i−1

Now we can write:

lim
k→∞

sim(k)(A, B) = lim
k→∞

C2

2

k
∑

i=1

1

2i−1
C

b i
2
c

1 C
d i−1

2
e

2

≤ lim
k→∞

C2

2

k
∑

i=1

1

2i−1
=

C2

2
lim

k→∞

k
∑

i=1

1

i
=

=
C2

2
· 2 = C2

Theorem 1. Consider the two complete bipartite graphs
G = K1,2 and G′ = K2,2 with nodes sets V1 = {a}, V2 =
{A, B} and V ′

1 = {b, c} and V ′
2 = {C, D} correspondingly.

Let sim(k)(A, B) and sim(k)(C, D) denote the similarity scores
that bipartite Simrank computes for the node pairs (A, B)

and (C, D) after k iterations. Then, ∀ k > 0, sim(k)(A, B) ≥
sim(k)(C, D).

Proof. From equations 1, 2 we have:

sim(k)(A, B) =
C2

1 · 11 = C2, ∀k > 0

Also, from Lemma 1(i), we have:

sim(k)(C, D) =
C2

2

k
∑

i=1

1

2i−1
C

b i
2
c

1 C
d i−1

2
e

2 ≤

≤ lim
k→∞

C2

2

k
∑

i=1

1

2i−1
=

C2

2
· 2 = C2

Lemma 2. Consider the two complete bipartite graphs G =
K1,2 and G′ = K2,2 with nodes sets V1 = {a}, V2 = {A, B}
and V ′

1 = {b, c} and V ′
2 = {C, D} correspondingly. Let

sim(k)(A, B) and sim(k)(C, D) denote the similarity scores
that bipartite Simrank computes for the node pais (A, B) and

(C, D) after k iterations. Then, limk→∞ sim(k)(A, B) =

limk→∞ sim(k)(C, D) if and only if C1 = C2 = 1, where
C1, C2 are the decay factors of the bipartite Simrank equa-
tions.

Proof. Let us assume that limk→∞ sim(k)(A, B) =

limk→∞ sim(k)(C, D). This means that:

lim
k→∞

sim(k)(A, B) = lim
k→∞

sim(k)(C, D)⇔

C2 = lim
k→∞
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e

2 = 2⇔
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Now, let us assume that C1 = C2 = 1. We will have:

lim
k→∞

sim(k)(C, D) = lim
k→∞

C2
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k
∑

i=1
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2i−1
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2
c

1 C
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2
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k→∞

C2

2

k
∑
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1
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= C2

= lim
k→∞

sim(k)(A, B)

Lemma 3. Consider the two complete bipartite graphs G =
K1,2 and G′ = K2,2 with nodes sets V1 = {a}, V2 = {A, B}
and V ′

1 = {b, c} and V ′
2 = {C, D} correspondingly. Let

sim(k)(A, B) and sim(k)(C, D) denote the similarity scores
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that bipartite Simrank computes for the node pais (A, B) and
(C, D) after k iterations. Then, if for the decay factors of
bipartite Simrank C1, C2 we know that C1 < 1 or C2 < 1,
both of the following are true:

(i) sim(k)(A, B) > sim(k)(C, D), ∀ k > 0, and

(ii) limk→∞ sim(k)(A, B) > limk→∞ sim(k)(C, D)

Proof. (i) It follows from Theorem 1 and Lemma 2.

(ii) We have:

lim
k→∞

sim(k)(C, D) = lim
k→∞

C2

2

k
∑

i=1

1

2i−1
C

b i
2
c

1 C
d i−1

2
e

2

< lim
k→∞

C2

2

k
∑

i=1

1

2i−1
= C2

= lim
k→∞

sim(k)(A, B)

Theorem 2. Consider the two complete bipartite graphs
G = Km,2 and G′ = Kn,2 with m < n and nodes sets
V1, V2 = {A, B} and V ′

1 , V ′
2 = {C, D} correspondingly. Let

sim(k)(A, B) and sim(k)(C, D) denote the similarity scores
that bipartite Simrank computes for the node pairs (A, B)
and (C, D) after k iterations. Then,

(i) sim(k)(A, B) > sim(k)(C, D), ∀ k > 0, and

(ii) limk→∞ sim(k)(A, B) = limk→∞ sim(k)(C, D) if and
only if C1 = C2 = 1, where C1, C2 are the decay factors
of the bipartite Simrank equations.

Proof. We omit the Proof. Similar arguments as in
Lemma 3.
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