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ABSTRACT
Systems biology researchers often rely on the use of one or

more pathway resources for analysis of gene expression data or
experimental results. Unfortunately, there is no single, gold-standard
pathway knowledge resource, nor are there good ways to merge
or combine information from multiple resources. What is needed
is clear organization of pathways, whereby represented processes
can be enumerated and compared between resources. In this
paper, we develop a set of similarity metrics based on (a) pathway
participants, (b) pathway names and descriptions, and (c) pathway
topological information, which can be used to infer similarity and
hierarchical relationships among pathways from different databases.
These inferred relationships can be used to derive annotations to the
Pathway Ontology or other pathway organizational schemes.

1 INTRODUCTION
Pathway databases provide useful structured knowledge for
bioinformaticists and systems biologists, who use pathways to
assist in the analysis of gene expression data, build models of
physiological processes, and explore the connections between
therapeutics and disease. Pathways describe a set of biomolecular
reactions and interactions. They can have somewhat arbitrary
beginnings and endings, but they aim to capture the details of a
biological process or function.

Researchers can choose from a large number of pathway
databases and representations. The abundance of choice can
lead to confusion, since different databases can offer redundant
and sometimes conflicting accounts of the same pathway. Many
applications of pathway resources naively combine pathway data
sets from multiple resources (e.g. MSigDB, often used as a source
of gene sets for gene set enrichment analysis (GSEA), includes gene
sets derived from several pathway databases (Liberzon et al., 2015);
or ConsensusPathDB, which generates pathway-based networks
using pathways from 32 resources (Kamburov et al., 2009)), but
both redundancies and conflicts can undermine the output produced
by these tools. Results of secondary analysis using pathway
databases will change depending on the database chosen (Green and
Karp, 2006). Khatri et al discuss annotation inaccuracies in pathway
databases as a challenge to pathway analysis (Khatri et al., 2012).
A recent publication by Ballouz et al also discusses bias in GSEA
due to overlaps between gene sets used for analysis, which are often
derived from pathways (Ballouz et al., 2016). These difficulties arise
because pathways share membership and content, which necessarily
affects analysis performed using overlapping pathways. Instead of
using pathways as they are, we propose that individual pathways
from different databases should be pre-organized by similarity, and
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merged based on user needs to generate sets of improved pathways
for secondary use.

In this paper, we report on our initial efforts at organizing and
determining the overlaps of pathways from seven different well-
known resources. Our long-term goals are two-fold: First, we
wish to improve secondary analyses by creating a more consistent
and custom-tailored set of pathways for use. Second, we aim to
develop or improve on a standard nomenclature and organization
for pathways. We see this as a significant gap for the development
of biological ontologies. Although there are well-established, vetted
reference ontologies for the participants of pathway processes (such
as Entrez Gene for genes, UniProt for proteins and ChEBI for
molecular entities (Maglott et al., 2011; Apweiler et al., 2004;
Degtyarenko et al., 2008)), ontologies for higher-level biological
process names are lacking, or at least not well-used.

The Gene Ontology includes names for biological functions, but
these are mostly at the reaction level, and are not well-organized
into coordinated sets of reactions (Ashburner et al., 2000). A better
starting point for an organization of pathway knowledge is the
Pathway Ontology (PW) (Petri et al., 2014). The PW describes
classes of pathways based on biological function. Pathways in the
PW are organized using is-a and part-of relationships, where “A
part-of B” indicates that A is a subprocess of B. Pathways with
instantiation (is-a) or subprocess (part-of) relationships are located
closer to their parent pathways in the PW hierarchy.

Current pathway resources (KEGG, Reactome etc.) do not use
the PW, but instead may be organized via some custom-tailored
ontology or hierarchy. This leads to problems when comparing sets
of pathways from resources with disparate ontological structure and
organization. When pathways from multiple resources are combined
for secondary use, a shared overarching organizational scheme often
does not exist. The employment of different ontologies or simply
the lack of any initial ontological structure make it challenging to
determine pathways that describe similar function.

There is no well-accepted standard measure of similarity among
pathways. Other researchers have discussed similarity of pathway
names, gene and molecular membership, and functional annotations
as potential indicators of pathway content similarity (Grego et al.,
2010; Belinky et al., 2015). In this paper, we assess these sorts of
similarity metrics. We focus on three aspects of similarity: pathway
names and descriptions, entity membership, and pathway topology.

We approach this problem as one analogous to record linkage
and deduplication, where data from similar or identical records can
be combined to yield better information (Christen, 2011). Instead
of combining data records, we are identifying overlapping, subset,
or duplicate portions of pathway representations from different
pathway databases. The linkage process we apply to pathways
consists of several steps: (1) data extraction and cleaning, (2)
entity normalization, (3) indexing to yield pairs of pathways for
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comparison, (4) generation of similarity metrics, and (5) evaluation
of output. This paper focuses on describing the procedures used to
complete steps 1-4, and shows some initial examples of step 5.

We first extract and clean pathway data from seven well-known
public pathway databases. We take advantage of Biological Pathway
Exchange (BioPAX), an standard format supported natively by
many pathway databases (Demir et al., 2010), and meta-resources
like PathwayCommons that provide standardized pathway data
(Cerami et al., 2011). Entity normalization involves identifying
objects from different databases that reference the same biological
entity. Indexing is an initial reduction of the number of in-
depth pairwise pathway comparisons that need to be made.
Metrics such as graph edit distance are computationally expensive,
making exhaustive pairwise pathway comparisons cost- and time-
prohibitive. Within the reduced pairwise comparisons, we can
generate and evaluate similarity metrics such as entity membership
overlap and graph similarity.

2 METHODS & RESULTS
To measure similarity among pathways, we use a combination of
entity membership, pathway name and description, and topological
similarity metrics. Entity membership overlap has been used in
previous efforts to combine pathways into functionally similar
superpaths (Vivar et al., 2013; Belinky et al., 2015). These
superpaths can be used to generate gene sets with little to no
redundancy. However, we hypothesize that there are differences
between pathway overlap and pathway subset relationships that may
benefit from more detailed investigation. Likewise, graph alignment
methods have been used to compare pathways between species to
discover evolutionarily conserved modules (Peregrn-Alvarez et al.,
2009; Muto et al., 2013). In our case, we are interested in using these
techniques to identify areas of similarity and differences between
pathway representations.

2.1 Pathway data extraction
The dataset we used includes pathway data from each of
seven resources: HumanCyc, the Kyoto Encyclopedia of Genes
and Genomes (KEGG), the National Cancer Institute’s Pathway
Interactions Database (NCI PID), Panther Pathways, Reactome,
Small Molecule Pathway Database (SMPDB), and WikiPathways
(Romero et al., 2004; Kanehisa and Goto, 2000; Schaefer et al.,
2009; Thomas et al., 2003; Croft et al., 2013; Frolkis et al., 2010;
Kutmon et al., 2016) Of these, HumanCyc (v20), Panther (v3.4.1),
Reactome (v59), and SMPDB (version published June 5, 2016)
were acquired in BioPAX format from the resources directly, KEGG
and NCI PID were downloaded in BioPAX format from Pathway
Commons (PC8), and WikiPathways was exported in Graphical
Pathway Markup Language (GPML) format on December 10, 2016.
A total of 4,441 pathways were extracted, and the pathway counts
per resource are given in Table (1).

For each pathway within these resources, we extracted the
pathway name, any comments or descriptions of the pathway
content, the set of entities participating in the pathway, the
relationships between those entities, as well as any subpathway
relationships (similar to the part-of relationship described in PW).
Pathway entities are physical entities (protein, complex, molecule,
DNA, RNA etc.) that participate (as a reactant, product, or
modifier) in a reaction explicitly described as part of the pathway.

Resource Number of pathways
HumanCyc 242
KEGG 122
NCI PID 745
Panther 177
Reactome 2080
SMPDB 724
WikiPathways 351
Total 4441
Table 1. Pathway counts per resource

The pathway is represented as an undirected graph where nodes
represent physical entities, or concepts such as reactions, and edges
represent relationships. Subpathway relationships were retained to
assist in the exploration of subset relationships between pathways.

2.2 Entity normalization
Entity normalization is the process of identifying equivalent or
similar entities from different pathway resources. Pathways from
all seven resources annotate their entities using external reference
identifiers, e.g., Entrez and UniProt identifiers for proteins, ChEBI
identifiers for molecules, etc. These cross-reference identifiers
offer a starting point for entity normalization. However, based on
previous observations, these identifiers alone do not do a sufficient
job of aligning like entities between databases (Wang et al., 2016).
One main issue is the existence of synonymous identifiers (e.g.,
secondary accession identifiers) and related identifiers (e.g., ChEBI
conjugate acids/bases) in cross-reference databases, i.e., a single
entity can reference two or more identifiers. Another issue is the
existence of multiple cross-reference databases for a particular class
of biological entities. We must therefore normalize entities both
within and among different cross-reference identifier databases.

We generated an identifier normalization dictionary starting with
the cross-reference identifiers given in each pathway database. If
a single entity references two or more identifiers, for example,
the protein “Tryptophan 5-hydroxylase 1” in HumanCyc references
both Entrez:AAA67050 and UniProt:P17752, then we infer
synonymy between these two identifiers regardless of their given
synonymy in Entrez and UniProt. Further synonyms are derived
from UniProt and ChEBI services. We queried for secondary
accession numbers of all UniProt identifiers, and for secondary
accession numbers, conjugate acids and bases, and tautomers
of all ChEBI identifiers referenced in our dataset. Lastly, we
supplemented this normalization dictionary using BridgeDB, a
service for mapping identifiers across different cross-reference
databases (van Iersel et al., 2010). For identifiers extracted from
our pathways, we queried synonyms from BridgeDB (Ensembl
and UniProt for proteins, ChEBI and PubChem for molecules),
which were used to derive further equivalences between different
identifiers.

For the following entity membership comparisons, we normalized
the entities in each pathway based on their cross-reference
identifiers along with the additional synonyms we derived from
BridgeDB, UniProt, and ChEBI. Although this improved the
number of entities matched among resources compared to using
naive cross-reference identifier matching alone, there were still
many entities for which the appropriate normalization could not be
obtained. Further normalization of both entities and relationships
was explored using graph alignment techniques, which are
discussed in section 2.5.
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2.3 Indexing using pathway names and descriptions
Determining groups of similar pathways is a problem akin to that of
record linkage and deduplication. Indexing techniques are used in
record linkage problems to determine likely pairs of similar records,
which can then be compared in depth (Christen, 2011). Dividing
the data into blocks (blocking) and only comparing within blocks
is an effective way to reduce computational cost. Due to the time
and resource cost of computing graph edit distance, we employ
blocking of pathway representations based on name and description
similarity. This reduces the total number of pairwise comparisons
from around 10 million (4,441 choose 2) to a much smaller number
based on the number and sizes of blocks generated.

Using pathway name similarity as a measure for pathway content
similarity has not been very successful in the past (Belinky et al.,
2015). Very few pathways share identical names across resources,
and those with identical or similar names usually vary significantly
on content, as measured by entity membership. However, even
though pathway name alone is not a good proxy for content, it,
along with a free-text description of the pathway, should yield
blocks of pathways with higher within-block similarity than random
chance. That is, we believe that names and descriptions offer some
information about the content of a pathway representation.

Of the 4,441 pathways in our data set, only 2,627 had analyzable
pathway descriptions. The remainder had either no pathway
description, or a pathway description containing meta-information
on the writing, editing, or reviewing of the pathway. Some
resources, such as NCI PID and SMPDB, had no descriptions of
any of the pathways encoded in their BioPAX exports. We therefore
analyzed the pathway names and descriptions separately, generating
two sets of pathway blocks. We describe the work done for pathway
names; the process was repeated for pathway descriptions.

We treat each pathway name as a document, and cluster them
into topics. This is accomplished by calculating the term frequency-
inverse document frequency (tf-idf) statistic for each word in each
pathway name. The tf-idf is a measure of the significance of a word
to a group of documents, and is often used for term-weighting in
topic modeling. The statistic is given by equation (1), where the
statistic for wi,d (word i in document d) is the product of the term
frequency tfi,d (how often the word i appears in document d),
and the log inverse of the document frequency dfi (the number of
documents in the corpus that contain word i) divided by N , the total
number of documents in the corpus.

wi,d = tfi,d × log

(
N

dfi

)
(1)

After computing tf-idf scores for all words in all pathway names,
we performed k-means clustering on the tf-idf score vectors to
generate blocks of similar pathway names. K-means clustering
is a centroid-based unsupervised clustering method that yields k
clusters from the input data where each data point belongs to
the cluster with the closest mean. Due to the imbalance in the
number of pathways from each resource, we expect many singleton
clusters, those with only one member. We initially employed the
elbow method to select the number of resulting clusters k, but
because no clear elbow was seen in within-cluster variance as we
increased the cluster count, we were unable to determine an ideal
k experimentally. Instead, we calculated a theoretical minimum k
based on the number of pathways in each resource. Assuming all

pathways from all resources have matches in all other resources,
the theoretical minimum number of clusters is 2,080. However,
assuming that some pathways may have multiple matches in other
resources and possibly within the resource itself, we selected a k of
1,040, 0.5 times the theoretical minimum, as a conservative choice.
Similarly, for pathway descriptions, we computed a theoretical
minimum of 2,053 clusters, and used a k of 1,026.

For N total pathways, blocking reduces the number of pairwise
comparisons from C(N, 2) (N choose 2) to

∑k
i=1 C(ci, 2) where

ci is the size of the i-th cluster and
∑k

i=1 ci = N . With
N = 4441, the number of exhaustive comparisons is around 9.9
million. Clustering on pathway names resulted in 1,040 clusters,
of which 584 were singleton clusters. This reduced the number
of pairwise comparisons to around 250,000. Clusters ranged from
those consisting of pathways that share an identical name, such
as the cluster for “Glycolysis,” consisting of pathways from
HumanCyc, Panther, Reactome, and SMPDB, to those that show
a common theme, such as a cluster of 11 pathways with names such
as “G2/M DNA damage checkpoint,” “Mitotic G2-G2/M phases,”
and “response to G2/M transition DNA damage checkpoint signal.”
Some clusters contained unrelated pathways with shared words in
their names, which may have clustered together because k was
artificially lowered.

For pathway descriptions, exhaustive analysis yields around 3.5
million pairwise comparisons. Clustering on descriptions resulted
in 1,026 clusters, of which 849 were singleton clusters, thereby
reducing the number of pairwise comparisons to around 150,000.
Inspection reveals clusters where pathways explore similar themes,
such as a large cluster that includes pathways dealing with DNA
synthesis and repair, and another that deals with pathways of fatty
acid metabolism.

2.4 Using entity membership overlap to determine the
validity of clustering results

We can test the validity of clustering on pathway names and
descriptions using the independent measure of pathway entity
membership overlap. Entity membership overlap can be represented
using the Jaccard index, a measure of set similarity, defined for two
sets (S1 and S2) as the ratio of the size of their intersection over the
size of their union (equation (2)).

J(S1, S2) =
|S1 ∩ S2|
|S1 ∪ S2|

(2)

For each pathway, its entity membership is represented as the set
Pi = {e1, e2, ...en}. The Jaccard index is computed between a
pair of pathways i and j as J(Pi, Pj). From k-means clustering
results on pathway names, we performed pairwise comparisons
of all pathways within each cluster. The average pairwise within-
cluster Jaccard index (APWJ) was 0.021. We generate an expected
APWJ distribution using the following bootstrapping method. We
randomly sample the data into clusters corresponding to the cluster
sizes of our k-means output. Within these generated clusters, we
compute the APWJ. We randomly sample 10,000 times to generate
an expected distribution for APWJ. This expected distribution
is Gaussianly distributed with mean 0.013 and sigma 7.0e-4
(Figure (1A)). The APWJ of our pathway name k-means clustering
results falls more than 11 standard deviations away from the mean of
this expected distribution. This indicates that our pathway clusters
show significantly higher entity overlap than clusters generated
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through random sampling of the data. In other words, pathway name
is effective at blocking the data into content-similar groups.

Fig. 1. The average within-cluster Jaccard index for 10,000 random
clusterings of pathway names (A) and pathway descriptions (B).

The same procedure was followed for pathway descriptions. The
bootstrapped APWJ distribution for our data had mean 0.016 and
sigma 9.0e-4 (Figure (1B)). The APWJ for k-means clustering
results was 0.027, more than 12 standard deviations away from the
expected value for random clusters, indicating significant content
overlap in our clusters compared to random.

2.5 Employing graph edit distance
Graph edit distance (GED) is a measure of similarity between two
graphs. The measure is based on the number of node and edge
insertions, substitutions, or deletions necessary to transform one
graph into another. The measure is calculated by performing a
global graph alignment between two graphs, and then calculating
the number of transformations necessary.

In our case, we prematch entities between two pathway graph
representations, which reduces the computational complexity of
performing a global graph alignment. We used the GEDEVO
software tool from the Computational Systems Biology Group of the
Max Planck Institute for Informatics in Saarbruecken (Ibragimov
et al., 2013). This tool takes two graph representations as input,
and calculates their GED along with a global graph alignment.
The GED is normalized to between 0 and 1, with 1 indicating a

perfect topological match between the two graphs. A higher GED
score indicates improved topological matching, which by itself does
not guarantee accurate entity matching. Two graphs with the same
topology and completely different entity memberships will have a
high GED score, so the GED is only useful in the context of high
entity Jaccard index. GEDEVO also does not penalize having graphs
of different sizes, and extra nodes and edges can remain unmatched.

Because there is no gold standard entity alignment among
pathway representations, evaluations of the goodness of the graph
alignments produced could only be done manually. The global
alignment showed promise in cases where a good portion of
all entities were prematched. Otherwise, the alignment did not
offer usable entity alignments. For example, figure (2) shows
an alignment between the Reactome pathway “Phenylalanine
and tyrosine catabolism” and the HumanCyc pathway “tyrosine
degradation I,” two pathways that clustered together based on
pathway name tf-idf scores. The entity memberships of the
pathways show overlap (Jaccard index = 0.43). In this case, the
entities in the HumanCyc pathway are actually a subset of the
entities in the Reactome pathway, so we expect a potential part-
of relationship between the two pathways. In figure (2) we observe
this subset relationship. We recognize that visualization of complex
pathway information is an open and largely unsolved problem
outside of our scope; Figures (2) and (3) are hand-drawn.

Fig. 2. Graph alignment results of two metabolic pathways with a subset
relationship. Entities found in both pathways are outlined in black. Gray

lines and circles are those relationships and entities found only in
Reactome; dotted gray lines show relationships only found in HumanCyc.

All reactions are labeled ’Rx’; all complexes are labeled ’C’; and
abbreviations for proteins and molecules are taken from Reactome. Green

entities are prematched between the two pathways on cross-reference
identifiers. Yellow entities are correctly aligned by GEDEVO, and red
entities are incorrectly aligned by GEDEVO and manually aligned by

inspecting entity names and types.

Terminology in the Pathway Ontology can be used to describe
the relationship between this pair of pathways. Both pathways
are examples of PW:0001074, named “hydrophobic amino acid
metabolic pathway.” The HumanCyc pathway is an instance of the
PW leaf node PW:0001284, or “tyrosine degradation pathway.” The
Reactome pathway consists of elements of both the PW leaf node
“phenylalanine degradation pathway” (PW:0001288) and the PW
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leaf node “tyrosine degradation pathway” (PW:0001284). Using
the organization of the PW, we find that the Reactome pathway
could potentially be broken down into two constituent parts, the
conversion of phenylalanine into tyrosine, and the subsequent
degradation of tyrosine.

A simple example of the benefit of a unifying ontology such as
PW is that it would eliminate mismatches due to simple synonyms
such as “catabolism” (used by Reactome) and “degradation” (used
by HumanCyc). More interestingly, an ontology may allow for a
more careful distinction of the relationships between pathways, for
example, by drawing attention to the tyrosine degradation pathway
being a subprocess of the phenylalanine degradation pathway.
Although biologically, it may make sense to combine these into
one pathway, as Reactome does, the duplication of the tyrosine
degradation subprocess may be problematic for secondary use.

Fig. 3. Graph alignment of two signaling pathways describing the same
process, where a majority of reactions are shown in both pathways. Entities

found in both pathways are outlined in black. Gray lines and circles are
those relationships and entities found only in Panther; dotted gray lines

show relationships only found in WikiPathways. All reactions are labeled
‘Rx’; all complexes are labeled ’C’; all abbreviations for proteins and

molecules are taken from Panther.

Figure (3) shows another example, this time of two overlapping
pathways, Panther Pathway’s “Oxytocin receptor mediated
signaling pathway” and WikiPathways’ “Oxytocin signaling.” The
entity memberships of these two pathways show good overlap
(Jaccard index = 0.40). Both of these pathways describe the same
process, which is denoted by the PW leaf node PW:0000494,
or “oxytocin signaling pathway.” There were a few prematched
entities, and the graph alignment produced by GEDEVO was
able to infer several additional entity matches between the two
pathways. However, the performance seems less good compared to
the previous example due to greater differences in representation
between the two pathways.

3 DISCUSSION
Improving the way we discuss and measure similarity among
pathway representations will have many repercussions for
secondary use of pathway resources. Instead of using all pathways
available for pathway analysis, we could eliminate redundant
pathways and increase the power of our analysis results. We could
also better organize pathways, thereby making clear where overlap
and subprocess relationships occur. Thus, our work builds from the
Pathway Ontology, and we aim to infer similarity and hierarchical
relationships among pathways across resources.

From our clustering results, we can observe several different
relationships between pathways. Some pathways describe similar
processes, and show good entity overlap, such as the example
given in figure (3). These overlapping pathways (A and B) are
both instances of the same pathway class C (if the PW were
adopted, the class would be “oxytocin signaling pathway”). Other
pathways show a subset relationship as in figure (2), where one
pathway can be described as a subprocess of the other pathway,
exemplifying the part-of relationship. A third case is possible, but
not illustrated, where one pathway is both a subset of another
pathway and describes the same overall process. This could happen
if modelers use different levels of granularity. The subset entities
would then be interleaved through the larger pathway as opposed
to forming a tightly connected subnetwork as in the subprocess
case. This would still be an example of sibling relationships to
some parent class, with the siblings differing in granularity. All
three cases: overlap, subprocess, and granularity subset, can be
discovered using a combination of entity membership and graph
metrics.

Identifying these relationships is an important step to reducing
redundancy in pathway data for secondary use. Overlapping
pathways could be reduced to a single pathway representation.
Pathways containing subprocesses could be modularized into
several non-overlapping parts, or subpathways. For example, the
Reactome pathway “Phenylalanine and tyrosine catabolism” from
figure (2) could be broken down into two subprocesses, the
conversion of phenylalanine into tyrosine (the gray entities from the
figure), and the degradation of tyrosine (the colored entities from the
figure). PW terms could be used to help identify these relationships
between pathways. The PW is-a relationship describes both overlap
and granularity subset relationships, and the PW part-of relationship
describes subprocess relationships.

Our initial results are two-fold. First, we demonstrate that useful
similarity information can be gathered from pathway names and
descriptions. Second, we propose that further similarity information
can be derived by combining a set of measures: pathway names,
entity membership, and graph edit distance. We demonstrate
this second point with some initial proof-of-concept examples
(Figures (2) and (3)). We also advocate the use of an organizing
ontology such as the Pathway Ontology to help identify pathway
overlap and subprocess relationships.

3.1 Limitations & Future Work
There are several notable points of potential improvement in the
procedures described in this paper. Pathway names and descriptions
were used to cluster pathways using tf-idf scores. Stemming and
lemmatization could be employed to derive better clustering results.
Stemming and lemmatization is the process of reducing words to
their base form; for example, metabolism, metabolic, and metabolite
all share the same word stem. Prefix and suffix analysis can also
help discover similar classes of words, especially chemical species,
whose types can be derived from suffixes, like -oses (sugars) and
-ases (proteins). Especially for pathway names, for which few
words are present, stemming and suffixing could greatly improve
our measure of name similarity. Additionally, tf-idf scores do not
represent syntactic or semantic information, causing similar phrases
with different key words to cluster together incorrectly. Using a
greater variety of lexical features could help offset this weakness.

5



Wang & Gennari

Another major challenge was entity normalization. In many
cases, we discovered synonymous entities in two resources that
did not share cross-reference identifiers. This could be helped by
extending our entity normalization dictionary. More synonyms can
be derived from third-party reference databases, although our usage
of BridgeDB identifier mapping services already does this to some
degree. We can also infer entity equivalence or synonymy using
other information, such as the entity’s name, or the reactions in
which it participates. The calculation of a global graph alignment
is one way to derive potential synonyms. The graph alignment
algorithm employed by GEDEVO does not take into account
features such as node name or type, which may help in identifying
more synonyms. The inference of identifier synonymy through
alternative means could also potentially be used to identify missing
cross-reference identifiers in reference ontologies.

Lastly, we hope to provide a platform for exploring the overlaps
among these pathways and to allow for the generation of pathway
data sets with reduced redundancies among member pathways.
Such an interface would allow the user to search for pathways
from multiple sources, adjust the degree to which similar pathways
should be merged into superpathways or broken down into non-
overlapping subpathways, and export the resulting pathways for
secondary use. For example, the user could generate unique
gene sets for GSEA or other types of pathway-based enrichment
analysis, or create novel explanatory pathways using the non-
overlapping segments of existing pathways. A user interface could
also leverage the work of the Pathway Ontology for organizing or
annotating pathways from different databases. An evaluation of the
usefulness and correctness of identified overlaps and similarities
between pathways can be conducted formally through a qualitative
assessment of biologists and their interactions with various merged
pathway representations through this proposed platform.

3.2 Conclusion
Understanding similarities and redundancies among pathway
representations is critical for improving the quality of secondary
analyses performed using pathway resources. Associations among
different pathways can be deduced by studying the features
of each individual pathway, such as its name, description,
entity membership, and topological structure. A hierarchical
organizational structure such as the Pathway Ontology is a useful
way to organize pathways. Here, we have shown that an analysis of a
combination of features (names, entities and graph topology) could
be used to infer similarity and relationship information between
pathways. Our goal is to provide an umbrella organizational
structure across multiple pathway databases that will make it
easier for researchers to use pathways with appropriate content and
granularity.
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Liberzon, A., Birger, C., Thorvaldsdóttir, H., Ghandi, M., Mesirov, J. P., and Tamayo,
P. (2015). The molecular signatures database (msigdb) hallmark gene set collection.
Cell Systems, 1, 417–425.

Maglott, D., Ostell, J., Pruitt, K. D., and Tatusova, T. (2011). Entrez gene: gene-
centered information at ncbi. Nucleic Acids Research, 39, D52–57.

Muto, A., Kotera, M., Tokimatsu, T., Nakagawa, Z., Goto, S., and Kanehisa, M. (2013).
Modular Architecture of Metabolic Pathways Revealed by Conserved Sequences of
Reactions. J. Chem. Inf. Model., 53(3), 613–622.

Peregrn-Alvarez, J. M., Sanford, C., and Parkinson, J. (2009). The conservation and
evolutionary modularity of metabolism. Genome Biology, 10, R63.

Petri, V., Jayaraman, P., Tutaj, M., Hayman, G. T., Smith, J. R., Pons, J. D.,
Laulederkind, S. J. F., Lowry, T. F., Nigam, R., Wang, S.-J., Shimoyama, M.,
Dwinell, M. R., Munzenmaier, D. H., Worthey, E. W., and Jacob, H. J. (2014).
The pathway ontology updates and applications. Journal of Biomedical Semantics,
5.

Romero, P., Wagg, J., Green, M. L., Kaiser, D., Krummenacker, M., and Karp, P. D.
(2004). Computational prediction of human metabolic pathways from the complete
human genome. Genome Biology, 6(R2), 1–17.

Schaefer, C. F., Anthony, K., Krupa, S., Buchoff, J., Day, M., Hannay, T., and Buetow,
K. H. (2009). Article navigation pid: the pathway interaction database. Nucleic
Acids Research, 37, D674–D679.

Thomas, P. D., Campbell, M. J., and et al, A. K. (2003). Panther: a library of protein
families and subfamilies indexed by function. Genome Res, 13, 2129–2141.

van Iersel, M. P., Pico, A. R., Kelder, T., Gao, J., Ho, I., Hanspers, K., Conklin, B. R.,
and Evelo, C. T. (2010). The bridgedb framework: standardized access to gene,
protein and metabolite identifier mapping services. BMC Bioinformatics, 11.

Vivar, J. C., Pemu, P., McPherson, R., and Ghosh, S. (2013). Redundancy control
in pathway databases (recipa): An application for improving gene-set enrichment
analysis in omics studies and “big data” biology. OMICS, 17, 414–422.

Wang, L. L., Gennari, J. H., and Abernethy, N. F. (2016). An analysis of differences in
biological pathway resources. Proceedings of the Joint International Conference on

Biological Ontology and BioCreative, 2016.

6


