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ABSTRACT 
As the internet dramatically changes each year, 

microblogs – such as Facebook and Twitter – are 

being used more often as a source of information 

exchange. Twitter users are learning about current 

events earlier compared to reading about it on 

their news feeds, as companies and celebrities 

continue to utilize Twitter to spread information.  

Information Retrieval, a topic which NIST
1
 

(National Institute of Standards and Technology) 

holds a conference for every year, involves 

utilizing such online environments, like 

microblogs, to grab as much information from 

these sources to find if the information can be put 

towards a purpose. The Microblog Track was 

originally introduced to TREC
2
 (Text REtrieval 

Conference) in 2011, and selected Twitter
3
 as its 

microblog resource. Twitter allows its users to 

share short, 140 character length posts with their 

followers, and is often used to share anything 

from fashion trends to the latest terrorist attacks. 

Due to the short length of tweets, users often 

utilize other ways to share more information, such 

as including links or images with their tweets, 

which has an effect on the tweet containing 

relevant information. Participating groups for the 

track were given access to a Twitter API, 

provided by TREC, containing a corpus of 243 

million tweets scrapped from February 1
st
 to 

March 31
st
, 2013. Each group was given a set of 

test topics in which to test their system, which 

return results for the Adhoc and/or Tweet 

Timeline Generation Task (TTG). In this paper, 

we describe five Query Expansion modules and 

three Relevance modules designed for the 

microblog track, built within STIRS. Our 

precision results for our adhoc run shows STIRS’ 
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average to be at 61.91% precision, with our 

average TTG at 85.38% precision. 

 

1. Information on TREC’s Microblog Task 
Continuing onto its fourth year, TREC’s 

Microblog Track has become one of the most 

popular tracks for information retrieval. Twitter, a 

well-known social networking site, allowed TREC 

to obtain an API Tweet Corpus of around 243 

million tweets, obtained between February 1
st
 and 

March 31
st
, 2013. The tweet information has 

usually only included user ids, dates, query times 

and the actual tweet content, but for 2014 was 

extended to include: the followers count, the 

statuses count, the language the tweet was in, how 

many times that tweet was retweeted and other ids 

based on these attributes. Given a set of test 

queries, the query would be sent through a 

group’s system, and would output relevant 

information, in the form of tweets, on the topic, 

depending on the task requirements. 

 

1.1 Temporally-Anchored Ad Hoc Search 

Task (Adhoc) 
Participants were given a set of topics, gathered 

from the tweet collection, and asked to return the 

top 1000 relevant tweets for each topic. One of the 

most important concepts was that information 

returned by each system could not be older than 

the moment of the query time; any older tweets 

would be automatically judged as irrelevant. Each 

group was asked to return up to four runs, with 

each run having six fields: the topic number, an 

unused column, the tweed id, the rank of the tweet 

as determined by the run, the score given by the 

system, and the run tag. While both external
4
 and 

manual runs were encouraged in past years, 2014 
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is the first year that TREC has banned future 

evidence
5
 from any runs. 

 

1.2 Tweet Timeline Generation Task 

(TTG) 
The TTG task was new to participants of this 

year’s track, and was not required for all groups to 

attempt. In addition to retrieving relevant tweets 

for each topic, redundant tweets were to be 

removed and each run was only to return the 

tweets needed to correctly summarize a topic 

(semantic clusters
6
). This meant that each tweet 

must not only be relevant for the topic, but contain 

information that other tweets, also returned for the 

topic, did not have. Due to these conditions, the 

two main tasks within TTG were eliminating 

redundancy and deciding the size of the set for 

each topic. This presented a unique challenge 

because it required the system to make decisions 

about whether a tweet was more or less 

representative of the query than another tweet and 

to differentiate between clusters, or types, of 

tweet. All participating groups were asked to 

return runs in the same format as the Adhoc task, 

although the rank and score are considered 

negligible. 

 

2. The System 
Our team utilized an 8-processor, Dell Precision 

Workstation 490 for accessing the API, 

developing STIRS and executing various 

experiments for each task. Each processor was an 

Intel Xeon 3.00 GHz CPU, each having two CPU 

cores. The server had 16 GB of memory, 750 GB 

of hard drive space and was running KDE Plasma 

workspace and Eclipse Java IDE. 

 

2.1 API 
For this year’s track, TREC employed the 

Evaluation as a Service model to give participants 

access to the corpus through an API, which was 

accessible to every group via a group ID and 

token password. The API was able to take a 

query, a time and a number of results (maximum 

was 10,000) and return a set of tweets indexed by 
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Lucene
7
. Lucene naturally indexes all tweets from 

the entire tweet corpus and gives the tweet a score 

based on the words, implementing both text 

normalization and stemming in the process. Each 

returned tweet contained the topic it was 

considered relevant for, the tweet id, the rank and 

score given by Lucene, the tweet and other 

attributes found by analyzes the user’s account or 

the tweet itself. While acquiring each topic’s 

tweets, our system discarded tweets that were 

non-English and/or retweets (as both such types of 

tweets are judged automatically irrelevant). Our 

system wrote the tweets returned by the API into 

an index directory, which our system was able to 

easily access during runs. This index was treated 

as a local copy of the corpus of tweets relevant to 

the given queries.  

 

2.2 Query Splitting 
In past years, participating groups in the 

Microblog track were given the choice of 

downloading the full tweet corpus for their 

machines, which allowed them access to every 

tweet residing in the corpus. Since this was 

STIRS’ first year since the conversion to an API-

driven corpus, our system was adjusted to deal 

with the change from a full corpus to only seeing, 

at most, 10,000 tweets for each topic, which 

changed some of our module’s strategies. 

 

In order to help deal with only gathering 10,000 

tweets for each topic, we employed a technique 

dubbed “Query Splitting” to find more relevant 

tweets for each topic. Each query was split into 

two queries and queried separately from the API. 

These two separate queries were then combined, 

in order of each tweet’s score, and used in 

addition to the regular API querying when 

experimenting with runs. It was found in 

experiments on the 2011 tweet corpus that this 

strategy helped when finding relevant tweets for 

each topic. 

 

3. Query Expansion Modules 
Using query expansion is a popular method used 

in information retrieval. Due to the nature of the 

API, it could only return the maximum of 10,000 

tweets for each topic, and Lucene was only 

returning those tweets that have any written 

representation of the current query. The theory is 
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if each topic was increased with the right words, 

then the API would be able to find more tweets 

that are relevant to the topic. The basic idea is to 

expand on the original query, using a variety of 

techniques, i.e. looking for synonyms of the query 

words. 

 

3.1 Google 
We noticed that many of the query topics 

appeared to have very good results when doing a 

Google search using the full query. For example, 

one of the original NIST supplied test queries was 

“Keith Olbermann new job.” The top Google 

results mentioned his departure from the cable 

news network MSNBC and that Olbermann was 

hired by CurrentTV. We cross-checked these 

against the tweets in our corpus and noted that 

valuable terms like MSNBC, fired, and CurrentTV 

were in many of the tweets. We hypothesized that 

adding these terms to the original query would 

help find these tweets. Each query was then 

googled using our system, where it gathered up 

the top common words found across links, 

removed words that are usually found in 

webpages, and returned the new queries for each 

topic. 

 

The new rule to the 2014 Microblog track, which 

forbade groups from using future evidence, was 

most affected by our system in our Google 

module. Instead of just randomly googling 

throughout all possible dates, we utilized 

Google’s advanced search features, which allow 

users to search for their query between two dates. 

For each topic, the topic was googled between the 

beginning date of the corpus and the query date 

given by TREC for each topic. 

 

3.2 WordNet 
One of the most basic query expansion methods is 

to simply take each individual word and expand it 

using synonyms and antonyms of the word. We 

employed Princeton’s WordNet
8
 encyclopedia, 

which allows the user to find synonyms, 

antonyms, and hyponyms of words. For this 

module, we allowed WordNet to gather the 

synonyms of each word in the topic, and then 

returned the synonym that had the same part of 

speech as the word originally used in the query. 

We especially found that words that were both 
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considered to be a noun and a verb were better if 

returning the verb synonym when the word used 

in a verb manner. 

 

3.3 Links 
According to the 2014 microblog track guidelines, 

NIST assessors would be allowed to follow urls 

within a tweet and utilize the subsequent web 

page content to judge whether a tweet was 

relevant. From our Link Crawling module, we had 

already established a list of the top thirty urls from 

within the tweets for each topic. Each of these urls 

were there scrapped for their content and our 

system then calculated the common words from 

among each topic’s content, to be re-added as 

query expansion. 

 

3.4 Internal Query Expansion 
For our internal module, we used the initial tweets 

given by the API and Lucene to extend each of the 

topics using Lucene’s own indexing power. The 

first step was to send the scrapped API corpus 

through our slang converter, which found words 

that were used as slang and converted them to 

their proper format – for example, “lol” was 

converted to “laughing out loud”, “rofl” to 

“rolling on the floor laughing”, etc. This helps 

especially in topics that contained acronyms, such 

as NSA or NIST. Then STIRS created two lists – 

one list contained all the words per topic, while 

another list had all the words found throughout the 

corpus. When processing this algorithm, a 

threshold was developed for each topic, so the top 

words would only include those tweets that were 

actually considered relevant to the topic, as the 

API had the manner of returning tweets that only 

had a remote connection to the topic itself. 

 

After the words were gathered, a sorting algorithm 

was used to determine which of the words would 

be considered most relevant as well as taking into 

account the removal of stop words, the removal of 

words found among other topics, the amount that 

word was found within that topic’s tweets, and 

whether that word correctly matched its original 

query’s part of speech (using Apache OpenNPL
9
). 

As this list was determined, a separate list was 

created, which found unique hashtags amount the 

topics and returned a separate list of hashtags. 
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3.5 Manual Run 
The manual run was built in with the query 

expansion modules; when all query expansion 

modules were completed for the run, STIRS put 

together a query for each topic to be re-submitted 

to the API. If the manual run is selected, the user 

is able to accept or reject each of the new queries 

for each topic, adjusting the queries so they’re 

more likely to find tweets related to the topic. 

 

3.6 Query Expansion Future Work 
The API naturally uses Lucene to index all the 

tweets, so when a query is sent through, it simply 

finds those tweets that precisely match up with the 

query’s words. Each query expansion module so 

far concentrates on adding onto the original query, 

but what if the opposite was done, where words 

that were considered too broad for the topic were 

removed from the query? It’s possible that there 

would be less of a chance of the API finding 

tweets not relevant to the topic, and increasing 

those that are more relevant. For example, the 

2011 topic “BBC World Service staff cuts” 

produced a number of tweets, scored low by 

Lucene, related to “Nursing staff jobs” – 

removing the word “staff” would possibly have 

kept those tweets to a minimum. 

 

When observing WordNet, we’ve noticed that a 

combination of noun and verb meant that it was 

more likely that the verb synonym was more 

relevant most of the time then the noun synonym, 

and thus the algorithm always tried to return the 

verb first. It’s possible that other variations of 

synonym matching exist, and would increase the 

possibility of WordNet’s usefulness. 

 

4. Relevance Modules 
Part of the Microblog Track is being able to work 

with the API to return the best relevant tweets that 

are possible, while the other half is using various 

methods to determine whether a tweet is relevant 

for that topic, and this can be done a variety of 

ways. For example, many systems take advantage 

of the urls found within many tweets and judge 

whether the tweet is relevant based on whether the 

URL contains useful information on the topic. 

 

4.1 Link Crawling 
NIST assessors were allowed to follow URLs 

within a tweet and utilize the subsequent web 

page content to judge whether a tweet was 

relevant. Therefore, we decided to scrape the 

website content of urls included in each tweet and 

utilize that information to help judge a tweet’s 

content. After the process of downloading each 

collection’s initial tweet corpus from the API, a 

Link Crawling was completed on the full 

collection of tweets returned by the API. Each 

Link Crawling used the top 1000 tweets, and their 

urls, returned by Lucene to scrape the content, 

which was downloaded using web scrapers 

Jericho
10

 and Jsoup
11

. After the content was 

downloaded, we utilized Lucene to index and 

search the content from the retrieved hyperlink 

pages which allowed us to rank each tweet based 

on how well their hyperlink page scored. 

 

In past years, we had already implemented Lucene 

to handle indexing and searching our own tweet 

corpus and discovered that the best way for Link 

Crawling to work was to combine the search 

results from the Lucene API baseline with the 

URL Lucene index. Since the API already uses 

Lucene for indexing and returning relevant tweets, 

we were able to continue this experiment. To 

begin, STIRS goes through the Lucene-made 

URL index and creates a list of the top thirty urls 

found within each topic. It then goes through each 

tweet and adjusts the score, based on the Lucene 

url scoring, on whether the tweet contains a url, 

whether it’s found within the list, and/or whether 

it contains multiple urls. 

 

4.2 Machine Learning with WEKA 
Without any example topics, when searching for 

names of politicians, such as Hillary Clinton, 

there was a trend that the good Tweets tended to 

be longer and contain urls linking to a news 

article. This leads to questioning what other 

“traits” could make a tweet relevant, which 

eventually established the idea of machine 

learning utilizing tweet attributes. Machine 

Learning allows the computer, after being given 

an algorithm and a training set, to decide whether 

a tweet is considered relevant. 

 

The attributes selected to train our system this 

year were: existence of a URL, a hashtag or a 

mention, number of followers, relevance of URL, 

number of retweets, maximum retweets, percent 
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match between query and tweet, tweets to 

follower’s ratio and relevance. Relevance of urls 

uses data created by the Link Crawling module to 

decide if a URL within a tweet is relevant to the 

query topic.   The number of retweets attribute is a 

numeric value returned via the API, while max 

retweets is a boolean that is true if the retweet 

value for a tweet is 100, which is the maximum 

value returned by the API. The percent match 

attribute compares the words in each tweet with 

the words in the current query and returns the 

percentage of words in common. 

 

After the training set is created, we used Weka
12

 

to create an algorithm and implement it. Weka, an 

open source machine learning package developed 

at the University of Waikato, provides many 

options for aggregating and viewing data, as well 

as predicting results for new data given a learning 

set and selection of a learning model. The final 

stages of implementation revolved around trying 

different learning models, i.e. Naïve Bayes, Linear 

Regression, Decision Trees, etc. and automating 

the entire process. 

 

This year, we created our own training set based 

off of the 2013 collection, where 2500 tweets 

were collected and judged on relevance. For our 

experiment, the models JRip and J48 were found 

to be most effective, were correctly classifying at 

84.54% and had a 41% precision rate, which 

meant that our model was judging tweets at about 

the same precision as Lucene! 

 

4.3 Adjusting Tweets based on Individual 

Factors 
When observing the tweets that the API returned 

as most relevant for each topic, singular tweet 

attributes seemed to stand off as indicators that the 

tweets was relevant. Two of these factors 

provided success among various experiments: the 

amount the tweet was retweeted and the 

percentage of the tweet that contained the original 

query. In the process, STIRS created a threshold 

for each topic and then went through the tweet 

corpus, deciding whether the tweet’s score should 

be adjusted for each of these factors. 

 

After the success of our Google and Link 

Crawling modules, we created a last relevance 
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module that grabs the top links found when 

googling each of the top tweets from each topic. If 

a percentage of the tweets matched up with the 

query topic’s urls, then the tweet’s score was re-

adjusted depending on the percentage. This 

module was always run last of any run, and helped 

with last minute adjustments for score evaluation, 

particularly for precision@30, among the top 

tweets. 

 

4.4. Relevance Modules Future Work 
For our Link Crawling module, we believe that 

experimenting with how the content is dissected 

for analysis might improve the quality at which 

tweets are considered relevant. Right now, it is 

purely based off of Lucene’s analysis of the 

content matching each of the topics, but increase 

precision might occur by introducing reliability 

metrics, such as the algorithm considering news 

articles to be of higher relevance then a blog. 

 

Currently, our Link Crawling module also 

depends on Link Crawling the whole database, 

before runs are started, in order to find the top 

thirty urls. However, with the new API set-up, we 

were unable to provide the Link Crawler every 

single link that would come up among the tweets, 

as only the top 10,000 tweets for each topic are 

available. This comes up as an issue with runs 

involving query expansion, as Lucene might pick 

up on the new query and find tweets, especially 

tweets with urls, that were not available to be Link 

Crawled, and thus this module loses efficiency. 

 

Using WEKA for Machine Learning allows us to 

pick, from among a variety, a classifier to use for 

choosing which tweets were considered relevant. 

However, our program currently only uses one 

classifier to decide – a different scheme could be 

used by having multiple classifiers in use, and 

have them “vote” on whether a tweet was 

relevant. 

 

5. Tweet Timeline Generation Module 
Although our prime focus for this year’s 

Microblog track was towards the adhoc task, we 

devoted some time to creating a somewhat 

credible run for the TTG task. The STIRS system 

would naturally use our best adhoc run (the run 

that had the highest precision@30) as the relevant 

tweets for consideration in the TTG run. The 

module went through the top one hundred tweets 

http://www.cs.waikato.ac.nz/ml/weka/
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for each topic and calculated the percentage of the 

tweet compared to that of each cluster grouping. If 

the percentage was higher than the given 

threshold, the tweet was considered part of that 

cluster group, but if it went through all the cluster 

groups and did not match any, it was considered a 

new cluster group. Each group of clusters was 

separated by topic, and each topic printed the first 

tweet discovered for each cluster group. Scoring 

and rank was not considered, nor whether the first 

tweet represented the best tweet for that cluster.

 

 
Figure 1: STIRS System Architecture Diagram 

 

6. STIRS 
We incorporated all of our twitter modules with 

other necessary modules, i.e. Query Processor, 

Lucene Processor, TREC formatter etc., into a 

fully automated end-to-end STIRS system 

(Figure 1). Our Query Processor module 

converted the TREC formatted queries into 

Lucene format. Our Lucene processor module 

returned a Ranked Tweet List (RTL) for a given 

input query. The TREC formatter converted our 

RTLs into the standard TREC format, using a 

Normalizer to collapse all scores on an 

equivalent threshold. STIRS was developed such 

that any given module could be easily turned on 

or off to allow for multiple combinations of 

experiments, i.e. Query Expansion  Link 

Crawling: run the query expansion module 

followed by the link crawling module. 

 

7. STIRS Submission 
We experimented with all possible combination 

of our TM modules on the example topics, in 

order to select the four best combinations to 

send to NIST for evaluation. Judgments were 

made by all team members and were done on a 

relevant/non-relevant basis for each tweet. 

 

Our four highest performing modules were: 

1. Manual CommonWords Query 

Expansion with Adjusting Tweets Based 

on Individual Factors 

2. Manual Google Query Expansion with 

Link Crawling and Adjusting Tweets 

Based on Individual Factors 

3. Automatic Run with Link Crawling and 

Adjusting Tweets Based on Individual 

Factors 

4. Automatic Run with Link Crawling, 

Machine Learning and Adjusting 

Tweets Based on Individual Factors 

 

We selected these four versions of the system to 

run on the official topics and return to NIST for 

evaluation. 

 

8. Official NIST Results 
The judging showed our average to be at 61.91% 

precision for the Adhoc Task, with an average of 

85.38% precision for the Tweet Timeline 
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Generation Task. Both precisions estimated at 

30. 

 

8.1 NIST Task Scoring Metrics 
For the 2012 track NIST used different scoring 

metrics for the adhoc task and the tweet timeline 

generation task. The adhoc task had three 

scoring metrics. These were ranked based on 

precision, ROC curve, and recall. However, 

since there was no single summary value for the 

ROC measure we will only report precision@30 

in our results for this track. 

 

The TTG task had two different scoring metrics: 

cluster precision and cluster recall, which would 

be calculated in both an unweighted and 

weighted version. Cluster precision indicated 

how many distinct cluster groups were present 

for each topic, while cluster recall is how many 

of the cluster groups that were discovered by 

TREC are present in the run. Cluster precision 

and cluster recall will be combined into the F1 

metric to receive a score for the run: 

 

  
13

 

 

The unweighted version does both these scoring 

metrics as discussed, but the weighted version 

takes into account the fact that some cluster 

groups are more relevant than others, and will 

affect the score appropriately. This means that 

each run will receive two scores for each 

version. 

 

9. APPENDIX 

9.1 Sample Query 
<top> 

<num> Number: MB001 </num> 

<query> BBC World Service staff cuts </query> 

<querytime> Tue Feb 08 12:30:27 +0000 2011 

</querytime> 

<querytweettime> 34952194402811904 

</querytweettime> 

</top> 
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9.2 Sample Tweet (API) 
MB001 Q0 29983478363717633 1 5.316302 

myRun# TResult(id:29983478363717633, 

rsv:5.3163018226623535, 

screen_name:fatima9632, epoch:1295983592, 

text:[BBC News] Major cuts to BBC World 

Service: BBC World Service is to close five of 

its language services, with th... 

http://bbc.in/e2vlpX, followers_count:1, 

statuses_count:13794, lang:null, 

in_reply_to_status_id:0, in_reply_to_user_id:0, 

retweeted_status_id:0, retweeted_user_id:0, 

retweeted_count:0)  

 

9.3 Sample Submission 
MB01 Q0 3857291841983981 1 1.999 myRun 
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