
1

Siena’s Twitter Information Retrieval System:

The 2014 Microblog Track
Timothy LaRock, Lauren Mathews, Matthew Roberts

Dr. Darren Lim & Dr. Sharon Small

Siena College

Loudonville, NY 12211

tlarock@albany.edu, {li08math, mw20robe, dlim, ssmall}@siena.edu

ABSTRACT
As the internet dramatically changes each year,

microblogs – such as Facebook and Twitter – are

being used more often as a source of information

exchange. Twitter users are learning about current

events earlier compared to reading about it on

their news feeds, as companies and celebrities

continue to utilize Twitter to spread information.

Information Retrieval, a topic which NIST
1

(National Institute of Standards and Technology)

holds a conference for every year, involves

utilizing such online environments, like

microblogs, to grab as much information from

these sources to find if the information can be put

towards a purpose. The Microblog Track was

originally introduced to TREC
2
 (Text REtrieval

Conference) in 2011, and selected Twitter
3
 as its

microblog resource. Twitter allows its users to

share short, 140 character length posts with their

followers, and is often used to share anything

from fashion trends to the latest terrorist attacks.

Due to the short length of tweets, users often

utilize other ways to share more information, such

as including links or images with their tweets,

which has an effect on the tweet containing

relevant information. Participating groups for the

track were given access to a Twitter API,

provided by TREC, containing a corpus of 243

million tweets scrapped from February 1
st
 to

March 31
st
, 2013. Each group was given a set of

test topics in which to test their system, which

return results for the Adhoc and/or Tweet

Timeline Generation Task (TTG). In this paper,

we describe five Query Expansion modules and

three Relevance modules designed for the

microblog track, built within STIRS. Our

precision results for our adhoc run shows STIRS’

1
 http://www.nist.gov/

2
 http://trec.nist.gov/

3
 https://twitter.com/

average to be at 61.91% precision, with our

average TTG at 85.38% precision.

1. Information on TREC’s Microblog Task
Continuing onto its fourth year, TREC’s

Microblog Track has become one of the most

popular tracks for information retrieval. Twitter, a

well-known social networking site, allowed TREC

to obtain an API Tweet Corpus of around 243

million tweets, obtained between February 1
st
 and

March 31
st
, 2013. The tweet information has

usually only included user ids, dates, query times

and the actual tweet content, but for 2014 was

extended to include: the followers count, the

statuses count, the language the tweet was in, how

many times that tweet was retweeted and other ids

based on these attributes. Given a set of test

queries, the query would be sent through a

group’s system, and would output relevant

information, in the form of tweets, on the topic,

depending on the task requirements.

1.1 Temporally-Anchored Ad Hoc Search

Task (Adhoc)
Participants were given a set of topics, gathered

from the tweet collection, and asked to return the

top 1000 relevant tweets for each topic. One of the

most important concepts was that information

returned by each system could not be older than

the moment of the query time; any older tweets

would be automatically judged as irrelevant. Each

group was asked to return up to four runs, with

each run having six fields: the topic number, an

unused column, the tweed id, the rank of the tweet

as determined by the run, the score given by the

system, and the run tag. While both external
4
 and

manual runs were encouraged in past years, 2014

4
 Evidence obtained from sources other than the

official API.

http://www.nist.gov/
http://trec.nist.gov/
https://twitter.com/

2

is the first year that TREC has banned future

evidence
5
 from any runs.

1.2 Tweet Timeline Generation Task

(TTG)
The TTG task was new to participants of this

year’s track, and was not required for all groups to

attempt. In addition to retrieving relevant tweets

for each topic, redundant tweets were to be

removed and each run was only to return the

tweets needed to correctly summarize a topic

(semantic clusters
6
). This meant that each tweet

must not only be relevant for the topic, but contain

information that other tweets, also returned for the

topic, did not have. Due to these conditions, the

two main tasks within TTG were eliminating

redundancy and deciding the size of the set for

each topic. This presented a unique challenge

because it required the system to make decisions

about whether a tweet was more or less

representative of the query than another tweet and

to differentiate between clusters, or types, of

tweet. All participating groups were asked to

return runs in the same format as the Adhoc task,

although the rank and score are considered

negligible.

2. The System
Our team utilized an 8-processor, Dell Precision

Workstation 490 for accessing the API,

developing STIRS and executing various

experiments for each task. Each processor was an

Intel Xeon 3.00 GHz CPU, each having two CPU

cores. The server had 16 GB of memory, 750 GB

of hard drive space and was running KDE Plasma

workspace and Eclipse Java IDE.

2.1 API
For this year’s track, TREC employed the

Evaluation as a Service model to give participants

access to the corpus through an API, which was

accessible to every group via a group ID and

token password. The API was able to take a

query, a time and a number of results (maximum

was 10,000) and return a set of tweets indexed by

5
 “Information that would not have been available

to the system at the timestamp of the query.”

(TREC 2014 Guidelines)
6
 A class of tweets that contains the same

information.

Lucene
7
. Lucene naturally indexes all tweets from

the entire tweet corpus and gives the tweet a score

based on the words, implementing both text

normalization and stemming in the process. Each

returned tweet contained the topic it was

considered relevant for, the tweet id, the rank and

score given by Lucene, the tweet and other

attributes found by analyzes the user’s account or

the tweet itself. While acquiring each topic’s

tweets, our system discarded tweets that were

non-English and/or retweets (as both such types of

tweets are judged automatically irrelevant). Our

system wrote the tweets returned by the API into

an index directory, which our system was able to

easily access during runs. This index was treated

as a local copy of the corpus of tweets relevant to

the given queries.

2.2 Query Splitting
In past years, participating groups in the

Microblog track were given the choice of

downloading the full tweet corpus for their

machines, which allowed them access to every

tweet residing in the corpus. Since this was

STIRS’ first year since the conversion to an API-

driven corpus, our system was adjusted to deal

with the change from a full corpus to only seeing,

at most, 10,000 tweets for each topic, which

changed some of our module’s strategies.

In order to help deal with only gathering 10,000

tweets for each topic, we employed a technique

dubbed “Query Splitting” to find more relevant

tweets for each topic. Each query was split into

two queries and queried separately from the API.

These two separate queries were then combined,

in order of each tweet’s score, and used in

addition to the regular API querying when

experimenting with runs. It was found in

experiments on the 2011 tweet corpus that this

strategy helped when finding relevant tweets for

each topic.

3. Query Expansion Modules
Using query expansion is a popular method used

in information retrieval. Due to the nature of the

API, it could only return the maximum of 10,000

tweets for each topic, and Lucene was only

returning those tweets that have any written

representation of the current query. The theory is

7
 Apache Lucene™ http://lucene.apache.org/

http://lucene.apache.org/

3

if each topic was increased with the right words,

then the API would be able to find more tweets

that are relevant to the topic. The basic idea is to

expand on the original query, using a variety of

techniques, i.e. looking for synonyms of the query

words.

3.1 Google
We noticed that many of the query topics

appeared to have very good results when doing a

Google search using the full query. For example,

one of the original NIST supplied test queries was

“Keith Olbermann new job.” The top Google

results mentioned his departure from the cable

news network MSNBC and that Olbermann was

hired by CurrentTV. We cross-checked these

against the tweets in our corpus and noted that

valuable terms like MSNBC, fired, and CurrentTV

were in many of the tweets. We hypothesized that

adding these terms to the original query would

help find these tweets. Each query was then

googled using our system, where it gathered up

the top common words found across links,

removed words that are usually found in

webpages, and returned the new queries for each

topic.

The new rule to the 2014 Microblog track, which

forbade groups from using future evidence, was

most affected by our system in our Google

module. Instead of just randomly googling

throughout all possible dates, we utilized

Google’s advanced search features, which allow

users to search for their query between two dates.

For each topic, the topic was googled between the

beginning date of the corpus and the query date

given by TREC for each topic.

3.2 WordNet
One of the most basic query expansion methods is

to simply take each individual word and expand it

using synonyms and antonyms of the word. We

employed Princeton’s WordNet
8
 encyclopedia,

which allows the user to find synonyms,

antonyms, and hyponyms of words. For this

module, we allowed WordNet to gather the

synonyms of each word in the topic, and then

returned the synonym that had the same part of

speech as the word originally used in the query.

We especially found that words that were both

8
 http://wordnet.princeton.edu/

considered to be a noun and a verb were better if

returning the verb synonym when the word used

in a verb manner.

3.3 Links
According to the 2014 microblog track guidelines,

NIST assessors would be allowed to follow urls

within a tweet and utilize the subsequent web

page content to judge whether a tweet was

relevant. From our Link Crawling module, we had

already established a list of the top thirty urls from

within the tweets for each topic. Each of these urls

were there scrapped for their content and our

system then calculated the common words from

among each topic’s content, to be re-added as

query expansion.

3.4 Internal Query Expansion
For our internal module, we used the initial tweets

given by the API and Lucene to extend each of the

topics using Lucene’s own indexing power. The

first step was to send the scrapped API corpus

through our slang converter, which found words

that were used as slang and converted them to

their proper format – for example, “lol” was

converted to “laughing out loud”, “rofl” to

“rolling on the floor laughing”, etc. This helps

especially in topics that contained acronyms, such

as NSA or NIST. Then STIRS created two lists –

one list contained all the words per topic, while

another list had all the words found throughout the

corpus. When processing this algorithm, a

threshold was developed for each topic, so the top

words would only include those tweets that were

actually considered relevant to the topic, as the

API had the manner of returning tweets that only

had a remote connection to the topic itself.

After the words were gathered, a sorting algorithm

was used to determine which of the words would

be considered most relevant as well as taking into

account the removal of stop words, the removal of

words found among other topics, the amount that

word was found within that topic’s tweets, and

whether that word correctly matched its original

query’s part of speech (using Apache OpenNPL
9
).

As this list was determined, a separate list was

created, which found unique hashtags amount the

topics and returned a separate list of hashtags.

9
 http://opennlp.apache.org/

http://wordnet.princeton.edu/
http://opennlp.apache.org/

4

3.5 Manual Run
The manual run was built in with the query

expansion modules; when all query expansion

modules were completed for the run, STIRS put

together a query for each topic to be re-submitted

to the API. If the manual run is selected, the user

is able to accept or reject each of the new queries

for each topic, adjusting the queries so they’re

more likely to find tweets related to the topic.

3.6 Query Expansion Future Work
The API naturally uses Lucene to index all the

tweets, so when a query is sent through, it simply

finds those tweets that precisely match up with the

query’s words. Each query expansion module so

far concentrates on adding onto the original query,

but what if the opposite was done, where words

that were considered too broad for the topic were

removed from the query? It’s possible that there

would be less of a chance of the API finding

tweets not relevant to the topic, and increasing

those that are more relevant. For example, the

2011 topic “BBC World Service staff cuts”

produced a number of tweets, scored low by

Lucene, related to “Nursing staff jobs” –

removing the word “staff” would possibly have

kept those tweets to a minimum.

When observing WordNet, we’ve noticed that a

combination of noun and verb meant that it was

more likely that the verb synonym was more

relevant most of the time then the noun synonym,

and thus the algorithm always tried to return the

verb first. It’s possible that other variations of

synonym matching exist, and would increase the

possibility of WordNet’s usefulness.

4. Relevance Modules
Part of the Microblog Track is being able to work

with the API to return the best relevant tweets that

are possible, while the other half is using various

methods to determine whether a tweet is relevant

for that topic, and this can be done a variety of

ways. For example, many systems take advantage

of the urls found within many tweets and judge

whether the tweet is relevant based on whether the

URL contains useful information on the topic.

4.1 Link Crawling
NIST assessors were allowed to follow URLs

within a tweet and utilize the subsequent web

page content to judge whether a tweet was

relevant. Therefore, we decided to scrape the

website content of urls included in each tweet and

utilize that information to help judge a tweet’s

content. After the process of downloading each

collection’s initial tweet corpus from the API, a

Link Crawling was completed on the full

collection of tweets returned by the API. Each

Link Crawling used the top 1000 tweets, and their

urls, returned by Lucene to scrape the content,

which was downloaded using web scrapers

Jericho
10

 and Jsoup
11

. After the content was

downloaded, we utilized Lucene to index and

search the content from the retrieved hyperlink

pages which allowed us to rank each tweet based

on how well their hyperlink page scored.

In past years, we had already implemented Lucene

to handle indexing and searching our own tweet

corpus and discovered that the best way for Link

Crawling to work was to combine the search

results from the Lucene API baseline with the

URL Lucene index. Since the API already uses

Lucene for indexing and returning relevant tweets,

we were able to continue this experiment. To

begin, STIRS goes through the Lucene-made

URL index and creates a list of the top thirty urls

found within each topic. It then goes through each

tweet and adjusts the score, based on the Lucene

url scoring, on whether the tweet contains a url,

whether it’s found within the list, and/or whether

it contains multiple urls.

4.2 Machine Learning with WEKA
Without any example topics, when searching for

names of politicians, such as Hillary Clinton,

there was a trend that the good Tweets tended to

be longer and contain urls linking to a news

article. This leads to questioning what other

“traits” could make a tweet relevant, which

eventually established the idea of machine

learning utilizing tweet attributes. Machine

Learning allows the computer, after being given

an algorithm and a training set, to decide whether

a tweet is considered relevant.

The attributes selected to train our system this

year were: existence of a URL, a hashtag or a

mention, number of followers, relevance of URL,

number of retweets, maximum retweets, percent

10

 http://jericho.htmlparser.net/docs/index.html
11

 http://jsoup.org/

http://jericho.htmlparser.net/docs/index.html
http://jsoup.org/

5

match between query and tweet, tweets to

follower’s ratio and relevance. Relevance of urls

uses data created by the Link Crawling module to

decide if a URL within a tweet is relevant to the

query topic. The number of retweets attribute is a

numeric value returned via the API, while max

retweets is a boolean that is true if the retweet

value for a tweet is 100, which is the maximum

value returned by the API. The percent match

attribute compares the words in each tweet with

the words in the current query and returns the

percentage of words in common.

After the training set is created, we used Weka
12

to create an algorithm and implement it. Weka, an

open source machine learning package developed

at the University of Waikato, provides many

options for aggregating and viewing data, as well

as predicting results for new data given a learning

set and selection of a learning model. The final

stages of implementation revolved around trying

different learning models, i.e. Naïve Bayes, Linear

Regression, Decision Trees, etc. and automating

the entire process.

This year, we created our own training set based

off of the 2013 collection, where 2500 tweets

were collected and judged on relevance. For our

experiment, the models JRip and J48 were found

to be most effective, were correctly classifying at

84.54% and had a 41% precision rate, which

meant that our model was judging tweets at about

the same precision as Lucene!

4.3 Adjusting Tweets based on Individual

Factors
When observing the tweets that the API returned

as most relevant for each topic, singular tweet

attributes seemed to stand off as indicators that the

tweets was relevant. Two of these factors

provided success among various experiments: the

amount the tweet was retweeted and the

percentage of the tweet that contained the original

query. In the process, STIRS created a threshold

for each topic and then went through the tweet

corpus, deciding whether the tweet’s score should

be adjusted for each of these factors.

After the success of our Google and Link

Crawling modules, we created a last relevance

12

 http://www.cs.waikato.ac.nz/ml/weka/

module that grabs the top links found when

googling each of the top tweets from each topic. If

a percentage of the tweets matched up with the

query topic’s urls, then the tweet’s score was re-

adjusted depending on the percentage. This

module was always run last of any run, and helped

with last minute adjustments for score evaluation,

particularly for precision@30, among the top

tweets.

4.4. Relevance Modules Future Work
For our Link Crawling module, we believe that

experimenting with how the content is dissected

for analysis might improve the quality at which

tweets are considered relevant. Right now, it is

purely based off of Lucene’s analysis of the

content matching each of the topics, but increase

precision might occur by introducing reliability

metrics, such as the algorithm considering news

articles to be of higher relevance then a blog.

Currently, our Link Crawling module also

depends on Link Crawling the whole database,

before runs are started, in order to find the top

thirty urls. However, with the new API set-up, we

were unable to provide the Link Crawler every

single link that would come up among the tweets,

as only the top 10,000 tweets for each topic are

available. This comes up as an issue with runs

involving query expansion, as Lucene might pick

up on the new query and find tweets, especially

tweets with urls, that were not available to be Link

Crawled, and thus this module loses efficiency.

Using WEKA for Machine Learning allows us to

pick, from among a variety, a classifier to use for

choosing which tweets were considered relevant.

However, our program currently only uses one

classifier to decide – a different scheme could be

used by having multiple classifiers in use, and

have them “vote” on whether a tweet was

relevant.

5. Tweet Timeline Generation Module
Although our prime focus for this year’s

Microblog track was towards the adhoc task, we

devoted some time to creating a somewhat

credible run for the TTG task. The STIRS system

would naturally use our best adhoc run (the run

that had the highest precision@30) as the relevant

tweets for consideration in the TTG run. The

module went through the top one hundred tweets

http://www.cs.waikato.ac.nz/ml/weka/

6

for each topic and calculated the percentage of the

tweet compared to that of each cluster grouping. If

the percentage was higher than the given

threshold, the tweet was considered part of that

cluster group, but if it went through all the cluster

groups and did not match any, it was considered a

new cluster group. Each group of clusters was

separated by topic, and each topic printed the first

tweet discovered for each cluster group. Scoring

and rank was not considered, nor whether the first

tweet represented the best tweet for that cluster.

Figure 1: STIRS System Architecture Diagram

6. STIRS
We incorporated all of our twitter modules with

other necessary modules, i.e. Query Processor,

Lucene Processor, TREC formatter etc., into a

fully automated end-to-end STIRS system

(Figure 1). Our Query Processor module

converted the TREC formatted queries into

Lucene format. Our Lucene processor module

returned a Ranked Tweet List (RTL) for a given

input query. The TREC formatter converted our

RTLs into the standard TREC format, using a

Normalizer to collapse all scores on an

equivalent threshold. STIRS was developed such

that any given module could be easily turned on

or off to allow for multiple combinations of

experiments, i.e. Query Expansion  Link

Crawling: run the query expansion module

followed by the link crawling module.

7. STIRS Submission
We experimented with all possible combination

of our TM modules on the example topics, in

order to select the four best combinations to

send to NIST for evaluation. Judgments were

made by all team members and were done on a

relevant/non-relevant basis for each tweet.

Our four highest performing modules were:

1. Manual CommonWords Query

Expansion with Adjusting Tweets Based

on Individual Factors

2. Manual Google Query Expansion with

Link Crawling and Adjusting Tweets

Based on Individual Factors

3. Automatic Run with Link Crawling and

Adjusting Tweets Based on Individual

Factors

4. Automatic Run with Link Crawling,

Machine Learning and Adjusting

Tweets Based on Individual Factors

We selected these four versions of the system to

run on the official topics and return to NIST for

evaluation.

8. Official NIST Results
The judging showed our average to be at 61.91%

precision for the Adhoc Task, with an average of

85.38% precision for the Tweet Timeline

7

Generation Task. Both precisions estimated at

30.

8.1 NIST Task Scoring Metrics
For the 2012 track NIST used different scoring

metrics for the adhoc task and the tweet timeline

generation task. The adhoc task had three

scoring metrics. These were ranked based on

precision, ROC curve, and recall. However,

since there was no single summary value for the

ROC measure we will only report precision@30

in our results for this track.

The TTG task had two different scoring metrics:

cluster precision and cluster recall, which would

be calculated in both an unweighted and

weighted version. Cluster precision indicated

how many distinct cluster groups were present

for each topic, while cluster recall is how many

of the cluster groups that were discovered by

TREC are present in the run. Cluster precision

and cluster recall will be combined into the F1

metric to receive a score for the run:

13

The unweighted version does both these scoring

metrics as discussed, but the weighted version

takes into account the fact that some cluster

groups are more relevant than others, and will

affect the score appropriately. This means that

each run will receive two scores for each

version.

9. APPENDIX

9.1 Sample Query
<top>

<num> Number: MB001 </num>

<query> BBC World Service staff cuts </query>

<querytime> Tue Feb 08 12:30:27 +0000 2011

</querytime>

<querytweettime> 34952194402811904

</querytweettime>

</top>

13

 http://en.wikipedia.org/wiki/F1_score

9.2 Sample Tweet (API)
MB001 Q0 29983478363717633 1 5.316302

myRun# TResult(id:29983478363717633,

rsv:5.3163018226623535,

screen_name:fatima9632, epoch:1295983592,

text:[BBC News] Major cuts to BBC World

Service: BBC World Service is to close five of

its language services, with th...

http://bbc.in/e2vlpX, followers_count:1,

statuses_count:13794, lang:null,

in_reply_to_status_id:0, in_reply_to_user_id:0,

retweeted_status_id:0, retweeted_user_id:0,

retweeted_count:0)

9.3 Sample Submission
MB01 Q0 3857291841983981 1 1.999 myRun

10. ACKNOWLEDGEMENTS
We’d like to thank The Siena College Institute

for Artificial Intelligence, the Center for

Undergraduate Research and Creative Activities,

and all previous STIRS researchers.

11. REFERENCES
1. http://jericho.htmlparser.net/docs/index.

html

2. http://jsoup.org/

3. http://lucene.apache.org/

4. http://opennlp.apache.org/

5. https://twitter.com/

6. http://www.cs.waikato.ac.nz/ml/weka/

7. http://wordnet.princeton.edu/

8. https://github.com/lintool/twitter-

tools/wiki/TREC-2014-Track-

Guidelines

9. https://github.com/lintool/twitter-

tools/wiki/TREC-2013-API-

Specifications

http://en.wikipedia.org/wiki/F1_score
http://jericho.htmlparser.net/docs/index.html
http://jericho.htmlparser.net/docs/index.html
http://jsoup.org/
http://lucene.apache.org/
http://opennlp.apache.org/
https://twitter.com/
http://www.cs.waikato.ac.nz/ml/weka/
http://wordnet.princeton.edu/
https://github.com/lintool/twitter-tools/wiki/TREC-2014-Track-Guidelines
https://github.com/lintool/twitter-tools/wiki/TREC-2014-Track-Guidelines
https://github.com/lintool/twitter-tools/wiki/TREC-2014-Track-Guidelines
https://github.com/lintool/twitter-tools/wiki/TREC-2013-API-Specifications
https://github.com/lintool/twitter-tools/wiki/TREC-2013-API-Specifications
https://github.com/lintool/twitter-tools/wiki/TREC-2013-API-Specifications

