Computer Science > Computer Vision and Pattern Recognition
[Submitted on 28 Jul 2023 (v1), last revised 1 Nov 2024 (this version, v2)]
Title:Generalized Open-World Semi-Supervised Object Detection
View PDFAbstract:Traditional semi-supervised object detection methods assume a fixed set of object classes (in-distribution or ID classes) during training and deployment, which limits performance in real-world scenarios where unseen classes (out-of-distribution or OOD classes) may appear. In such cases, OOD data is often misclassified as ID, thus harming the ID classes accuracy. Open-set methods address this limitation by filtering OOD data to improve ID performance, thereby limiting the learning process to ID classes. We extend this to a more natural open-world setting, where the OOD classes are not only detected but also incorporated into the learning process. Specifically, we explore two key questions: 1) how to accurately detect OOD samples, and, most importantly, 2) how to effectively learn from the OOD samples in a semi-supervised object detection pipeline without compromising ID accuracy. To address this, we introduce an ensemble-based OOD Explorer for detection and classification, and an adaptable semi-supervised object detection framework that integrates both ID and OOD data. Through extensive evaluation on different open-world scenarios, we demonstrate that our method performs competitively against state-of-the-art OOD detection algorithms and also significantly boosts the semi-supervised learning performance for both ID and OOD classes.
Submission history
From: Garvita Allabadi [view email][v1] Fri, 28 Jul 2023 17:59:03 UTC (1,635 KB)
[v2] Fri, 1 Nov 2024 20:44:02 UTC (2,220 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.