Computer Science > Machine Learning
[Submitted on 13 Oct 2023]
Title:Semantics Alignment via Split Learning for Resilient Multi-User Semantic Communication
View PDFAbstract:Recent studies on semantic communication commonly rely on neural network (NN) based transceivers such as deep joint source and channel coding (DeepJSCC). Unlike traditional transceivers, these neural transceivers are trainable using actual source data and channels, enabling them to extract and communicate semantics. On the flip side, each neural transceiver is inherently biased towards specific source data and channels, making different transceivers difficult to understand intended semantics, particularly upon their initial encounter. To align semantics over multiple neural transceivers, we propose a distributed learning based solution, which leverages split learning (SL) and partial NN fine-tuning techniques. In this method, referred to as SL with layer freezing (SLF), each encoder downloads a misaligned decoder, and locally fine-tunes a fraction of these encoder-decoder NN layers. By adjusting this fraction, SLF controls computing and communication costs. Simulation results confirm the effectiveness of SLF in aligning semantics under different source data and channel dissimilarities, in terms of classification accuracy, reconstruction errors, and recovery time for comprehending intended semantics from misalignment.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.