
Semantic Table Interpretation using LOD4ALL

Hiroaki Morikawa

Fujitsu Laboratories Limited, 4-1-1 Kamikodanaka, Nakahara-ku, Kawasaki,
Kanagawa, Japan

Abstract. In this paper, we describe Semantic Table Interpretation us-
ing LOD4ALL. LOD4ALL is an LOD search engine developed by Fujitsu
laboratories. This engine crawls Linked Open Data from the Web and
provides a high-speed search service. There are many tabular data on the
Web, and these data are important sources of Knowledge Graphs. There-
fore, we have enhanced a crawler that is a component of LOD4ALL for
taking in these tabular data. This crawler is able to construct Knowledge
Graphs to a tabular data. To evaluate of the function of this crawler, we
have participated in the challenge “Semantic Web Challenge on Tabular
Data to Knowledge Graph Matching”.

1 Presentation of the system

1.1 General statement

There are a great number of tabular data on the Web[1]. It is useful to build
Knowledge Graphs from these tabular data, and we can maintain the latest
Knowledge Graph by constructing it to tabular data and importing it[2]. Fujitsu
laboratories developed LOD4ALL[3] in 2014, is the world’s first repository en-
abling unified access to Linked Open Data (LOD) through a single query to the
entire LOD datasets. Therefore, we have enhanced a crawler that is a compo-
nent of LOD4ALL for taking in these tabular data. This crawler has the function
of constructing Knowledge Graphs to tabular data. To evaluate the function of
this crawler, we have participated in the challenge “Semantic Web Challenge on
Tabular Data to Knowledge Graph Matching”[4]. In this paper, we describe our
proposed approach to realizing this function of our crawler.

1.2 Specific techniques used

In this section, we describe the overview of our proposed approach in the follow-
ing five steps:

Step 1 Extract candidate entities

Copyright 2019 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).



2

Step 2 Resolve an entity type
Step 3 Determine a column type
Step 4 Determine an entity for each cell
Step 5 Extract a relationship of entities for each row

Our proposed approach is similar to that of Efthymiou et al.[5], and, we have
imitated the approach of Zwicklbauer et al.[6] from Step 1 to Step 3, and we
have enhanced Step 3 in our approach. Step 4 and Step 5 are original processes.
Step 0 builds some databases as a preparatory step. Fig. 1 is an overview of our
proposed system.

Step 1
Extract candidate 

entities

Step 2
Resolve an entity 

type

Step 3
Determine a 
column type

RDF store

Keyword 
store

Score DB

Step 0
Build Score DB

Step 0
Build Keyword 

store

Step 4
Determine an 

entity for each cell

Step 5
Extract a relationship 
of entities for each row

CTA result

CEA result

CPA result

Output Result

Reference

Input/output

Fig. 1. Overview of our proposed system

Step 0: Build Databases Step 0 builds some databases for a predict on.
Our proposed approach can only build these from a target Knowledge Graph.
Therefore, our approach does not build predicted databases using annotated
tables like T2Dv21. Our approach has two databases. One is the Score DB to
resolve CTA task in the challenge. Another is the Keyword Store for Step 1.

In DBpedia, an entity has some classes. For example, dbr:Barack_Obama
has dbo:Person, dbo:Politician, and dbo:President. For recognizing a more
detailed class, we have adopted Okapi BM25[7], which is a traditional retrieval
score as the Score DB. To calculate this score, we have considered entities as
terms and classes as documents. Adopting this score to DBpedia, the Okapi
BM25 score of dbr:Barack_Obama is Table 1. By using the Okapi BM25, we
could be assigned a higher score to a more detailed class.

1 http://webdatacommons.org/webtables/goldstandardV2.html



3

Table 1. The Okapi BM25 score of dbr:Barack Obama

Class Score

dboPerson 0.2258
dboPolitician 1.2852
dboPresident 5.1031

Step 1: Extract candidate entities This step obtains candidate entities for
each cells in a target tabular data. We have used the literal search function
of LOD4ALL. The original literal search function of LOD4ALL uses Elastic-
search that returns a subject (a candidate entity) corresponding to an object
that matches a cell value. We have enhanced this literal search function for this
challenge. This function can obtain candidate entities in the following steps.

Step 1-1 Direct search: First, by combining http://dbpedia.org/resource/

with the cell value, we create a candidate entity. Next, we execute ASK
query to RDF store. For example, if the cell value is “Japan”, execut-
ing SPARQL like ASK { <http://dbpedia.org/resource/Japan>

?p ?o . }.
Step 1-2 Keyword search: We have enhanced the literal search function of

LOD4ALL that can retrieve subjects that have rdfs:label, foaf:
name, foaf:surname and foaf:givenName in the triple. Further more,
we have added keywords for a person that combines a first charac-
ter, the object value corresponding to foaf:givenName, “.” and the
object value corresponding to foaf:surname. Through this enhance-
ment, we can retrieve dbr:Barack_Obama from the cell value of “B.
Obama”. In addition, a similar string search step has been added. We
have adopted SimString[8] for the similar string search.

Step 1-3 Output candidate entities: To Output in order of highest TOP-K
score. We have set 100.0 for the score of an entity found by Direct
search, and set a value multiplying the Elasticsearch’s score and the
SimString’s score for the score of an entity that have found by Key-
word search.

The flow of this step is Fig. 2

Step 2: Resolve an entity type In this step, classes for each entity are
obtained from the Score DB. This process is similar to those in to previous
studies.

Step 3: Determine a column type In this step, estimating a column type
(CTA result) using candidate entities extracted in Step 2 and the Score DB.
This step consists of the three following steps:

Step 3-1 Calculate a cover ratio



4

Direct search

Input a cell value

Candidate 

entities

Hit

Not found

RDF store

Keyword 
store

SimString
DB

partial match
Hit

partial match
extended 
keywords 
using 

SimString DB

Not found

Hit

Candidate 

entities

result

Filter
TOP-k

Step 1-2

Step 1-1

Step 1-3

Fig. 2. The flow of extraction of candidate entities

Step 3-2 Search a class score from the score DB
Step 3-3 Calculate a predict score using both a score ratio and a class

score

We illustrate the running example of Step 2 and Step 3 using a part of the
“List of residences of Presidents of the United States#Summer White House#0.csv”
in Round2 in Fig. 3. We have set Step 1’s K as 1 in this figure to explain easily.
In this figure, our approach outputs dbo:President as the result of this step.

Step 4: Determine an entity for each cell In this step, we determine an
entity for each cell that has the class (the column type) determined in Step 3
from candidate entities that extract by Step 1. The output of this step is the
result of the CEA task.

Step 5: Extract a relationship of entities for each row In this step, we
first collect candidate predicates using entities determined in Step 4 by executing
SPARQL (Listing 1.1) to RDF store. %URI1% and %URI2% in SPARQL are
replaced entities determined in Step 4. Next, by calculating a frequency, we
obtain the predicate of the greatest frequency. The output of this step is the
result of the CPA task.

We illustrate the running example of the Step 5 in Fig. 4.

Listing 1.1. SPARQL query used the Step 5

PREFIX dbr: <http :// dbpedia.org/resource/>

select distinct ?predicate where{
%URI1% ?predicate %URI2%

}



5

Entity Classes

dbr:Ronald_Reagan dbo:Person
dbo:Politician
dbo:President

dbr:George_H._W._Bush dbo:Person
dbo:OfficeHolder

dbr:Bill_Clinton dbo:Person
dbo:Politician
dbo:President

dbr:George_W._Bush dbo:Person
dbo:Politician
dbo:President

dbr:Barack_Obama dbo:Person
dbo:Politician
dbo:President

Class Cover ratio

dbo:Person 1.0

dbo:Politician 0.8

dbo:President 0.8

dbo:OfficeHolder 0.2

Get entities type
(Step 2)

Order President

40 Ronald Reagan

41 George H. W. Bush

42 Bill Clinton

43 George W. Bush

44 Barack Obama

Calculating a cover ratio
(Step 3-1)

Entity Classes Class score

dbr:Ronald_Reagan dbo:Person 0.21

dbo:Politician 1.21

dbo:President 4.79

dbr:George_H._W._Bush dbo:Person 0.24

dbo:OfficeHolder 1.95

dbr:Bill_Clinton dbo:Person 0.21

dbo:Politician 1.29

dbo:President 5.10

dbr:George_W._Bush dbo:Person 0.25

dbo:Politician 1.43

dbo:President 5.67

dbr:Barack_Obama dbo:Person 0.23

dbo:Politician 1.29

dbo:President 5.10

Searching a class score from the Score DB
(Step 3-2)

Calculating a predict score using both a score ratio 
and a class score (Step 3-2)

Class Cover ratio average score per 
a class (STEP3-2)

Predict score

dbo:Person 1.0 0.23 0.23

dbo:Politician 0.8 1.31 1.05

dbo:President 0.8 5.17 4.14

dbo:OfficeHolder 0.2 1.95 0.39

Get TOP-1 class

dbo:President

Fig. 3. The running example of Step 2 and Step 3



6

col0 col1

B. Lahai Kenema District

B. Obama Hawaii

A. MacLean Lewes, PEI

A. Lungay Kenema District

A. Timbo Sierra Leone

After Step 4

col0 col1

dbr:Bernadette_Lahai dbr:Kenema_District

dbr:Barack_Obama dbr:Hawaii

dbr:Angus_MacLean ---

dbr:Andrew_Lungay dbr:Kenema District

dbr:Alpha_Timbo dbr: Sierra Leone

%URI1% %URI2%

PREFIX dbr: <http://dbpedia.org/resource/>

select distinct ?predicate where{
dbr:Barack_Obama ?predicate dbr:Hawaii .

}
RDF store

Creating SPARQL using 
template like Listing1.1

http://dbpedia.org/ontology/birthPlace

Fig. 4. The running example of Step 5. %URI1% and %URI2% in SPARQL are re-
placed entities, like this figure.

1.3 Adaptations made for evaluation

We designed predict score functions for Step 3 through trial and error. The best
result in our trial is Equation 1. Here, the normalizedClassScore is the class
score that has scaled between 0 and 1. α and β are hyperparameters.

PredictScore = α ∗ normalizedClassScore+ β ∗ ratioScore (1)

In our experiment, by setting α=1.2 and β=2.5, the system has output the best
of results. In Step 1, the top k number is K=10, and the similarity parameter
for SimString is 0.7.

1.4 Link to the system and parameters file

We plan to publish our modules in the GitHub2 .

2 Results

Table 2 is the results of the challenge.
There were many tables with column data for person name labels in the

Round4 dataset. Therefore we enhanced the entities lookup for person name in
Step 1 after closing Round4. As the results, we were able to improve these scores.
We found that their accuracy depended heavily on the accuracy of the entity
lookup function in Step 1.

2 https://github.com/lod4all/semanticTableInterpretation



7

Table 2. Results of the challenge

AH-Score AP-Score F1-Score Precision
Leaderboard’s

ranking

Round1 CTA - - 0.850 0.850 4/13
CEA - - 0.852 0.874 6/11
CPA - - - - -

Round2 CTA 0.893 0.234 - - 5/9
CEA - - 0.757 0.767 6/10
CPA - - 0.555 0.941 4/7

Round3 CTA 1.442 0.260 - - 5/11
CEA - - 0.828 0.833 6/9
CPA - - 0.545 0.853 5/9

Round4 CTA 1.071 0.386 - - 6/8
CEA - - 0.648 0.654 7/9
CPA - - 0.439 0.904 6/9

Round4
(After closing)

CTA 1.41 0.369 - - -

CEA - - 0.815 0.818 -
CPA - - 0.459 0.918 -

3 General comments

In these challenge datasets, there were several cases where it was difficult to
determine the column type in the CTA task. One of them is shown in Fig. 5.
This table is the ranking of Forbes Korea Power Celebrity in 20123. We found
this in the Round2 dataset. The Name column in this table may be assigned
dbo:Person and dbo:Group. It is difficult to determine a unique column type for
CTA task. To deal with this case, we believe it is necessary to ues an evaluation
method that allows multiple perfect annotations for a column.

4 Conclusions

In this paper, we described Semantic Table Interpretation using LOD4ALL. Our
proposed approach is still in the early stages, so there are a lot of problems to
be resolved. In the future, we will improve the accuracy of collecting candidate
entities in Step 1 and the prediction process in Step 3 in these problems in par-
ticular. Further more, we will improve our system by developing an ensemble
approach between our approach and others. For CTA task, we believe it is nec-
essary to improve DBpedia. For example, we will assign a class to an entity that
has not been assigned a class by adopting Fang’s method[9].

3 https://en.wikipedia.org/wiki/Forbes Korea Power Celebrity



8

Rank Name Profession

1 Girls' Generation Girl group

2 Big Bang Boy band

3 IU Singer

4 Kara Girl group

5 Kim Yuna Figure skater

6 Lee Seung-gi Singer, actor, TV show host

7 Park Ji-sung Footballer

8 Kim Tae-hee Actress

9 Beast* Boy band

10 Park Tae-Hwan Swimmer

Fig. 5. An difficult example of determining a unique column type. dbo:Group has been
assigned to rows have Rank1, 2, 4, and 9. dbo:Person has been assigned to remained
rows. In this situation, we could not determine a unique column type.

References

1. Lehmberg, Oliver, et al. “A large public corpus of web tables containing time and
context metadata.” Proceedings of the 25th International Conference Companion on
World Wide Web. International World Wide Web Conferences Steering Committee,
2016.

2. Kruit, Benno, Peter Boncz, and Jacopo Urbani. “Extracting Novel Facts from Ta-
bles for Knowledge Graph Completion.” International Semantic Web Conference.
Springer, Cham, 2019.

3. Naseer, Aisha, et al. “LOD for all: Unlocking infinite opportunities.” Semantic Web
Challenge (2014).

4. Semantic Web Challenge on Tabular Data to Knowledge Graph Matching http:

//www.cs.ox.ac.uk/isg/challenges/sem-tab/. (accessed Sep. 2019)
5. Efthymiou, Vasilis, et al. “Matching web tables with knowledge base entities:
from entity lookups to entity embeddings.” International Semantic Web Conference.
Springer, Cham, 2017.

6. Zwicklbauer, Stefan, et al. “Towards Disambiguating Web Tables.” International
Semantic Web Conference (Posters & Demos). 2013.

7. Robertson, Stephen, and Hugo Zaragoza. “The probabilistic relevance framework:
BM25 and beyond.” Foundations and Trends in Information Retrieval 3.4 (2009):
333-389.

8. Okazaki, Naoaki, and Jun’ichi Tsujii. “Simple and efficient algorithm for approx-
imate dictionary matching.” Proceedings of the 23rd International Conference on
Computational Linguistics. Association for Computational Linguistics, 2010.

9. Fang, Lu, Qingliang Miao, and Yao Meng. “DBpedia Entity Type Inference Using
Categories.” International Semantic Web Conference (Posters & Demos). 2016.


