Computer Science > Computer Vision and Pattern Recognition
[Submitted on 21 May 2024]
Title:Self-Supervised Modality-Agnostic Pre-Training of Swin Transformers
View PDF HTML (experimental)Abstract:Unsupervised pre-training has emerged as a transformative paradigm, displaying remarkable advancements in various domains. However, the susceptibility to domain shift, where pre-training data distribution differs from fine-tuning, poses a significant obstacle. To address this, we augment the Swin Transformer to learn from different medical imaging modalities, enhancing downstream performance. Our model, dubbed SwinFUSE (Swin Multi-Modal Fusion for UnSupervised Enhancement), offers three key advantages: (i) it learns from both Computed Tomography (CT) and Magnetic Resonance Images (MRI) during pre-training, resulting in complementary feature representations; (ii) a domain-invariance module (DIM) that effectively highlights salient input regions, enhancing adaptability; (iii) exhibits remarkable generalizability, surpassing the confines of tasks it was initially pre-trained on. Our experiments on two publicly available 3D segmentation datasets show a modest 1-2% performance trade-off compared to single-modality models, yet significant out-performance of up to 27% on out-of-distribution modality. This substantial improvement underscores our proposed approach's practical relevance and real-world applicability. Code is available at: this https URL
Submission history
From: Abhiroop Talasila [view email][v1] Tue, 21 May 2024 13:28:32 UTC (4,209 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.