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Abstract
Rademacher penalization is a modern technique for obtaining data-dependent bounds on the gener-
alization error of classifiers. It appears to be limited to relatively simple hypothesis classes because
of computational complexity issues. In this paper we, nevertheless, apply Rademacher penaliza-
tion to the in practice important hypothesis class of unrestricted decision trees by considering the
prunings of a given decision tree rather than the tree growing phase. This study constitutes the
first application of Rademacher penalization to hypothesisclasses that have practical significance.
We present two variations of the approach, one in which the hypothesis class consists of all prun-
ings of the initial tree and another in which only the prunings that are accurate on growing data
are taken into account. Moreover, we generalize the error-bounding approach from binary classifi-
cation to multi-class situations. Our empirical experiments indicate that the proposed new bounds
outperform distribution-independent bounds for decisiontree prunings and provide non-trivial error
estimates on real-world data sets.

Keywords: generalization error analysis, data-dependent generalization error bounds, Rademacher
complexity, decision trees, reduced error pruning

1. Introduction

Data-dependent bounds on generalization error of classifiers are bridging the gap that has existed
between theoretical and empirical results since the introduction of computational learning theory.
They allow to take situation specific information into account, whereas distribution-independent
results need to hold in all imaginable situations. UsingRademacher complexity(Koltchinskii, 2001;
Bartlett and Mendelson, 2002) to bound the generalization error of a training error minimizing
classifier is a fairly new approach that has not yet been tested in practiceextensively.

Rademacher penalization is in principle a general method applicable to any hypothesis class.
However, in practice it does not seem amenable to complex hypothesis classes because the standard
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method for computing Rademacher penalties relies on the existence of an empirical risk minimiza-
tion algorithm for the hypothesis class in question. The first practical experiments with Rademacher
penalization used real intervals as the hypothesis class (Lozano, 2000). Elomaa and K̈aäriäinen
(2002) have applied Rademacher penalization to two-level decision trees,which can be learned
efficiently in the agnostic PAC model (Auer et al., 1995).

General decision tree growing algorithms are necessarily heuristic because of the computational
complexity of finding optimal decision trees (Grigni et al., 2000). Moreover, the hypothesis class
consisting of unrestricted decision trees is so vast that traditional generalization error analysis tech-
niques cannot provide non-trivial bounds for it. Nevertheless, top-down induction of decision trees
by, e.g., C4.5 (Quinlan, 1993) produces results that are very competitivein prediction accuracy with
better motivated approaches. We consider the usual two-phase process of decision tree learning;
after growing a tree, it is pruned in order to reduce its dependency on thegrowing data and to bet-
ter reflect characteristics of future data. Because of the practical success of decision tree learning,
prunings of an induced decision tree can be considered an expressive class of hypotheses.

We apply Rademacher penalization to general decision trees by considering, not the tree grow-
ing phase, but rather the pruning phase. The idea is to view decision tree pruning as empirical risk
minimization in the hypothesis class consisting of all prunings of an induced decision tree. First
a heuristic tree growing procedure is applied to growing data to produce a decision tree. Then a
pruning algorithm, for example thereduced error pruning(REP) algorithm of Quinlan (1987), is
applied to the grown tree and a set of pruning data. As REP is known to be an efficient empirical
risk minimization algorithm for the class of prunings of a decision tree (Elomaa and Kääriäinen,
2001), it can be used to compute the Rademacher penalty for this hypothesisclass. Thus, by view-
ing decision tree pruning as empirical risk minimization in a data-dependent hypothesis class, we
can bound the generalization error of prunings by Rademacher penalization. We also extend this
generalization error analysis framework to the multi-class setting.

Standard Rademacher penalization still requires to take the whole hypothesisclass into account.
All possible prunings of the decision tree have to be evaluated. The prunings that evaluate best on
randomly relabeled data—and, therefore, badly on the original data—essentially determine the error
bound. However, in practice only prunings that have relatively small empirical error on the set of
growing data are viable candidates for the final hypothesis. For this reason we restrict the pruning
algorithm to operate on the much smaller class of hypotheses that consists of those prunings that
make few mistakes on the set of growing data. To apply Rademacher penalization to this restricted
class of hypotheses, we devise an empirical risk minimization algorithm for it. The new pruning
algorithm, calledk-REP, finds the most accurate pruning with respect to a set of pruning data among
those prunings that make at mostk mistakes on the set of growing data. The algorithm is based on
dynamic programming and works in time cubic in the number of growing examples and linear in
the number of pruning examples and the size of the decision tree to be pruned.

We evaluate the practical application potential of data-dependent error bounds empirically. Our
experiments show that Rademacher penalization applied to prunings found byREP provides rea-
sonable generalization error bounds on real-world data sets. The results for k-REP are even better.
Although the bounds still overestimate the test set error, they are much tighterthan distribution-
independent bounds for prunings when the data sets are large.

This paper is organized as follows. In Section 2 we recapitulate the main idea of data-dependent
generalization error analysis. We concentrate on Rademacher penalization, which we also extend
to cover the multi-class case. Section 3 concerns pruning of decision trees, reduced error pruning

1108



SELECTIVE RADEMACHER PENALIZATION AND REP

of decision trees being the main focus. Thek-REP algorithm together with a correctness proof and
time complexity analysis is presented in Section 4. Combining Rademacher complexitycalculation
and decision tree pruning is the topic of Section 5. Empirical evaluation of the proposed approach
is presented in Section 6 and, finally, Section 7 presents the concluding remarks of this study.

2. Rademacher Penalties

Let S= {(xi ,yi) | i = 1, . . . ,n} be a sample ofn examples(xi ,yi) ∈ X ×Y each of which is drawn
independently from some unknown probability distribution onX ×Y . In the PAC and statistical
learning settings one usually assumes that the learning algorithm chooses its hypothesish: X → Y

from some fixed hypothesis classH . Under this assumption generalization error analysis provides
theoretical results bounding the generalization error of hypothesesh∈H which is allowed to depend
on the sample, the learning algorithm, and the properties of the hypothesis class. We consider the
multi-class setting, whereY may contain more than two labels.

Let P be the unknown probability distribution according to which the examples are drawn. The
generalization errorof a hypothesish is the probability that a randomly drawn example(x,y) is
misclassified:

εP(h) = P(h(x) 6= y).

The general goal of learning, of course, is to find a hypothesis with a small generalization error.
However, since the generalization error depends onP, it cannot be computed directly based on the
sample alone. We can try to approximate the generalization error ofh by its training error on n
examples:

ε̂n(h) =
1
n

n

∑
i=1

`(h(xi),yi),

where` is the 0/1 loss function

`(y,y′) =

{

1, if y 6= y′;

0, otherwise.

Empirical Risk Minimization(ERM) (Vapnik, 1982) is a principle that suggest choosing the
hypothesish ∈ H with minimal training error. In relatively small and simple hypothesis classes
finding a minimum training error hypothesis is computationally feasible. To guarantee that ERM
yields hypotheses with small generalization error, one can try to bound suph∈H |εP(h)− ε̂n(h)|. Un-
der the assumption that the examples are independent and identically distributed (i.i.d.), whenever
H is not too complex, the difference of the training error of the hypothesish on n examples and its
true generalization error converges to 0 in probability asn tends to infinity.

The most common approach to deriving generalization error bounds is based on the VC dimen-
sion of the hypothesis class (Vapnik and Chervonenkis, 1971; Blumer etal., 1989). The problem
with this approach is that it provides optimal results only in the worst case—when the underlying
probability distribution is as bad as it can be. Thus, the generalization errorbounds based on VC
dimension tend to be overly pessimistic. Moreover, the VC dimension bounds are hard to extend
to the multi-class setting. Data-dependent generalization error bounds, onthe other hand, can be
provably almost optimal for any given domain (Koltchinskii, 2001). In the following we review the
foundations of a recent promising approach to bounding the generalization error.
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A Rademacher random variabletakes values+1 and−1 with probability 1/2 each. Letr1, r2, . . . , rn

be a sequence of Rademacher random variables independent of eachother and the data(x1,y1), . . . ,(xn,yn).
TheRademacher penaltyof the hypothesis classH is defined as

Rn(H ) = sup
h∈H

∣

∣

∣

∣

∣

1
n

n

∑
i=1

r i`(h(xi),yi)

∣

∣

∣

∣

∣

.

Rademacher penalty is, thus, a random variable depending both on the random choice of the learning
sample(x1,y1), . . . ,(xn,yn) and on the randomness injected through the random variablesr1, . . . , rn.
The following symmetrization inequality (Van der Vaart and Wellner, 2000), which also covers the
multi-class setting, connects Rademacher penalties to generalization error analysis.

Theorem 1 The inequality

E

[

sup
h∈H

|εP(h)− ε̂n(h)|

]

≤ 2E[Rn(H )]

holds for any distribution P, number of examples n, and hypothesis classH .

The random variables suph∈H |εP(h)− ε̂n(h)| andRn(H ) are sharply concentrated around their
expectations (Koltchinskii, 2001). The concentration results are based on the following McDi-
armid’s (1989) bounded difference inequality.

Lemma 2 (McDiarmid’s inequality) Let Z1, . . . ,Zn be independent random variables taking their
values in a set A. Let f: An→ R be a function such that over all z1, . . . ,zn,z′i ∈ A

sup| f (z1, . . . ,zi , . . . ,zn)− f (z1, . . . ,z
′
i , . . . ,zn)| ≤ ci

for some constants c1, . . . ,cn ∈ R. Then for allε > 0

P( f (Z1, . . . ,Zn)−E[ f (Z1, . . . ,Zn)]≥ ε) and

P(E[ f (Z1, . . . ,Zn)]− f (Z1, . . . ,Zn)≥ ε)

are upper bounded by

exp

(

−2ε2
/ n

∑
i=1

c2
i

)

.

Using McDiarmid’s inequality one can bound the generalization error of hypotheses using their
training error and Rademacher penalty as follows.

Lemma 3 Let h∈H be arbitrary. Then with probability at least1−δ

εP(h)≤ ε̂n(h)+2Rn(H )+5η(δ,n), (1)

whereη(δ,n) =
√

ln(2/δ)/(2n) is a hypothesis class independent error term that goes to zero as
the number of examples increases.
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Proof Observe that replacing a pair((xi ,yi), r i) consisting of an example(xi ,yi) and a Rademacher
random variabler i by any other pair((x′i ,y

′
i), r
′
i) may change the value ofRn(H ) by at most 2/n.

Lemma 2 applied to the i.i.d. random variables((x1,y1), r1), . . . , ((xn,yn), rn) and the function
Rn(H ) yields

P(Rn(H )≤ E[Rn(H )]−2η(δ,n))≤
δ
2
. (2)

Similarly, changing the value of any example(xi ,yi) can change the value of suph∈H |εP(h)− ε̂n(h)|
by no more than 1/n. Thus, applying Lemma 2 again to(x1,y1), . . . ,(xn,yn) and suph∈H |εP(h)−
ε̂n(h)| gives

P

(

sup
h∈H

|εP(h)− ε̂n(h)| ≥ E

[

sup
h∈H

|εP(h)− ε̂n(h)|

]

+η(δ,n)

)

≤
δ
2
. (3)

To bound the generalization error of a hypothesisg∈H observe that

εP(g)≤ ε̂n(g)+ sup
h∈H

|εP(h)− ε̂n(h)|.

Hence, by inequality (3), with probability at least 1−δ/2

εP(g) ≤ ε̂n(g)+E

[

sup
h∈H

|εP(h)− ε̂n(h)|

]

+η(δ,n)

≤ ε̂n(g)+2E[Rn(H )]+η(δ,n),

where the second inequality follows from Theorem 1. Finally, applying inequality (2) yields that
with probability at least 1−δ

εP(g)≤ ε̂n(g)+2Rn(H )+5η(δ,n).

The usefulness of inequality (1) stems from the fact that its right-hand sidedepends only on
the training sample and the Rademacher random variables, but not onP directly. Hence, all the
data that is needed to evaluate the generalization error bound is available to the learning algorithm.
Furthermore, Koltchinskii (2001) has shown that in the two-class situation the Rademacher penalty
can be computed by an empirical risk minimization algorithm applied to relabeled training data. We
now extend this method to the multi-class setting.

The expression forRn(H ) is first written as the maximum of two suprema in order to remove
the absolute value inside the original supremum:

Rn(H ) = max

(

sup
h∈H

{

±
1
n

n

∑
i=1

r i`(h(xi),yi)

})

.

The sum inside the supremum with positive sign is maximized by the hypothesish1 that tries to
correctly classify those and only those training examples(xi ,yi) for which r i = −1. To formalize
this, we associate each classy ∈ Y with a complement class label ¯y that represents the set of all
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classes buty. We denote the set of these complement classes byY and extend the domain of the
loss functioǹ to cover pairs(y,z) ∈ Y ×Y by setting`(y,z) = 1 if z= ȳ and 0 otherwise. Using
this notation,h1 is the hypothesis that minimizes the empirical error with respect to a newly labeled
training set{(xi ,zi)}

n
i=1, where

zi =

{

yi , if r i =−1;

ȳi , otherwise.

The case for the supremum with negative sign is similar.
Altogether, the computation of the Rademacher penalty entails the following steps.

• Toss a fair coinn times to obtain a realization of the Rademacher random variable sequence
r1, . . . , rn.

• Change the labelyi to ȳi if and only if r i = +1 to obtain a new sequence of labelsz1, . . . ,zn.

• Find functionsh1,h2 ∈H that minimize the empirical error with respect to the set of labelszi

andz̄i , respectively. Here, we follow the convention that¯̄z= z for all z∈ Y ∪Y .

• Evaluate the Rademacher penalty given by the maximum of|{ i : r i = +1}|/n− ε̂(h1) and
|{ i : r i =−1}|/n− ε̂(h2), where the empirical errorŝε(h1) andε̂(h2) are with respect to the
labelszi andz̄i , respectively.

In the two-class setting, the set ¯y of all classes buty, Y \ {y}, is a singleton. Thus, changing
classy to ȳ amounts to flipping the class label. It follows that a normal ERM algorithm can beused
to find the hypothesesh1 andh2 and hence the Rademacher penalty can be computed efficiently
provided that there exists an efficient ERM algorithm for the hypothesis class in question.

In the multi-class setting, however, a little more is required, since the sample on which the
empirical risk minimization is performed may contain labels fromY and the loss function differs
from the standard 0/1-loss. This, however, is not a problem with the variants of REP covered in
this paper nor with T2, a decision tree learning algorithm used in our earlier study, since all the
algorithms can be easily adapted to handle this more general setting. The casefor REP is covered
in the next sections and for T2 in the paper by Auer et al. (1995).

3. Growing and Pruning Decision Trees

A decision tree (Breiman et al., 1984) is a rooted tree in which the inner nodesare equipped with
branching functionsand the leaves are labeled with classes. A branching function routes exam-
ples reaching a node to its children, thus defining for each example a uniqueroot-leaf path. The
classification of an example is determined by the label of the leaf to which the example is routed.

A common approach in top-down induction of decision trees is to first grow a tree that fits the
training data well and, then, prune it to reflect less the peculiarities of the training data; i.e., to gen-
eralize better. Here, pruning means replacing some inner nodes of the treewith leaves and removing
the parts of the tree that become unreachable from the root. Many heuristicapproaches (Quinlan,
1987; Mingers, 1989; Esposito et al., 1997) as well as more analytical ones (Mansour, 1997; Kearns
and Mansour, 1998) to pruning have been proposed. A special classof pruning algorithms are the
on-line ones (Helmbold and Schapire, 1997; Pereira and Singer, 1999). Even these algorithms work
by the two-phase approach: An initial decision tree is fitted to the data and its prunings are then
used as experts that collectively predict the class of observed instances.
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Reduced error pruning was originally proposed by Quinlan (1987). Itproduces an optimal
pruning of a given tree—the smallest tree among those with minimal error with respect to a given
set ofpruning examples(Esposito et al., 1997; Elomaa and Kääriäinen, 2001). The REP algorithm
works in two phases: First the set of pruning examplesS is classified using the given treeT to be
pruned. Counters that keep track of the number of examples of each class passing through each node
are updated simultaneously. In the second phase—a bottom-up pruning phase—those parts of the
tree that can be removed without increasing the error of the remaining hypothesis are pruned away.
The pruning decisions are based on the node statistics calculated in the top-down classification
phase.

REP can be viewed as an ERM algorithm for the hypothesis class consisting of allprunings of
a given decision tree. Thus, it can be used to efficiently compute Rademacher penalties and, hence,
also generalization error bounds for the class of prunings of a decisiontree. This leads us to the
following strategy. First, we use a standard heuristic decision tree inductionalgorithm to grow a
C4.5-type decision tree based on a set of growing examples. The tree serves as a representation of
the data-dependent hypothesis class that consists of its prunings. As C4.5 usually performs quite
well on real-world domains, it is reasonable to assume—even though it cannot be proved—that the
class of prunings contains some good hypotheses.

Having grown a decision tree, we use a separate pruning data set to select one of the prunings
of the grown tree as our final hypothesis. In this paper, we use REP as our pruning algorithm, but in
principle any other pruning algorithm using the same basic pruning operationcould be used instead.
However, since REP is an empirical risk minimization algorithm, the derived error bounds will be
the tightest when combined with the prunings produced by REP.

3.1 Reducing the Number of Prunings

As argued above, the set of prunings of a decision tree is likely to contain accurate hypotheses.
Still, most of the prunings—the ones performing badly on the growing set—arelikely to be very
inaccurate on the pruning data. If the growing and the pruning data sets resemble each other to any
extent, which is a necessary condition for the two-phase learning paradigm to make sense in the
first place, the pruning algorithm will not select any of these hypotheseswith very bad performance
on the set of growing data. Keeping these inaccurate prunings as part of the hypothesis class only
makes the hypothesis class more complex and, hence, increases the Rademacher penalty associated
with it.

Following the line of thought above, it would seem reasonable to restrict thepruning algorithm
to select the final pruning from among those hypotheses that are relatively accurate on the set of
growing data. In Section 4 we present in detail thek-REP pruning algorithm, which does exactly
this by solving the following problem: given a decision tree and sets of growing and pruning data,
find the most accurate pruning (w.r.t. the pruning data) of the tree among those prunings that make
at mostk mistakes on the growing data. The restriction to prunings that are accurate on the growing
data adds to the combinatorial complexity of the search problem, but we are stillable to solve the
problem in cubic time by using dynamic programming.k-REP is an efficient ERM algorithm for
the restricted class of prunings. Thus, it can be used to evaluate generalization error bounds based
on Rademacher penalties in the same way as REP can be used in connection with the class of all
prunings (K̈aäriäinen and Elomaa, 2003). Sincek-REP operates on a subclass of the class of all
prunings, the Rademacher penalties are in this case smaller.
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In order to usek-REPone has to devise some strategy of choosing a value fork, that is, to define
exactly what it means for a hypothesis to be accurate on a set of growing data. If k is very large,
k-REPboils down to standard REPsince a loose bound on mistakes does not rule any of the prunings
out. On the other hand, too small ak may shrink the hypothesis class too small or even empty if
none of the prunings meets the strict accuracy requirement. A theoretically well-motivated solution
would be to consider all values ofk and employ standard model selection techniques to pick the one
that gives the best error bounds. However, the model selection phasewould loosen the bounds as
the confidence parameterδ would have to be split among the different values ofk. Hence, the best
bound obtainable using model selection would unavoidably be larger than thebest bound achievable
if one could somehow pick a single fortunate choice fork.

In practice, the number of errors the original decision tree makes on the set of growing data
is a good baseline to which the accuracy of the prunings can be related—wewant the prunings
considered byk-REP to be almost as accurate on the growing data as the original decision tree.
Thus, we will selectk to be some constant factorc > 1 times the number of errors the original tree
makes on the growing data. This way of choosing the value ofk is, of course, just an intuitively
motivated heuristic, but so is the whole decision tree growing procedure that determines the original
class of prunings in the first place. Our empirical experiments show this strategy works well on real
world data sets.

A similar idea to the one behindk-REP is employed in theshell decomposition boundsof Lang-
ford and McAllester (2000), who show that the effective complexity of a hypothesis class can be
measured by the complexity of the sub-class (or shell of hypothesis) that consists of only the almost
most accurate hypotheses of the original class. The shells, however, are defined based on the same
data that is used for selecting the final hypothesis, whereas in the case ofk-REP the sub-class of
accurate hypotheses is selected based on the growing data and the final hypothesis is chosen based
on the pruning data. Also local Rademacher complexities (Bartlett et al., 2002, 2004; Lugosi and
Wegkamp, 2004) and other local complexity measures (Koltchinskii and Panchenko, 2000; Massart,
2000; Mendelson and Philips, 2003) aim at taking into account only those parts of the model that
are relevant for the given learning task. However, these methods havenot been tested in practice as
evaluating the local complexity measures involves some computational and otherpractical problems
that have not been attacked yet.

3.2 Related Pruning Algorithms

REP produces the smallest of the most accurate prunings of a given decision tree, where accuracy
is measured with respect to the pruning set. Other approaches for producing optimal prunings for
different optimality criteria have also been proposed (Breiman et al., 1984;Bohanec and Bratko,
1994; Oliver and Hand, 1995; Almuallim, 1996). These criteria typically takeboth the size of
the resulting pruning and its accuracy on growing data into account. As pruning tends to reduce
growing set accuracy, one typically has to make a compromise between maintaining the initial
growing set accuracy and finding a small pruning. For example, Bohanec and Bratko (1994) as well
as Almuallim (1996) have studied how to efficiently find the smallest pruning that satisfies a given
minimum accuracy requirement.

The strategy of using one data set for growing a decision tree and another for pruning it closely
resembles the on-line pruning setting (Helmbold and Schapire, 1997; Pereira and Singer, 1999).
In it the prunings of the initial decision tree are viewed as a pool of experts. Thus, pruning is
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performed on-line, while giving predictions to new examples, rather than in aseparate pruning
phase. The main advantage of these on-line methods is that no statistical assumptions about the data
generating process are needed and still the combined prediction and pruning strategy can be proved
to be competitive with the best possible pruning of the initial tree. However, these approaches do
not choose or maintain one pruning of the given decision tree, but rathera weighted combination
of prunings, which may be impossible to interpret by human experts. Also, theloss bounds are
meaningful only for very large data sets and there exists no empirical evaluation of the performance
of the on-line pruning methods.

The pruning algorithms of Mansour (1997) and Kearns and Mansour (1998) are very similar
to REP in spirit. The main difference with these algorithms and REP is the fact that they do not
require the sampleS on which pruning is based to be independent of the treeT; i.e., T may well
have been grown based onS. Moreover, the pruning criterion in both methods is a kind of acost-
complexitycondition (Breiman et al., 1984) that takes both the observed classification error and
(sub)tree complexity into account. Both algorithms arepessimistic: They try to bound the true
error of a (sub)tree by its training error. Since the training error is by nature optimistic, the pruning
criterion has to compensate it by being pessimistic about the error approximation.

Both Mansour (1997) and Kearns and Mansour (1998) provide generalization error analyses for
their algorithms. The bound presented in (Mansour, 1997) measures the complexity of the class of
prunings by the size of the tree to be pruned. If this size or an upper bound for it is known in advance,
the bound applies also when the pruning data is not independent of the treeto be pruned. Kearns
and Mansour (1998) prove that the generalization error of the pruningproduced by their algorithm
is bounded by that of the best pruning of the given tree plus a complexity penalty. However, the
penalty term can grow intolerably large and cannot be evaluated becauseof its dependence on the
unknown optimal pruning and hidden constants.

One shortcoming of the two-phase decision tree induction approach is that there does not exist
any well-founded approach for deciding how much data to use for the training and pruning phases.
Only heuristic data set partitioning schemes are available. However, the simplerule of using, e.g.,
two thirds of the data for growing and the rest for pruning has been observed to work well in
practice (Esposito et al., 1997). If the initial data set is very large, it may becomputationally
infeasible to use all the data for growing or pruning. In that case one canuse heuristic sequential
sampling methods for selecting the size of the growing set and determine the sizeof the pruning set,
e.g., by using progressive Rademacher sampling (Elomaa and Kääriäinen, 2002). Because REP is
an efficient linear-time algorithm, it is not hit hard by overestimated pruning sample size.

4. k-Optimal REP Prunings

Given a decision tree to be pruned and a set of pruning examples, REP finds the pruning that min-
imizes error on the pruning set; no consideration is given to the growing seterror of the resulting
hypothesis. In Section 3.1, we motivated the idea of imposing a restriction also on the growing set
error of REP prunings. Clearly, in order to be able to prune at all, one has to give up some accuracy
on the data that was used to grow the tree. This naturally leads to the idea of finding REP prunings
with growing set error at most some threshold valuek.

Let T be a (subtree of a) decision tree,ε̂g(T) its growing set error,̂εp(T) its pruning set error,
and|T| its size. LetP (T) be the set of all the prunings ofT.
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Definition 4 A k-optimal REP pruningof a decision tree T is a T′ ∈ P (T) that hasε̂g(T ′) ≤ k, if
one exists, and for which

• ε̂p(T ′) = min{ ε̂p(T ′′) | T ′′ ∈ P (T), ε̂g(T ′′)≤ k}, and

• |T ′|= min{|T ′′| | T ′′ ∈ P (T), ε̂p(T ′′) = ε̂p(T ′)},

If there is no T′ ∈ P (T) satisfying the criteria, k-optimalREP pruning of T is undefined.

For clarity, we consider only binary trees at first. LetT be a decision tree with root nodeN.
Assume that, for eachi, 0≤ i ≤ k, we knowi-optimal REP prunings of the childrenT1 andT2 of
the root nodeN of T. Denote these byT0

1 , . . . ,Tk
1 andT0

2 , . . . ,Tk
2 , respectively. Choosing any pair

(Tu
1 ,Tv

2 ) of these prunings defines a pruning ofT in the obvious way; let〈N,Tu
1 ,Tv

2 〉 denote this
pruning.

In this paper we assume that leaf labels for decision tree prunings are determined by the growing
data. Alternative leaf labeling strategies are discussed by Elomaa and Kääriäinen (2001) and a
k-REP pruning algorithm resembling the one presented next could be derived for these labeling
strategies as well. LetNg denote the single-leaf pruning ofT, i.e., a leaf labeled with the majority
class of growing examples reachingT. The following result suggests a dynamic programming
technique for findingk-optimal REP prunings, which is described subsequently.

Theorem 5 If the k-optimalREP pruning of a decision tree T is defined, it is either the leaf Ng or
of the form〈N,Tu

1 ,Tv
2 〉, where u+ v = k and Tu

1 and Tv
2 are u- and v-optimalREP prunings of the

left and the right subtree of T , respectively.

Proof Let T ′ be thek-optimal REPpruning of a decision treeT. If T ′ is Ng, then we have the claim.
Otherwise,T ′ consists of a root nodeN and two subtreesT ′1 andT ′2, which respectively are prunings
of the subtreesT1 andT2 of T. Now, ε̂g(T ′) = ε̂g(T ′1)+ ε̂g(T ′2) ≤ k, which means that there must
existu andv such thatu+v = k, ε̂g(T ′1)≤ u andε̂g(T ′2)≤ v.

Let Tu
1 be au-optimal REP pruning ofT1 and assume thatT ′1 is not. By Definition 4 either

ε̂p(T ′1) > ε̂p(Tu
1 ) or |T ′1| > |T

u
1 |. Both cases contradict thek-optimality of pruningT ′, because the

tree〈N,Tu
1 ,T ′2〉 would be better than it. If̂εp(T ′1) > ε̂p(Tu

1 ), then

ε̂p(T
′) = ε̂p(T

′
1)+ ε̂p(T

′
2) > ε̂p(T

u
1 )+ ε̂p(T

′
2) = ε̂p(

〈

N,Tu
1 ,T ′2

〉

).

If, on the other hand,|T ′1|> |T
u
1 |, then

|T ′|= |T ′1|+ |T
′
2|+1 > |Tu

1 |+ |T
′
2|+1 = |

〈

N,Tu
1 ,T ′2

〉

|.

Therefore,T ′1 has to be au-optimal REP pruning ofT1. Similar argumentation also proves thev-
optimality ofT ′2.

What Theorem 5 effectively says is that thek-optimal REP pruning of a treeT is eitherNg or
a combination ofu- andv-optimal REP prunings of the children of its root node for someu andv
summing up tok. Therefore, by going through each of the mentioned prunings, and minimizing over
them first by pruning error, then by size, we can findk-optimal REP prunings ofT. Thek-optimal
REP prunings are easy to find for trees consisting of single leafs. Combining thiswith a bottom
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Algorithm 6 Find k-optimalREP prunings.

1 for each i ∈ {0, . . . ,min(n,k)} do
2 ε̂p(T i)← ∞;
3 |T i | ← ∞
4 od;
5 if N is not a leafthen
6 for each i ∈ {0, . . . ,min(n,k)} do
7 for each (u,v) such that u+v = i do
8 T ′← 〈N,Tu

1 ,Tv
2 〉;

9 if ε̂p(T ′) < ε̂p(T i) then T i ← T ′ fi ;
10 else if ε̂p(T ′) = ε̂p(T i) and |T ′|< |T i | then T i ← T ′ fi
11 od
12 od
13 fi ;
14 for each i, i ∈ { ε̂g(Ng), . . . ,min(n,k)} do
15 if ε̂p(Ng)≤ ε̂p(T i) then T i ← Ng fi
16 od;

up sweep ofT yields a dynamic programming technique for the task at hand. The step of dynamic
programming is given as Algorithm 6, which findsT i for eachi, 0≤ i ≤min(n,k), wheren is the
number of growing examples that reach the node.T i is undefined for anyi for which |T i |= ∞ after
running the algorithm.

The generalization of Theorem 5 (and Algorithm 6) to non-binary trees is straightforward. For
a t-way split, one has to go through all the partitions of eachi, 0≤ i ≤ min(n,k), into t addends.
This makes the time complexity exponential in the number of branches in the split, asthe number
of such partitions grows exponentially int.

Let us consider the time complexity of Algorithm 6. Clearly, the loop on lines 14–16 works
in time linear in min(n,k). In the loop on lines 6–12, one has to checki partitions for eachi,
0≤ i ≤min(n,k). This makes the time complexity of processing a single node with a binary split
O(min(n,k)2), wheren is the number of growing examples that reach the node.

Now consider a binary tree grown onn examples. First note that at mostn growing examples
reach the nodes of any particular level of the tree. Consider an arbitrary level withw≤ n nodes, with
n1, . . . ,nw growing examples reaching them. By the above bound for a single node, thecomputation
on the level takesO(∑w

i=1min(ni ,k)2) steps. Now, it is clear that∑w
i=1min(ni ,k)≤ n holds, and this

implies ∑w
i=1min(ni ,k)2 ≤ n2, soO(n2) is an upper bound for the time complexity on any single

level of the tree. A tree grown onn examples has at mostn levels, which makes the worst case
complexityO(n3).

The above result assumes that the pruning errors on lines 9, 10, and 15 can be evaluated in
constant time. This can be achieved by equipping the nodes of the original tree with counters telling
the class frequencies of pruning examples going through them. Initializing such counters can be
done in time linear in the number of pruning examples and the size of the tree to be pruned. As the
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algorithm does not need to access the pruning data after this preprocessing step, the time complexity
with respect to the amount of pruning data is linear.

The O(n3) time complexity result can be strengthened if we make more assumptions on the
decision tree to be pruned or the distribution of the growing examples to the tree. For example, if
the depth of the tree can be assumed to beO(logn), the upper bound on the time complexity of
k-REP is reduced toO(n2 logn). As another special case, assume that the set of growing examples
is halved in each node of a tree withn leaves. Then, the time complexity reduces to

c
logn

∑
i=0

2i ·
(

min
( n

2i ,k
))2

= O(n2),

where each addend corresponds to a single level of the tree.

5. Combining Rademacher Penalization and Decision Tree Pruning

When using REP or k-REP, the data sets used in growing the tree and pruning it are independent
of each other. Therefore, any standard generalization error analysis technique can be applied to
the resulting pruning as if the hypothesis class from which the pruning was selected was fixed in
advance. A formal argument justifying this would be to carry out the generalization error analysis
conditioned on the training data and then to argue that the bounds hold unconditionally by taking
expectations over the selection of the training data set.

By the above argument, the theory of Rademacher penalization can be applied to the data-
dependent class of prunings. Therefore, we can use the results presented in Section 2 to provide
generalization error bounds for prunings found by REP, k-REP, or any other pruning algorithm.
Moreover, since both REP and k-REP are efficient ERM algorithms (linear and cubic time, re-
spectively) for the related classes of prunings, the generalization error bounds can be evaluated
efficiently.

To summarize, we propose the following decision tree learning strategy that provides a general-
ization error bound for the hypothesis it produces:

1. Split the available data into a growing set and a pruning set.

2. Use, e.g., C4.5 (without pruning) on the growing set to induce a decisiontree.

3. Find the smallest most accurate pruning of the tree built in the previous stepusing REP (or
any other pruning algorithm) on the pruning set. This is the final hypothesis.Alternatively,
choose a suitablek and usek-REP to find the most accurate pruning from the class of prunings
making at mostk errors on the set of growing data.

4. Evaluate the error bound as explained in Section 2 by running REP two more times. In case
k-REP was used in step 3, usek-REP in place of REP here, too.

Even though the tree growing process is heuristic, the generalization error bounds for the prun-
ings are provably true under the i.i.d. assumption. They are valid even if the tree growing heuristic
fails, that is, when none of the prunings of the grown tree generalize well.In that case the bounds
are, of course, unavoidably large. The situation is similar to, e.g., margin-based generalization error
analysis (Cristianini and Shawe-Taylor, 2000), where the error bounds are good provided that the
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training data generating distribution is such that a hypothesis with a good margindistribution can
be found. In our case the error bounds are tight provided that C4.5 produces a decision tree that
has good prunings and is still relatively small so that the Rademacher penaltyfor the class of its
prunings does not blow up. A good choice ofk may help in keeping the penalty term in control,
a situation resembling choosing the marginal parameter in margin-based generalization error anal-
ysis. The existing empirical evidence overwhelmingly demonstrates that C4.5 usually fares quite
well, and our experiments presented in Section 6 indicate that a good choice of k really results in a
notable decrease in the complexity term on real world data sets.

The value ofk should ideally be so large that the hypothesis class associated with it includes
the most accurate pruning w.r.t. pruning data and, at the same time, as small as possible to limit
the complexity of the remaining hypothesis class to a minimum. This trade-off is hardto solve in
general, since the decision on whichk to choose has to be done prior to seeing the set of pruning data.
In the following we will choosek to be somec > 1 times the number of errors the original decision
tree makes on the set of growing data. This way we take into account the fact that the original tree
most likely overfits the growing data set and thus has a smaller error than canbe expected from
prunings with good generalization. The empirical experiments indicate thatc = 1.1 is a reasonable
choice for all data sets we experimented with.

Generalization error bounds can be roughly divided into two categories:Those based on a
training set only and those requiring a separate test set (Langford, 2002). Our generalization error
bounds for prunings may be seen to lie somewhere between these two extremes, the bound fork-
REP being the one closer to test set bounds. We use only part of the data in the tree growing phase
that determines our hypothesis class. The rest—the set of pruning data—isused only for selecting a
pruning and evaluating the generalization error bound. Thus, some of theinformation contained in
the pruning set may be lost as it cannot be used in the tree induction phase.However, the pruning
set is still used for the non-trivial task of selecting a good pruning, so that some of the information
contained in it can be exploited in the final hypothesis. The pruning set is thus used as a test set for
the outcome of the tree growing phase and also as a proper learning set in the pruning phase.

6. Empirical Evaluation

Before reporting and discussing the results obtained in our tests, we describe the distribution-
independent bound used as comparison point to Rademacher penalizationand briefly outline other
aspects of the test setting.

6.1 Test Setting for Performance Comparison

The obvious performance reference for Rademacher penalization over decision tree prunings is to
compare it to existing generalization error bounds. The bound of Kearns and Mansour (1998) is
impossible to evaluate in practice because it requires knowing the depth and size of the pruning
with the best generalization error. The bound presented by Mansour (1997) only requires knowing
the maximum size of prunings in advance and would, thus, be applicable in oursetting. However,
Mansour’s bound is clearly inferior to the simpler Occam’s Razor type of bound to be introduced
next and will, hence, be excluded from the empirical comparison. Boundsdeveloped in the on-line
pruning setting (Helmbold and Schapire, 1997) are incomparable with the onepresented in this
paper because of the different learning model. Thus, they will not be considered here.
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The simplest—and as it turned out in our experiments, the tightest—existing generalization
error bound which the Rademacher bound can be compared to is to our knowledge an Occam’s
Razor bound (Blumer et al., 1987; Langford, 2003) that is obtained by assigning equal-length codes
to all prunings of the original decision tree. Equivalently, we assign equal prior probability to all
prunings of the original tree. Since the leaf labels of the prunings are determined by the growing
data, all that needs to be encoded is the set of those inner nodes that areto be replaced by leaves. A
simple way to do so is to assign a bit for each of the(d−1)/2 inner nodes of ad node tree telling
whether the node is pruned or not.

The simplistic code outlined above contains some redundancy as, e.g., the pruning consisting
of a single leaf is represented by 2(d−1)/2−1 different codewords. However, it is easy to see that
a binary tree withd nodes can have at least 2d/4 prunings; consider, e.g., the prunings obtainable
from a balanced tree by pruning a subset of inner nodes next to the leaves. Thus, no less than
d/4 bits will suffice if nothing but the size of the tree to be pruned is taken into account. To find
out the optimal uniform code length given the whole tree to be pruned as a parameter, one would
essentially have to count the number of prunings of the tree. We are not aware of an efficient
algorithm for this task. On the other hand, using a non-uniform code lengthwould introduce a bias
to the bound that is not present in our proposed bounds. Thus, in our experiments we will use the
code length approximationd/4, giving worst-case optimistic error bounds. Plugging this into the
Chernoff Occam’s Razor bound (Langford, 2003) we get that with probability at least 1−δ,

εP(h) < ε̂n(h)+

√

ln2·d/4+ ln(1/δ)

2n
,

whered is the number of the nodes of the tree andn is the size of the pruning set. This bound could
be further improved by using the exact Occam’s razor bound (Langford, 2003) instead, but we have
not tried how significant the improvement would be. Note that this bound is dataindependent in the
sense that the pruning data is taken into account only through the pruning error ε̂n(h).

The error bounds based on Rademacher penalization depend on the datadistribution so that their
true performance can be evaluated only empirically. In our experiments we grow binary decision
trees using a C4.5-type decision tree algorithm distributed in the Weka package (Witten and Frank,
1999). As a benchmark we use 15 data sets from the UCI Machine Learning Repository (Blake and
Merz, 1998). In each experiment we allocate 10 percent of the data fortesting and split the rest to
growing and pruning sets. As the split ratio we chose 2:1 as suggested by Esposito et al. (1997). For
the generated data set LED, we use 300,000 instances with 10 percent attribute noise. Fork-REPwe
choosec = 1.1, i.e.,k is 1.1 times the training error of the unpruned tree.

6.2 Empirical Observations

Table 1 and Figure 1 summarize the results over 10 random splits of the data sets. In Table 1 we
present the decision tree sizes before and after pruning withk-REP and REP. Observe that the
unpruned decision trees are very large, which means that the class of prunings may potentially be
very complex. The results indicate that REP manages to decrease the tree sizes considerably. The
sizes ofk-REP prunings fall in many cases roughly halfway between the unpruned tree size and the
size of the REP pruned tree.

Figure 1 presents the test set accuracies and error bounds based onRademacher penalization and
Occam’s Razor. In all bounds, we setδ = 0.01. Even though both bounds based on Rademacher
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Figure 1: Averages of error bounds over 10 random splits of the data sets.
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DATA SET UNPRUNED k-REP REP

ADULT 7,507.6 3,898.6 1,600.6
ANNEAL 32.0 24.8 20.8
CENSUS 20,513.4 12,378.6 4,819.4
CONNECT 13,953.8 8,583.8 4,289.0
COVER 31,483.6 25,374.0 18,396.4
ISOLET 664.8 517.6 272.0
KROPT 7,317.4 5,328.8 3,572.4
LED24-10 90,564.8 43,689.4 9,041.6
LETTER 2,543.8 1,907.0 1,292.4
MUSHROOM 22.8 22.8 22.0
MUSK 224.8 186.0 120.0
NURSERY 392.0 349.4 306.8
OPTDIGITS 410.4 319.8 222.2
PAGE-BLOCKS 123.2 85.6 42.6
PEN-DIGITS 411.0 324.0 245.8

Table 1: Average sizes of trees over 10 random splits of the data sets.

penalization clearly overshoot the test set accuracies, they still providereasonable estimates in many
cases. Note that in the multi-class settings even error bounds above 50 percent are non-trivial.

Both bounding methods, the one based on Rademacher penalties and the onebased on Occam’s
Razor, outperform the other on a number of data sets; there seems to be noclear overall winner.
Notably, in many cases the difference between the better and worse method isquite large. On large
data sets, the Rademacher bounds are consistently better; the converse holds for the small sets. The
small amount of data blows up the hypothesis class independent termη(δ,n) to the extent that it
starts to dominate the actual Rademacher penalty. The Occam’s Razor boundis clearly better when
the unpruned tree is small, since this situation keeps the penalty term related to it under control.

Rademacher bounds fork-REP turn out to be better than the REPbound in most cases. The only
notable exception is the LED domain, where the pruning error of the best pruning is significantly
lower than that of the best restricted pruning, while the Rademacher penalties for both classes are
almost the same. In CENSUS INCOMEthe decrease of pruning error and growth of the Rademacher
penalty cancel each other out so that the bounds for REP andk-REP are nearly equal.

We also conducted a set of experiments in order to see how the bound behaves as a function ofc.
The results indicate that decreasingc typically yields tighter bounds, but at the same time the actual
quality of the prunings obtained deteriorates asc gets closer to 1. In the limiting casec = 1 there
is no room left for pruning, so this extreme case effectively coincides withusing the pruning set as
a set of test data. Increasingc relaxes the restrictions on the pruning decisions and enablesk-REP

to find prunings with better empirical performance. The trade-off here is aspecial case of the fact
that test error bounds are typically the tightest in practice even though using all the data in learning
might yield a hypothesis with better generalization error. Our choice ofc = 1.1 seems to be a good
compromise between the tightness of the bound and the actual generalization performance of the
obtained pruning.

The relative test performance ofk-REPand REP is varied and neither method seems to be a clear
winner. Ask-REPproduces larger prunings and is computationally more demanding than REP, there
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seems to be little motivation for usingk-REP independently as a pruning method if error guarantees
are not called for.

Our intention has been to carry out a feasibility study of the new technique ofRademacher
penalization, rather than to aim at generalization error bounds directly applicable in the real world.
However, the bounds that were obtained on larger data sets are sometimes tighter than one could
have expected in advance. In the best cases the theoretical bounds already approach usability as
performance guarantees of practical algorithms. Even though even the best of the proposed bounds
always overestimates the test error, it is never totally unrealistic. Thus, wehave demonstrated that
Rademacher penalization represents a step toward the use of well-foundedtraining set bounds in
practical applications. Though, at the same time it is, unfortunately, not possible to draw too far-
reaching positive conclusions from this study, because in the worst cases Rademacher penalization
fails to deliver usable bounds and does not fare as well as the Occam’s Razor bound on smaller data
sets.

7. Conclusion

Modern generalization error bounding techniques that take the observed data distribution into ac-
count give far more realistic sample complexities and generalization error approximations than the
distribution-independent methods. We have shown how one of these techniques, namely Rademacher
penalization, can be applied to bound the generalization error of decision tree prunings, also in the
multi-class setting. According to our empirical experiments the proposed theoretical bounds are
often tighter than distribution-independent generalization error bounds for decision tree prunings.
However, the new bounds still appear unable to faithfully describe the performance attained in prac-
tice.

As future work, we intend to carry out more thorough empirical experimentson the proposed
methods. Also, we will look for better motivated ways of tuning the value ofc and of determining
the proportion of learning data allocated for pruning purposes. It wouldalso be interesting to extend
the two-phase generalization error analysis approach introduced hereto other hypothesis classes,
too.
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K Ä ÄRI ÄINEN , MALINEN AND ELOMAA

Jonathan J. Oliver and David J. Hand. On pruning and averaging decision trees. In Armand Prieditis
and Stuart Russell, editors,Proceedings of the Twelfth International Conference on Machine
Learning, pages 430–437, San Francisco, CA, 1995. Morgan Kaufmann.

Francesco C. Pereira and Yoram Singer. An efficient extension to mixture techniques for prediction
and decision trees.Machine Learning, 36(3):183–199, 1999.

J. Ross Quinlan. Simplifying decision trees.International Journal of Man-Machine Studies, 27(3):
221–248, 1987.

J. Ross Quinlan.C4.5: Programs for Machine Learning. Morgan Kaufmann, San Mateo, CA, 1993.

Aad W. Van der Vaart and Jon A. Wellner.Weak Convergence and Empirical Processes. Springer,
New York, 2000. Corrected second printing.

Vladimir N. Vapnik. Estimation of Dependencies Based on Empirical Data. Springer, New York,
1982.

Vladimir N. Vapnik and Alexey Ya. Chervonenkis. On the uniform convergence of relative frequen-
cies of events to their probabilities.Theory of Probability and Its Applications, 16(2):264–280,
1971.

Ian H. Witten and Eibe Frank.Data Mining: Practical Machine Learning Tools and Techniques
with Java Implementations. Morgan Kaufmann, San Francisco, CA, 1999.

1126


