Computer Science > Computer Vision and Pattern Recognition
[Submitted on 3 Oct 2023]
Title:Selective Feature Adapter for Dense Vision Transformers
View PDFAbstract:Fine-tuning pre-trained transformer models, e.g., Swin Transformer, are successful in numerous downstream for dense prediction vision tasks. However, one major issue is the cost/storage of their huge amount of parameters, which becomes increasingly challenging to handle with the growing amount of vision tasks. In this paper, we propose an effective approach to alleviate the issue, namely selective feature adapter (SFA). It achieves state-of-the-art (SoTA) performance under any given budget of trainable parameters, and demonstrates comparable or better performance than fully fine-tuned models across various dense tasks. Specifically, SFA consists of external adapters and internal adapters which are sequentially operated over a transformer model. For external adapters, we properly select the places and amount of additional multilayer perception (MLP). For internal adapters, we transform a few task-important parameters inside the transformer, which are automatically discovered through a simple yet effective lottery ticket algorithm. Our experiments show that the dual adapter module, a.k.a SFA, is essential to achieve the best trade-off on dense vision tasks, such as segmentation, detection and depth-estimation, outperforming other adapters with a single module.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.