

Scaling File Service Up and Out

Garth Gibson garth@panasas.com

Panasas Inc, and Carnegie Mellon University

Quality Drives Growth

High Performance Computing

- 100+ Teraflops
- Throughput Goal: 1 GB/sec per Teraflop = 100 GB/sec

Commercial Media Applications

- Rendering & Post-Production
- Throughput Goal: 5 min/hr = 1.2 GB/sec texture & polygons

Consumer Media Applications

- Data rate & capacity growth
- Throughput Goal: acceptable to mass market

panasas /

Enabling Growth: Linux Clusters

Monolithic Supercomputers

Linux Clusters

- Specialized, but expensive
- Price/performance: often > \$100M/TFLOPS
- Powerful, scalable, affordable
- Price/performance: often < \$1M/TFLOPS</p>

Clusters dominating Top500 Supercomputers:

1998: 2 2002: 94 2003: 208

Source: Top500.org

panasas Demand New Scale & Cost Effectiveness

Traditional HPC Computing

Cluster Computing

Linux Compute Cluster

Scale to bigger box?

Scale:
file & total bandwidth
file & total capacity
load & capacity balancing

But lower \$ / Gbps

panasas Limits on Scaling Up NAS File Server

- Bigger file server boxes can't keep up with growth of demand or supply
 - > Cluster client demand scales as client speed X cluster size
 - Storage supply scales as disk speed X disk array size X arrays on SAN
 - But file server data bandwidth scales at only the pace of single client speed

Today's NAS Clustering Practices

- Customer namespace decomposition over multiple server subsystems
 - Customer administrator does decomposition
 - Implications capacity & load balance, backup & quota management
 - Expensive administrator given messy, never ending, rarely satisfactory tasks
 - Single files & directory decomposition very visible to users -- more expensive still

panasas

panasas

Scale Out Phase 1: Exploit Clients

- Opportunistic offloading to clients, especially data caching
 - Offload read hit and defer/coalesce write: 80s Sprite/Welch, AFS/Howard
 - Offload RAID computation: 90s Zebra/Hartman
 - Offload locking, open-close cache validation: 00s NFSv4
 - With dramatic growth of cost effective cycles in cluster clients, expect more of this
- Helps, but too many workloads are too big, too little reuse to be solution

panasas Clusters Demand a New Storage Architecture

Traditional HPC Computing

Cluster Computing

Linux Compute Cluster

More cost-effective boxes

Scale:
file & total bandwidth
file & total capacity
load & capacity balancing

With lower \$ / Gbps

panasas Scalable Storage Cluster Architecture

Lesson of compute clusters: Scale out commodity components

- Bladeserver approach provides
 - High volumetric density
 - Incremental growth, pay-as-you-grow model
 - Needs single system image SW architecture

StorageBlade 2 SATA spindles

Shelf of Blades 5 TB, 4 Gbps

Single System Image 55 TB, 44 Gbps per rack

BladeServer Storage Cluster

Scale Out Phase 2: Forwarding Servers

Bind many file servers into single system image with forwarding

- Mount point binding less relevant, allows DNS-style balancing, more manageable
- Control and data traverse mount point path (in band) passing through two servers
- > Single file and single file system bandwidth limited by backend server & storage
- Tricord, Spinnaker

Scale Out Phase 3: Any Server Will Do

- Single server does all data transfer in single system image
 - Servers share access to all storage and "hand off" role of accessing storage
 - Control and data traverse mount point path (in band) passing through one server
 - Hand off cheap: difference between 100% & 0% colocated front & back end was about zero SFS97 NFS op/s and < 10% latency increase for Panasas</p>
 - > Allows single file & single filesystem capacity & bandwidth to scale with server cluster

File Server Cluster

Page 12 Garth Gibson, FAST 2004

Scale Out Phase 4A: Asymmetric OOB

- Client sees mount as file server address and many storage addresses
 - After permission checking, client gets "map" and directly, in parallel, accesses storage
 - Zero file servers in data path: more cost-effective scaling, especially with one net
 - Many proprietary offerings: IBM SAN FS, EMC High Road, SGI CXFS, Panasas, etc.
 - Mostly built on block-based SANs which forces servers to trust all data to all clients.

panasas Scale Out Phase 4S: Symmetric OOB

- Server code is multi-threaded so every client is fully capable server
 - Client's local file server code acquires locks & metadata from other clients as needed
 - Various proprietary offerings: RedHat GFS, IBM GPFS, Sun QFS etc.
 - Trust boundary includes all clients even if storage has fine grain enforcement (objects)
 - > For legacy clients, typically do hybrid, offering cluster as file server for legacy clients

Client Cluster is File Server

Garth Gibson, FAST 2004

panasas

New Object Storage Architecture

- An evolutionary improvement to standard SCSI storage interface
- Raises level of abstraction: Object is container for "related" data
 - Storage understands how different blocks of a "file" are related
- Offload most datapath work from server to intelligent storage

Block Based Disk

Operations:

Read block Write block

Addressing:

Block range

Allocation:

External

Operations:

Create object Delete object Read object Write object

Addressing:

[object, byte range]

Allocation:

Internal

Object Based Disk

Source: Intel

How Does an Object Scale?

Scale capacity, bandwidth, reliability by striping according to small map

Panasas Additional Strengths Of Object Model

Disk knows relationships among data within object

- ✓ Allows autonomous action within Object Storage Device.
 - > Storage evolves to become self-managing, optimized to workload of each file
- ✓ Rich sharing among heterogeneous clients via higher level interface
- ✓ Finer granularity of security: protect & manage one file at a time

Object Storage Access Security

Digitally sign every request with evidence of access rights

Object Storage Bandwidth

Scalable Bandwidth demonstrated with GE switching

Object Storage Devices

Object Storage Systems

Expect wide variety of Object Storage Devices

- Disk array subsystem
- le. LLNL with Lustre

- "Smart" disk for objects
- 2 SATA disks 240/500 GB

- Prototype Seagate OSD
- Highly integrated, single disk

- Orchestrates system activity
- Balances objects across OSDs

Stores up to 5 TBs per shelf

16-Port GE Switch Blade

4 Gbps per shelf to cluster

Standardization Timeline

- SNIA TWG has issued OSD protocol to T10 standards body
 - ➤ Co-chaired by IBM and Intel, protocol is a general framework (transport independent)
 - Sub-committee leadership includes IBM, Seagate, Panasas, HP, Veritas, ENDL
 - Product commitment from HP/Lustre & Panasas; research projects at IBM, Seagate
 - ➤ T10 letter ballot (closed Mar 24 04) passed; integrating comments for full public review
 - www.snia.org/tech_activities/workgroups/osd & www.t10.org/ftp/t10/drafts/osd/osd-r09.pdf

panasas Asymmetric Out-of-band & Clustered NAS

Performance & Scalability for all Workloads

Objects: breakthrough data throughput AND random I/O

Source: SPEC.org & Panasas

Why I Like Objects

Objects are flexible, autonomous

SNIA Shared Storage Model, 2001

- Variable length data with layout metadata encapsulated
 - Share one access control decision
 - Amortize object metadata
 - Defer allocation, smarter caching
- With extensible attributes
 - E.g. size, timestamps, ACLs, +
 - Some updated inline by device
 - Extensible programming model

- Metadata server decisions are signed & cached at clients, enforced at device
 - Rights and object map small relative to block allocation map makes for big metadata caches
 - Clients can be untrusted b/c limited exposure of bugs & attacks (only authorized object data)
 - Cache decisions (& maps) replaced transparently -- dynamic remapping -- virtualization

pNFS

BIRDS OF A FEATHER MEETING

- December 2003 U. Michigan workshop
 - Whitepapers at www.citi.umich.edu/NEPS
 - U. Michigan CITI, EMC, IBM, Johns Hopkins, Network Appliance, Panasas, Spinnaker Networks, Veritas, ZForce
- NFSv4 extensions enabling clients to access data in parallel storage devices of multiple standard flavors
 - Parallel NFS request routing / file virtualization
 - Extend block or object "layout" information to clients, enabling parallel direct access
- **Problem Statement Internet-Draft published** draft-gibson-pnfs-problem-statement-00.txt

Parallel NFS (pNFS)

advances for network attached storage

pNFS Problem Statement

Author(s): Garth Gibson, Panasas & CMU Peter Corbett, Network Appliance

Speakers at this BOF will include:

Peter Corbett Network Appliance David Black EMC Julian Satran IBM

Peter Honeyman CITI Sumanta Chatteriee Oracle

Brent Welch Panasas

Wednesday, March 31, 2004

12:30pm - 2pm

DOLORES ROOM

Grand Hyatt Hotel, San Francisco

Lunch provided by panasas

Out-of-band Value Proposition

- Out-of-band means client uses more than one storage address for a given file, directory or closely linked set of files
- ✓ Scalable capacity: file/dir uses space on all storage: can get big
- ✓ Capacity balancing: file/dir uses space on all storage: evenly
- Load balancing: dynamic access to file/dir over all storage: evenly
- Scalable bandwidth: dynamic access to file/dir over all storage: big
- Lower latency under load: no bottleneck developing deep queues
- ✓ Cost-effectiveness at scale: use streamlined storage servers
- If wire standards lead to standard client SW: share client support \$\$\$

NFS Extensions Approach

- Limited (Market)/(support \$) for proprietary advanced FS client SW
 - > Customers: interoperating competition; vendors: too many changing client platforms
- Rally behind one open industry-standard advanced FS client SW
- IETF NFS is unrivalled as open industry-standard FS client SW
 - Raising (Market)/(support \$) is worth giving up proprietary feature control
- ✓ V4: "Recallable delegations allow clients holding a delegation to locally make many decisions normally made by the server"
- Propose a new flavor of NFSv4 delegations
 - A client requesting a delegation asks for out-of-band file address maps
 - Server protects map integrity while delegation lasts, knowing file data may change
 - Server can re-synch with file contents by recalling the delegations

Multiple Data Server Protocols

- Inclusiveness favors success
- Three (or more) flavors of outof-band metadata attributes:
 - BLOCKS: SBC/FCP/FC or SBC/iSCSI... for files built on blocks
 - OBJECTS: OSD/iSCSI/TCP/IP/GE for files built on objects
 - FILES: NFS/ONCRPC/TCP/IP/GE for files built on subfiles
- ✓ Inode-level encapsulation in server and client code

Crossing the Chasm

Cluster storage for scalable Linux clusters

Garth Gibson ggibson@panasas.com www.panasas.com

3rd USENIX Conf on File and Storage Technologies, March 31, 2004