Computer Science > Robotics
[Submitted on 13 May 2024 (v1), last revised 8 Aug 2024 (this version, v2)]
Title:Safety-Aware Human-Lead Vehicle Platooning by Proactively Reacting to Uncertain Human Behaving
View PDFAbstract:Human-Lead Cooperative Adaptive Cruise Control (HL-CACC) is regarded as a promising vehicle platooning technology in real-world implementation. By utilizing a Human-driven Vehicle (HV) as the platoon leader, HL-CACC reduces the cost and enhances the reliability of perception and decision-making. However, state-of-the-art HL-CACC technology still has a great limitation on driving safety for the lack of considering the leading human driver's uncertain behaving. In this study, a HL-CACC controller is designed based on Stochastic Model Predictive Control (SMPC). It is enabled to predict the driving intention of the leading Connected Human-Driven Vehicle (CHV). The proposed controller has the following features: i) enhanced perceived safety in oscillating traffic; ii) guaranteed safety against hard brakes; iii) computational efficient for real-time implementation. The proposed controller is evaluated on a PreScan&Simulink simulation platform. Real vehicle trajectory data is collected for the calibration of simulation. Results reveal that the proposed controller: i) improves perceived safety by 19.17% in oscillating traffic; ii) enhances actual safety by 7.76% against hard brake; iii) is confirmed with string stability. The computation time is approximately 3 milliseconds when running on a laptop equipped with an Intel i5-13500H CPU. This indicates the proposed controller is ready for real-time implementation.
Submission history
From: Haoran Wang [view email][v1] Mon, 13 May 2024 08:36:06 UTC (2,102 KB)
[v2] Thu, 8 Aug 2024 10:06:47 UTC (2,104 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.