Computer Science > Machine Learning
[Submitted on 29 Jun 2023 (v1), last revised 28 Dec 2023 (this version, v2)]
Title:Safe Model-Based Multi-Agent Mean-Field Reinforcement Learning
View PDF HTML (experimental)Abstract:Many applications, e.g., in shared mobility, require coordinating a large number of agents. Mean-field reinforcement learning addresses the resulting scalability challenge by optimizing the policy of a representative agent interacting with the infinite population of identical agents instead of considering individual pairwise interactions. In this paper, we address an important generalization where there exist global constraints on the distribution of agents (e.g., requiring capacity constraints or minimum coverage requirements to be met). We propose Safe-M$^3$-UCRL, the first model-based mean-field reinforcement learning algorithm that attains safe policies even in the case of unknown transitions. As a key ingredient, it uses epistemic uncertainty in the transition model within a log-barrier approach to ensure pessimistic constraints satisfaction with high probability. Beyond the synthetic swarm motion benchmark, we showcase Safe-M$^3$-UCRL on the vehicle repositioning problem faced by many shared mobility operators and evaluate its performance through simulations built on vehicle trajectory data from a service provider in Shenzhen. Our algorithm effectively meets the demand in critical areas while ensuring service accessibility in regions with low demand.
Submission history
From: Matej Jusup [view email][v1] Thu, 29 Jun 2023 15:57:07 UTC (3,040 KB)
[v2] Thu, 28 Dec 2023 02:40:37 UTC (3,549 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.