
SSL-over-SOAP: Towards a Token-based
Key Establishment Framework for Web Services

Sebastian Gajek, Lijun Liao, Bodo Möller, and Jörg Schwenk

Horst Görtz Institute for IT Security, Ruhr-Universität Bochum
{sebastian.gajek | lijun.liao | joerg.schwenk}@nds.rub.de,

bmoeller@crypto.rub.de

Abstract. Key establishment is essential for many applications of
cryptography. Its purpose is to negotiate keys for other cryptographic
schemes, usually for encryption and authentication. In a web services
context, WS-SecureConversation has been specified to make use of
negotiated keys. The most popular key establishment scheme in the
Internet is the (handshake protocol of the) Secure Socket Layer or
Transport Layer Security protocol (SSL/TLS). However, SSL/TLS
has primarily been designed to secure HTTP, by encrypting and
authenticating TCP connections. It is thus not usable to negotiate keys
in SOAP connections with intermediaries. We propose SSL-over-SOAP,
a family of key establishment protocols for Web services. It is based
the design of the SSL handshake, so security analysis results for
standard SSL/TLS apply to our new proposal. We have implemented
this protocol in the framework of WS-Trust and WS-SecureConversation.

Keywords: Web Services Security, Key Establishment Protocol

1 Introduction

1.1 Motivation

Security is important for any distributed computing environment: Many passive
and active attacks have been described against such systems. Particularly chal-
lenging are service-oriented environments where the architecture is implemented
based on a range of technologies, and where applications are created as loosely
coupled and interoperable services. The Internet and its underlying infrastruc-
ture is the most pervasive IT system ever built—accordingly, more and more
applications are implemented as Web services. Thus, preserving the privacy and
integrity of these messages in service-oriented architectures becomes a challeng-
ing part of business integration, and secure message exchange a requirement for
the proliferation of Web services.

Because of the complexity of XML based security standards, the well-known
Secure Socket Layer (SSL) or Transport Layer Security (TLS)1 protocol has
1 TLS is the official name for the more recent protocol versions in the SSL/TLS family.

We use the traditional name SSL as an umbrella term since our ultimate goal is to
move the protocol ideas away from the transport layer.

become a de facto security standard for Web services. SSL provides a protected
TCP channel that can be used by higher order protocols, such as e.g. SOAP over
HTTP for Web Services. Because of its eminent role for the Web (as well as for
other Internet protocols), the SSL protocol has been examined intensely [13–15],
without finding any severe security flaws.

However, classical SSL has some shortcomings when deployed in the context
of Web Services. First, SSL is a point-to-point security protocol. Web Services,
by contrast, are loosely coupled applications: that is, messages may pass through
multiple intermediary nodes, and the bindings to service endpoints may change.
In order to establish a secure SSL channel between two service endpoints, each
intermediary connection must be protected by SSL, and the application must
be able to decide which of the intermediary SSL certificates are trustworthy.
Second, SSL is a transport layer security protocol: SSL-protected messages are
secured while in transit on the network; after reception, the message plaintext
(as recovered by the SSL layer) is forwarded to the application logic. Third,
SSL is not aware of the message structure, so messages are protected in an all-
or-nothing fashion. Higher layers do not directly benefit from SSL session keys.
One benefit of XML security technologies, in contrast, is to provide element-wise
signing and encryption: intermediaries can read and alter information only as
they are permitted to.

1.2 Motivating Example

Consider an example where a business flow requires passing an invoice through
multiple parties. The invoice contains some vital information that only the ul-
timate receiver is allowed read; however, certain parts of the invoice are to be
processed by intermediary parties. SSL fails because intermediaries have access
to the complete invoice in plaintext (or they would not be able to examine the
invoice at all). By contrast, SSL-over-SOAP allows for establishing a session key
between sender and ultimate receiver. This key can be used to authenticate and
encrypt the invoice information to protect it from intermediaries. The sender
can choose which pieces of information to encrypt.

1.3 Contribution

The WS-* family of security schemes [1] aims to provide a security framework
that addresses all the security issues around web services. In particular, WS-
SecureConversation [2] defines how to use session keys in WS-Security, but does
not specify any specific key exchange protocols.

In this work, we close this gap by re-specifying the SSL handshake protocol
and the SSL record layer at the SOAP level, creating a new cryptographic proto-
col to be used with WS-SecureConversation. We thus do not need the “classical”
SSL at TCP level any more. Instead, we are able to provide all security services
offered by SSL (confidentiality, authentication, security of key establishment) at
SOAP level.

Incorporating the practically proven SSL protocol technology into the WS-*
family of security scheme allows us to design a protocol framework that benefits
from both technologies.

The main contribution of the SSL protocol to the web services world is se-
curity. In SSL, key agreement and authentication are closely connected, and
explicit key confirmation is provided by the Finished messages at the end of
the handshake protocol. By contrast, it is easy to show the the authenticated
variant of the Diffie-Hellman key exchange [7] is vulnerable to man-in-the-middle
attacks in combination with XML wrapping attacks [12].

We propose SSL-over-SOAP as the first member of a family of practical
Web Services key establishment protocols. SSL-over-SOAP provides sufficient
protocol flexibility for the security requirements of today’s business models. As
a first step, we have implemented the following:

– The SSL-over-SOAP handshake protocol is a key transport protocol based on
X.509 binary security tokens. It is implemented in the WS-Trust framework.

– The SSL-over-SOAP record layer protects the complete body of SOAP mes-
sages, and the Finished messages. It provides confidentiality (XML encryp-
tion) and authentication (HMAC from XML signature) within the framework
of WS-SecureConversation.

1.4 Related Work

Hada and Maruyam [9] propose a session authentication protocol for Web Ser-
vices. Although they consider the aspect of session resumption, they do not
design a key establishment scheme. Follow-up work by Zhang and Xu [18] sim-
ilarly does not regard key establishment. Herzberg [10] introduces the secure
XML transport protocol (SeXTP), which is a ping pong protocol based on XML
Encryption and XML Signature. The work does not fit into the Web Services
terminology, as it dates back from a time when the WS-standards were in pend-
ing state. Although the author illustrates that present XML security standards
are capable to negotiate a shared secret, [10] only mentions the Diffie-Hellman
key exchange. In contrast to this, our protocol provides a framework for a wide
variety of different algorithms and authentication mechanisms, and is open to ex-
tensions. Fang et al. [8] have implemented the AuthA protocol for Web services.
AuthA is a password-based authenticated key exchange protocol. This protocol
is restricted to the use of passwords. By contrast, SSL-over-SOAP provides pro-
tocol flexibility. That is, SSL-over-SOAP captures the requirements of different
security models and allows the use of modular authentication mechanisms, such
as passwords, digital certificates, or Kerberos ticket.

1.5 Organization

The paper is structured as follows. We shortly review the relevant Web Services
technologies in Section 2. Then, we present our proposal by first formulating SSL
in terms of SOAP message exchanges in Section 3, and subsequently describing

a concrete instantiation of this framework in Section 4. We discuss the protocol’s
security in Section 5. Finally, we conclude our work in Section 6.

2 WS-* Building Blocks

2.1 Notation

We use the following XML syntax style:

– Instead of writing an element <AAA></AAA>, we drop the tag from the
closing bracket and write <AAA></> or <AAA/>.

– When writing an element that spans several lines, we rely on inden-
tation to delimit the body, omitting the closing bracket. For example,
<AAA><BBB></BBB></AAA> is written as

<AAA>
<BBB />

– We omit the namespace definition in the messages and use the following
prefixes:

Prefix Namespace
ds http://www.w3.org/2000/09/xmldsig#

soap http://schemas.xmlsoap.org/soap/envelope/
tls http://www.example.org/tls#

wsse http://docs.oasis-open.org/wss/2004/01/
oasis-200401-wss-wssecurity-secext-1.0.xsd

wst http://schemas.xmlsoap.org/ws/2005/02/trust
wsc http://schemas.xmlsoap.org/ws/2005/02/sc
wsu http://docs.oasis-open.org/wss/2004/01/

oasis-200401-wss-wssecurity-utility-1.0.xsd
xenc http://www.w3.org/2001/04/xmlenc#

2.2 SOAP and WS-Security

SOAP is a mechanism for inter-application communication between systems
across the Internet, where system implementations can be written in arbitrary
languages. SOAP messages are in XML to allow the exchange of structured
information.

WS-Security [3] describes how to use XML Signature [17], XML Encryp-
tion [16], and security tokens in SOAP messages. (Note that [17] specifies the
use of symmetric-key authentication, not just public-key digital signatures: The
term “signature” or “digital signature” is extended to cover symmetric authenti-
cation.) To this purpose, WS-Security defines a <Security> element to be added
to the SOAP header as a container for all security related content. For WS-
Security, it is strongly recommended to identify signed elements via ID attributes
(not via XPath expressions). A typical WS-Security message is as follows:

<soap : Envelope>
<soap : Header>

<wsse : Se cur i ty/>
<soap : Body>

2.3 WS-SecureConversation

WS-SecureConversation (the Web Services Secure Conversation Language) spec-
ifies secure communication between services. It defines the message structure for
establishing and sharing security contexts, and for deriving keys from security
contexts. As with WS-Security, WS-SecureConversation is only a building block
and does not provide a complete security solution.

The core element of WS-SecureConversation is the
<wsc:SecurityContextToken> element. It consists of the mandatory child
element <wsc:Identifier> and several optional elements. The security context
is addressed by a UUID specified in <wsc:Identifier>.

2.4 WS-Trust

WS-Trust enables applications to construct trusted SOAP message exchanges,
which is determined by security tokens. A typical security token request consists
of:

<wst : RequestSecurityToken Context ? . . . >
<wst : TokenType/>?
<wst : RequestType/>
. . .

The optional element <wst:TokenType> describes the requested token type.
The mandatory element <wst:RequestType> specifies the class of func-
tion. It allows to add additional elements for the special purpose. The
<wst:RequestSecurityTokenResponse> specifies the response to a security to-
ken request and is used to retrieve a security token.

3 SSL-over-SOAP Framework

3.1 Design Goals

We lift the SSL framework from the transport layer to the world of Web Services,
using the WS-* framework. We use SOAP instead of TCP for handshake mes-
sages transfer. WS-Trust and WS-SecureConversation provide the framework to
describe handshake protocol messages, and WS-Security allows us to put secu-
rity related metadata into the <Security> header element. Our specification of
SSL-over-SOAP complies with the recent version of SSL, namely TLS 1.1 [6].

For the handshake protocol, we put the handshake messages into payloads of
the SOAP exchange, such that all elements are contained in the body part of the
SOAP message—never in the header. This is important to allow us to duplicate
the renegotiation feature of the original SSL protocol: An SSL handshake can
also be carried out over a connection that is already protected using SSL/TLS
(for example, to transfer client certificates in encrypted form). In the case of SSL-
over-SOAP, this means that we want to be able to apply WS-Security and WS-
SecureConversation even to those SOAP messages constituting a new handshake.
In such a situation, the cryptographic parameters used in the WS-Security header
stem from the original session, while the parameters of the next session are
negotiated using the handshake protocol.

Additionally, we define how the Finished message is generated. In the
SSL/TLS standards, this is done by computing a pseudorandom function taking
as input the exchanged secret and a concatenation of all message bytes ex-
changed for the current handshake, and then sending this message over the new
cryptographically secured channel. Such authentication is important to thwart
man-in-the-middle attacks: If an attacker has modified some handshake message
to influence parameter negotiation, then verifying the peer’s Finished messages
will reveal that something is wrong (assuming that only ciphersuites providing
reasonably strong authentication are ever negotiated).

In SSL-over-SOAP, we use the same pseudorandom function for the Finished
message. Its inputs are the new master secret and the concatenation of the (se-
rialized canonicalized) bodies of the SOAP messages for the handshake. Putting
parts of the handshake messages into the SOAP header instead of the body might
make the protocol vulnerable to attacks, or could lead to a much more complex
computation of the Finished message (see Section 5 for more discussions).

3.2 ClientHello (Message 1)

For convenience, we will refer to the initiating service as “client” and to the re-
sponding service as “server”, thus adopting SSL terminology. In SSL-over-SOAP,
the initial message is the ClientHello (Fig. 1). Using the framework of WS-
Trust, we embed the messages into the <wst:KeyExchangeToken> within the
<wst:RequestSecurityToken> element. The <wst:RequestKET> indicates that
an additional message from the server is required to complete the key establish-
ment. The <wst:RequestSecurityToken> has an attribute @tls:Id with a UUID
value so that we can reference to this message later.

The <tls:ClientHello> specifies the SSL version of the client
(<tls:Version>), the ciphersuites (<tls:CipherSuites>) and compres-
sion methods (<tls:CompressionMethods>) as well as the client’s nonce
(<wst:Entropy>). The version number 3.2 indicates that TLS version 1.1
is used [6, Section 6.2.1]. While the ciphersuite in SSL is identified by
two bytes, it is identified here by a URI. For example, the ciphersuite
TLS RSA WITH AES 256 CBC SHA-1 is identified by http://www.ex-
ample.org/tls#tls RSA with AES256 SHA-1.

1 <soap:Envelope>
2 <soap:Body>
3 <wst:RequestSecur ityToken t l s : I d=’ uuid:UUID−msg1 ’>
4 <wst:TokenType> . . . / sc / s c t</>
5 <wst:RequestType> . . . / t r u s t /KET</>
6 <wst:RequestKET/>
7 <wst:KeyExchangeToken>
8 <t l s : C l i e n t H e l l o>
9 <t l s : V e r s i o n>3 .2</>

10 <t l s : C i p h e r S u i t e s>
11 <t l s : C i p h e r S u i t e> . . . # tls RSA with AES256 SHA1</>
12 <t l s :Compress ionMethods>
13 <t ls :Compress ionMethod> . . . # compre s s i on nu l l</>
14 <wst:Entropy>
15 <wst :B inarySec re t Type=’ . . . / Nonce ’>M7o9 . . . MO0o=</>

Fig. 1. ClientHello message sent from Client to Server in order to initiate the hand-
shake

3.3 ServerHello, Certificate, ServerKeyExchange,
CertificateRequest (Message 2)

The second message is the server’s response to the security token request (Fig. 2).
The response contains mandatory and optional elements. As with SSL, the choice
of elements depends on the ciphersuite selected (<tls:ServerKeyExchange>) and
on whether the server requests client authentication (<tls:CertRequest>).

<tls:ServerHello> contains the SSL protocol version of the server
(<tls:Version>), the session ID (<tls:SessionID>), the ciphersuite se-
lected by the server (<tls:CipherSuite>), the compression method
(<tls:CompressionMethod>), and the server nonce (<wst:Entropy>). The
session ID is adopted from SSL to manage the session and used to execute the
abbreviated handshake.

Fig. 2 illustrates an example message where client and server are mutually
authenticated on the basis of X.509v3 Certificates. Such certificates are handled
by including a <wsse:BinarySecurityToken> into the <tls: Certificates > ele-
ment. The type X509PKIPathv1 indicates that this token specifies a certificate
chain.

<tls:ServerKeyExchange> would contain key material for DH key exchange.
In Fig. 2, client and server opt for key transport based on RSA where the server’s
public key is provided by the certificate. Hence, <tls:ServerKeyExchange> is an
empty tag, and could be omitted.

The <tls:CertificateRequest> element is used to signal the client that is has
to authenticate using a X.509 security token. The tag contains security policies
which specify the client certificate’s requirements. In Fig. 2, the server requires
client authentication and opts for a client certificate that is issued for RSA
signatures from the Certificate Authority Test Root CA.

The SSL/TLS message ServerHelloDone serves only as a delimiter. We omit
ServerHelloDone in SSL-over-SOAP, since we combine multiple SSL elements
into one <wst:KeyExchangeToken>.

1 <soap:Envelope>
2 <soap:Body>
3 <wst:RequestSecurityTokenResponse t l s : I d=’ uuid:UUID−msg2 ’>
4 <wst:TokenType> . . . / t r u s t /KET</>
5 <wst:RequestedSecur ityToken>
6 <wst:RequestKET/>
7 <wst:KeyExchangeToken>
8 <t l s : S e r v e r H e l l o>
9 <t l s : V e r s i o n>3 .2</>

10 <t l s : S e s s i o n I D>Vz2e . . . 4WU=</>
11 <t l s : C i p h e r S u i t e> . . . # tls RSA with AES256 SHA1</>
12 <t ls :Compress ionMethod> . . . # compre s s i on nu l l</>
13 <wst:Entropy>
14 <wst :B inarySec re t Type=’ . . . / Nonce ’>ihsK . . . 7CYA=</>
15 <t l s :ServerKeyExchange>
16 < t l s : C e r t i f i c a t e s>
17 <wsse :BinarySecur i tyToken
18 ValueType=’ . . . # X509PKIPathv1 ’>MIIC . . . iw==</>
19 <t l s : C e r t Re q ue s t>
20 <t l s : C e r t t y p e> . . . # r s a s i g n</>
21 <t l s :CAs>
22 <t l s :CA>CN=Test Root CA</>

Fig. 2. ClientHello, ServerKeyExchange, Certificate, and CertificateRequest

message sent from Server to Client. Server and Client agree on the ciphersuite
“#tls RSA with AES256 SHA1”.

3.4 ClientKeyExchange, Certificate, CertificateVerify, Finished
(Message 3)

Here the message structure becomes a little more complicated, since we
have to combine unprotected parts (ClientKeyExchange, Certificate,
CertificateVerify) and protected parts (Finished) into one SOAP message
in order to comply with the SSL protocol specification (Fig. 3).

The <tls:PreMasterSecret> (lines 34–37) within <tls:ClientKeyExchange>
(lines 33–37) contains the encrypted premaster secret (recall that client and
server negotiated the RSA ciphersuite). The premaster secret is encrypted with
the server’s public key. Since client authentication has been requested in the
previous message, the client makes use of the <tls: Certificates > element (lines
38–40) to send a certificate chain containing its certificate and the certifica-
tion authority’s certificates. The <tls: CertificateVerify > (lines 41–50) has only

one child element, <ds:Signature> (lines 42–50). For more details, see Sec-
tion 4. The <ds:Reference> elements in lines 46–47 reference the exchanged
messages (messages 1 and 2) via the @URI with the prefix urn:uuid. The last two
<ds:Reference> elements in lines 48–48 reference the <tls:ClientKeyExchange>
(lines 33–37) and the <tls: Certificates > (lines 38–40) in the same message.
The <wst:SecurityContextToken> (lines 28–29) specifies that the master secret
should be addressed by the UUID specified, UUID-sct.

After choosing a premaster secret, the client computes the master secret and
derives the session keys. In order to confirm the correct generation of session
keys, it computes the content Finished message as follows:

client finished = PRFmaster secret

(
“client finished”,

MD5 (exchanged messages) || SHA1 (exchanged messages)
)
[0...11]

In the SSL framework, the exchanged messages are those visible at the handshake
layer and do not include record layer headers. Hence in SSL-over-SOAP, the
exchanged messages are the SOAP bodies in messages 1 and 2, and the SOAP
body except the <tls:Finished> in this message. The SOAP bodies are first
canonicalized with the algorithm Exclusive C14N and then concatenated. The
result is then used as the input of the hash algorithms MD5 and SHA-1.

The client then constructs the Finished message by encoding the result of
the TLS PRF: <tls:Finished>Base64(client finished)</>. The <tls:Finished>
is then encrypted and signed in the following way:

The client inserts a <wsse:Security> (lines 3–23) into the SOAP header
<soap:Header>. Then, the client adds a <wst:SecurityContextToken> (lines 4–
5) to <wsse:Security>. This token has the same properties as the token within
the SOAP body (lines 28–29). However, we may not move this security token
to the body, since only if it is located in the SOAP header, the token can
be used for decryption and signature verification. Then, the client computes
a derived key token <wsc:DerivedKeyToken> that specifies the client write key,
and is used to encrypt the content of <tls:Finished> (lines 51–56).The
<wsc:DerivedKeyToken> (lines 17–21) and a new <xenc:ReferenceList> (lines
22–23) that locates the encrypted <tls:Finished> are then added to the
<wsse:Security> element. Finally, the client computes a derived key token
<wsc:DerivedKeyToken> (lines 6–10) that specifies the client write MAC secret
used to sign the encrypted <tls:Finished> with the client MAC secret. The sig-
nature is represented by a <ds:Signature> (lines 11–16). Both elements are then
added to the <wsse:Security>.

Note that in message 3 and in message 4 (see Sect. 3.5), the session ID
is added to the <wst:KeyExchangeToken> so that the receivers (the server in
message 3 and the client in message 4) can chain the messages.

3.5 Finished (Message 4)

The server’s <wst:RequestSecurityTokenResponse> contains the
<tls:Finished> message (see Fig. 4). To compute the content of the Finished

1 <soap:Envelope>
2 <soap:Header>
3 <w s s e : S e c u r i t y>
4 <wsc:SecurityContextToken wsu:Id=’ Id−s c t ’>
5 <w s c : I d e n t i f i e r>uuid:UUID−s c t</>
6 <wsc:DerivedKeyToken wsc:Algorithm=’ . . . #TLS PRF ’
7 wsu:Id=’ Id−clientMACKey ’>
8 <wsse :Secur i tyTokenReference>
9 <wsse :Re f e r ence URI=’#Id−s c t ’ />

10 <wsc:Length>20</><w s c : O f f s e t>0</>
11 <d s : S i gn a t u r e>
12 <d s : S i g n e d I n f o>
13 <ds :Re f e r ence URI=’#Id−f i n i s h e d ’>
14 <ds :KeyInfo>
15 <wsse :Secur i tyTokenReference>
16 <wsse :Re f e r ence URI=’#Id−clientMACKey ’ />
17 <wsc:DerivedKeyToken wsc:Algorithm=’ . . . #TLS PRF ’
18 wsu:Id=’ Id−cl ientWrtKey ’>
19 <wsse :Secur i tyTokenReference>
20 <wsse :Re f e r ence URI=’#Id−s c t ’ />
21 <wsc:Length>32</><w s c : O f f s e t>40</>
22 <x e n c : R e f e r e n c e L i s t>
23 <xenc :DataReference URI=’#Id−EncFinished ’ />
24 <soap:Body>
25 <wst:RequestSecurityTokenResponse>
26 <wst:TokenType> . . . / t r u s t /KET</>
27 <wst:RequestedSecur ityToken>
28 <wsc:SecurityContextToken>
29 <w s c : I d e n t i f i e r>uuid:UUID−s c t</>
30 <wst:KeyExchangeToken>
31 <t l s : S e s s i o n I D>Vz2e . . . 4WU=</>
32 <wst:RequestKET/>
33 <t l s :C l i entKeyExchange Id=’ Id−cke ’>
34 <t l s : P r e M a s t e r S e c r e t>
35 <xenc:EncryptedKey>
36 <xenc:EncryptionMethod Algorithm=’ . . . # rsa−1 5 ’ />
37 <ds :KeyInfo /><xenc:CipherData />
38 < t l s : C e r t i f i c a t e s Id=’ Id−c e r t s ’>
39 <wsse :BinarySecur i tyToken ValueType=
40 ’ . . . # X509PKIPathv1 ’>MIIC . . . y/Z/</>
41 < t l s : C e r t i f i c a t e V e r i f y>
42 <ds : S i gn a t u r e>
43 <d s : S i g n e d I n f o>
44 <ds :Canonica l i zat ionMethod />
45 <ds:SignatureMethod Algorithm=’ . . . # rsa−sha1 ’ />
46 <ds :Re f e r ence URI=’ urn:uuid:UUID−msg1 ’ />
47 <ds :Re f e r ence URI=’ urn:uuid:UUID−msg2 ’ />
48 <ds :Re f e r ence URI=’#Id−cke ’ />
49 <ds :Re f e r ence URI=’#Id−c e r t s ’ />
50 <ds :S ignatureVa lue>RR4p . . . vFvA=</>
51 <t l s : F i n i s h e d Id=’ Id−f i n i s h e d ’>
52 <xenc:EncryptedData Id=’ Id−EncFinished ’>
53 <ds :KeyInfo>
54 <wsse :Secur i tyTokenReference>
55 <wsse :Re f e r ence URI=’#Id−cl ientWrtKey ’ />
56 <xenc:CipherData />

Fig. 3. ClientKeyExchange, Certificate, CertificateVerify, and Finished sent
from Client to Server.

message, the server uses the same PRF function as the client except the following
differences: 1) the label is “server finished”; 2) for the exchanged message,
we refer to the SOAP bodies in messages 1, 2 and 3. In the SSL framework,
the headers in the record layer are not considered, hence we first decrypt the
message 3 and use the decrypted SOAP body (namely the <tls:Finished> is
not encrypted).

The message allows the client to verify that the server has received all the
previous messages from the client. As with the previous message, the server’s
Finished has the same SOAP header structure, but differs in the keys used, i.e.
the server uses server write MAC secret for the HMAC and server write key for
the encryption.

1 <soap:Envelope>
2 <soap:Header>(S im i l a r as in Message 3)</>
3 <soap:Body>
4 <wst:RequestSecurityTokenResponse>
5 <wst:TokenType> . . . / t r u s t /KET</>
6 <wst:RequestedSecur ityToken>
7 <wst:KeyExchangeToken>
8 <t l s : S e s s i o n I D>Vz2e . . . 4WU=</>
9 <t l s : F i n i s h e d wsu:Id=’ Id−Fin i shed2 ’>

10 <xenc:EncryptedData Id=’ Id−EncFinished2 ’ />

Fig. 4. Finished message sent from Server to Client that confirms the negotiated
ciphersuite and derived session keys.

4 A Token-based Protocol

We present additional details for a concrete Web Services protocol that instan-
tiates the framework described in the previous section. Specifically, we show a
protocol variant using X.509 certificates as security tokens. The framework can
similarly be instantiated using other security token types, requiring other pro-
tocol variants: for example, password-based authenticated key exchange using a
scheme such as “SOKE” [4] would use user name tokens. Recall that during the
execution of the protocol, the services endpoints may decide which authentica-
tion token to use.

The X.509v3 binary token authentication protocol is illustrated in Fig. 5. The
protocol’s goal is to negotiate a tuple of session keys between two services W1

and W1, while the services authenticate on the basis of X.509v3 binary tokens.
Assuming that in a setup stage the tokens have been stored in credential stores.
We denote the certified public pairs of W1 and W2 by (pk1, sk1) and (pk2, sk2),
respectively.

Web Service W1 Web Service W2

(pk1, sk1) (pk2, sk2)

Choose N1 ← {0, 1}∗
ClientHello : [N1, ..]−−−−−−−−−−−−−−−−−−−→

ServerHello : [N2, sid, ...]
Certificate : [pk2]
CertificateRequest
←−−−−−−−−−−−−−−−−−−− Choose N2, sid← {0, 1}∗

Choose kPMK ← {0, 1}∗

kMSK ← PRFkPMK(
′1′, N1 ||N2)

Symmetric keys: {kENC
1 , kMAC

1 , kENC
2 , kMAC

2 } ← PRFkMSK(
′1′, N1 ||N2)

Hsig ← Hash(... || ClientKeyExchange || Certificate)
H1 ← (Hash(... || Certificate || ClientVerify)

H2 ← (Hash(... || ClientVerify || Finished)

SIG1 ← Signsk1
(Hsig)

F1 ← PRFkMSK(
′1′, H1)

t1 ← HMACkMAC
1

(F1)

ClientKeyExchange : [Epk2(kPMK)]
Certificate : [pk1]

ClientVerify : [SIG1]
Finished : [EkENC

1
(F1, t1)]

−−−−−−−−−−−−−−−−−−−→

Verify (SIG1, pk1, Hsig)
ABORT if ⊥; else
Decrypt Epk2(kPMK)
Decrypt EkENC

1
(F1, t1)

Verify t1 = HMACkMAC
1

(F1)

ABORT if false; else
Verify F1 = PRFkMSK(

′1′, H1)
ABORT if false; else
F2 ← PRFkMSK(

′1′, H2)
t2 ← HMACkMAC

2
(F2)

Finished : [EkENC
2

(F2, t2)]
←−−−−−−−−−−−−−−−−−−−

Decrypt EkENC
2

(F2, t2) session keys← accept

Verify t2 = HMACkMAC
2

(F2)

ABORT if false; else
Verify F2 = PRFkMSK(

′1′, H2)
ABORT if false; else

session keys← accept

Fig. 5. Key establishment protocol based on X.509v3 tokens

W1 initiates the handshake. It randomly chooses a client nonce N1 and for-
wards this parameter to W2. Then, W1 chooses a nonce N2 and appends to the
nonce its certified public key pk2. Upon receiving the message, W1 randomly
chooses a premaster secret kPMK and encrypts the premaster secret with the pub-
lic key pk2 from W2. The premaster secret kPMK is used to derive the master
secret kMSK, using the pseudo-random function PRF parameterized by the ser-
vices’ nonces and the labeling string “master secret”, abbreviated with “1” in
the protocol description. This is the pseudorandom function as specified by SSL.
(Other PRF constructions could be used.)

W1 applies the master secret kMSK to compute the tuple of session keys
{kENC

1 , kMAC
1 , kENC

2 , kMAC
2 }. Here kENC

i and kMAC
i are encryption and authentication keys,

respectively. W1 feeds the pseudorandom function PRF with the labeling string
“key expansion” and the concatenation of the services’ nonces N1 and N2. In
addition, W1 proves its identity by signing the digest of previously negotiated
messages SIG1 using its certified private key sk1. Finally, W1 confirms the ses-
sion key generation, using the pseudorandom function PRF that takes as input
the master secret kMSK, the string “client finish” and the hash value H1 of all
previous messages. It then authenticates and encrypts the output F1 with the
session keys {kENC

1 , kMAC
1 }.

Upon receiving the message, W1 decrypts the premaster secret and verifies
SIG1, using the client’s certified public key pk1. It ensures that it is connected to
W1, i.e. it checks that W1 is a valid endpoint. Otherwise W2 aborts the session.
In the positive case, W2 derives in analogy to W1 the same master secret kMSK
and the same tuple of session keys {kENC

1 , kMAC
1 , kENC

2 , kMAC
2 }. Then, W2 decrypts

EkENC
1

(F1, t1) and verifies that tag t1 := HMACkMAC
1

(F1), where F1 is the hash over
all previous messages. If this verification fails, W2 aborts the protocol. Otherwise,
W2 confirms the negotiated session keys using the pseudorandom function PRF
that takes as input the master key kMSK, the labeling string “server finish”, and
the hash value over all previous messages H2. It then authenticates and encrypts
the output F2 with the session keys {kENC

2 , kMAC
2 }.

Finally, when W1 receives the message EkENC
2

(F2, t2), it decrypts the message
and verifies that tag t2 := HMACkMAC

2
(F2), where F2 is the hash value of all pre-

viously received messages. If the verification fails, W1 aborts the session. Oth-
erwise, W1 and W2 start to use the negotiated keys {kENC

1 , kMAC
1 , kENC

2 , kMAC
2 } for

symmetric cryptography.

5 Security Discussion

Although our SSL-over-SOAP protocol on the outside looks very different from
standard transport-layer SSL/TLS, the handshake quite closely follows the orig-
inal protocol. We have replaced the SSL/TLS data formats using an XML-based
approach, but without changing the cryptographic essence. Thus, previous anal-
yses of the SSL/TLS handshake as appearing in [13–15] apply similarly: the long
experience with SSL/TLS provides evidence that our proposal is cryptographi-
cally sound as well.

To get a feel for the cryptographic approach in these protocols (both the
original SSL/TLS and our SSL-over-SOAP), observe that most of the hand-
shake negotiation is not cryptographically authenticated immediately. Besides
signatures in certificates, authentication appears only in the form of digital sig-
natures if either a ServerKeyExchange message is used (the server signs its key
share along with the client and server random nonces, thus binding the key share
to the current handshake), or if a CertificateVerify message is used (in which
the client presents a signature on the handshake so far to authenticate itself to
the server).

Many typical scenarios involve neither message. An attacker can manipu-
late the handshake protocol messages being exchanged to influence the hand-
shake outcome: For example, if the client offers multiple ciphersuites in the
ClientHello message, an attacker could remove the client’s preferred cipher-
suites from the list, leaving the server with fewer ciphersuites to choose from—
such as just those ciphersuites that are the easiest to break. This changes only in
the moment when the Finished messages are exchanged. These messages cover
the complete handshake as well as the resulting master secret, thus retroactively
authenticating everything in the current handshake, provided that the master
secret could only be known to the legitimate protocol participants. (For exam-
ple, in an RSA-based handshake, the client encrypts the premaster secret for the
server’s certified public key, thus ensuring that the premaster secret and thus the
master secret remains secret from any attacker.) Accordingly, it is a fundamental
security requirement the any party engaging in a handshake only be willing to
negotiate ciphersuites that can be assumed to provide security in this sense. Any
further security properties, notably those of application data encryption, rely on
this.

The Finished message is the first piece of data to be encrypted and authen-
ticated under the newly negotiated keys and algorithms, thus also providing a
verification that negotiation succeeded as intended and that both parties now
are indeed using compatible cryptography. Once the Finished messages have
been verified, application data is encrypted and authenticated the same way.
In the standard SSL/TLS protocol, symmetric authentication is added to the
plaintext before encryption.

This is done differently in our SSL-over-SOAP setting (see Fig. 3), where
symmetric authentication (following the XML Digital Signatures specification)
is applied to the ciphertext. This change is not cryptographically trivial, but
does not harm the protocol. The combination of symmetric authentication with
encryption can be considered authenticated encryption [5]. As discussed in [5],
for general composition of an encryption scheme with a MAC, the “encrypt-
then-MAC” approach does the best job of providing authenticated encryption.
(“MAC-then-encrypt” as used in standard SSL/TLS in general has some prob-
lems, although these do not apply to the standard ciphersuites [11].) That is,
while SSL-over-SOAP differs from standard SSL/TLS in its use of symmetric
cryptography, the approach used in SSL-over-SOAP is in fact cryptographically
sound.

6 Conclusion and Outlook

The SSL-over-SOAP approach provides a practical framework for key estab-
lishment for Web Services. We use the experience with the practically proven
SSL/TLS protocol family for this purpose. This allows us to transfer SSL/TLS
protocol ideas to reuse them for Web Services, while giving us much more flex-
ibility and security than direct use of SSL/TLS at the transport layer. Our
prototype implementation has shown the feasibility of implementing complex
cryptographic protocols within the WS-* framework.

In this paper, we only looked at one basic form of an SSL handshake as an
example—an RSA-based handshake (involving an encrypted premaster secret).
The SSL-over-SOAP approach applies to many more protocol variants. For ex-
ample, we can directly transfer the work that has been done in [4] for password-
based authenticated key exchange in TLS, where parties rely on low-entropy
secrets instead of certificates for authentication. So besides X.509v3 binary to-
ken authentication as described in Section 4, we can also specify password token
authentication using the “SOKE” scheme from [4]. We plan to complete an open
source software library for SSL-over-SOAP, which will offer ciphersuites for both
for X.509v3 binary token authentication and for password token authentication.

Our experiences with SSL-over-SOAP should be considered as a starting
point for the definition of other key agreement protocols, e.g., the IPsec OAK-
LEY protocol, or group key agreement protocols. However, security analyses
of such protocols can not be directly transferred to the web services world,
e.g. considering XML wrapping attacks. Necessary conditions for key agreement
protocols to be secure in an XML context (e.g. explicit key confirmation) have
to be researched.

References

1. Security in a Web Services World: A Proposed Architecture and Roadmap,
April 7, 2002. http://www.ibm.com/developerworks/library/specification/

ws-secmap/.
2. Web Services Secure Conversation Language Specification (WS-

SecureConversation), February 1, 2005. ftp://www6.software.ibm.com/

software/developer/library/ws-secureconversation.pdf.
3. Web Services Security: SOAP Message Security 1.1 (WS-Security 2004) Working

Draft, November 7, 2005. http://www.oasis-open.org/committees/download.

php/15251/oasis-wss-soap-message-security-1.1.pdf.
4. M. Abdalla, E. Bresson, O. Chevassut, B. Möller, and D. Pointcheval. Provably

secure password-based authentication in TLS. In S. Shieh and S. Jajodia, editors,
Proceedings of the 2006 ACM Symposium on Information, Computer and Commu-
nications Security (ASIACCS’06), pages 35–45, 2006.

5. M. Bellare and C. Namprempre. Authenticated encryption: Relations among no-
tions and analysis of the generic composition paradigm. In T. Okamoto, editor,
Advances in Cryptology – ASIACRYPT 2000, volume 1976, pages 531–545, 2000.

6. T. Dierks and E. Rescorla. The Transport Layer Security (TLS) protocol, version
1.1. RFC 4346. http://www.ietf.org/rfc/rfc4346.txt, 2006.

7. W. Diffie, P. C. van Oorschot, and M. J. Wiener. Authentication and Authenticated
Key Exchanges. Designs, Codes and Cryptography, 2(2):107–125, 1992.

8. L. Fang, S. Meder, O. Chevassut, and F. Siebenlist. Secure password-based au-
thenticated key exchange for web services. In SWS ’04: Proceedings of the 2004
workshop on Secure web service, pages 9–15, New York, NY, USA, 2004. ACM
Press.

9. S. Hada and H. Maruyama. Session authentication protocol for web services. In
SAINT-W ’02: Proceedings of the 2002 Symposium on Applications and the Inter-
net (SAINT) Workshops, page 158, Washington, DC, USA, 2002. IEEE Computer
Society.

10. A. Herzberg. Secure XML transport protocol. Lecture Notes, Chapter
14, 2000. http://www.cs.biu.ac.il/~herzbea/Chapters/Chapter%2014%20XML%

20Security.pdf.
11. H. Krawczyk. The order of encryption and authentication for protecting commu-

nications (or: How secure is SSL?). In J. Kilian, editor, Advances in Cryptology –
CRYPTO 2001, volume 2139, pages 310–331, 2000.

12. M. McIntosh and P. Austel. Xml signature element wrapping attacks and coun-
termeasures. In ACM Workshop on Secure Web Services, 2005.

13. J. C. Mitchell, V. Shmatikov, and U. Stern. Finite-state analysis of SSL 3.0. In
7th USENIX Security Symposium, 1998.

14. L. C. Paulson. Inductive analysis of the internet protocol TLS. ACM Transactions
on Computer and System Security, (3):332–351, 1999.

15. B. Schneier and D. Wagner. Analysis of the SSL 3.0 protocol. In Proceedings of
the 2nd USENIX Workshop on Electronic Commerce, 1996.

16. W3C Consortium. XML-encryption syntax and processing, 2002. http://www.w3.
org/TR/xmlenc-core.

17. W3C Consortium. XML-signature syntax and processing, 2002. http://www.w3.

org/TR/xmldsig-core.
18. D. Zhang and J. Xu. Multi-party authentication for web services: Protocols,

implementation and evaluation. In Seventh IEEE International Symposium on
Object-Oriented Real-Time Distributed Computing (ISORC’04), pages 227–234,
Los Alamitos, CA, USA, 2004. IEEE Computer Society.

