Electrical Engineering and Systems Science > Audio and Speech Processing
[Submitted on 22 Feb 2024]
Title:SICRN: Advancing Speech Enhancement through State Space Model and Inplace Convolution Techniques
View PDF HTML (experimental)Abstract:Speech enhancement aims to improve speech quality and intelligibility, especially in noisy environments where background noise degrades speech signals. Currently, deep learning methods achieve great success in speech enhancement, e.g. the representative convolutional recurrent neural network (CRN) and its variants. However, CRN typically employs consecutive downsampling and upsampling convolution for frequency modeling, which destroys the inherent structure of the signal over frequency. Additionally, convolutional layers lacks of temporal modelling abilities. To address these issues, we propose an innovative module combing a State space model and Inplace Convolution (SIC), and to replace the conventional convolution in CRN, called SICRN. Specifically, a dual-path multidimensional State space model captures the global frequencies dependency and long-term temporal dependencies. Meanwhile, the 2D-inplace convolution is used to capture the local structure, which abandons the downsampling and upsampling. Systematic evaluations on the public INTERSPEECH 2020 DNS challenge dataset demonstrate SICRN's efficacy. Compared to strong baselines, SICRN achieves performance close to state-of-the-art while having advantages in model parameters, computations, and algorithmic delay. The proposed SICRN shows great promise for improved speech enhancement.
Current browse context:
eess.AS
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.