
Rock: Cleaning Data with both ML and Logic Rules
Zian Bao∗
Binbin Bie

baozian@sics.ac.cn
biebinbin@sics.ac.cn
Shenzhen Institute of

Computing Sciences, China

Wenfei Fan
Shenzhen Institute of

Computing Sciences, China
University of Edinburgh

United Kingdom
Beihang University, China

wenfei@inf.ed.ac.uk

Daji Li
Mengyun Li
lidaji@sics.ac.cn

limengyun@sics.ac.cn
Shenzhen Institute of

Computing Sciences, China

Kaiwen Lin
Wei Lin

linkaiwen@sics.ac.cn
linwei@sics.ac.cn

Shenzhen Institute of
Computing Sciences, China

Peijie Liu
Peng Liu

liupeijie@sics.ac.cn
liupeng@sics.ac.cn
Shenzhen Institute of

Computing Sciences, China

Zhicong Lv
Mingliang Ouyang
lvzhicong@sics.ac.cn

ouyangmingliang@sics.ac.cn
Shenzhen Institute of

Computing Sciences, China

Chenyang Sun
Shuai Tang

sunchenyang@sics.ac.cn
tangshuai@sics.ac.cn
Shenzhen Institute of

Computing Sciences, China

Yaoshu Wang
Qiyuan Wei

yaoshuw@sics.ac.cn
werty@sics.ac.cn

Shenzhen Institute of
Computing Sciences, China

Xiangqian Wu
Min Xie

wuxiangqian@sics.ac.cn
xiemin@sics.ac.cn

Shenzhen Institute of
Computing Sciences, China

Jing Zhang
Runxiao Zhao

zhangjing@sics.ac.cn
zhaorunxiao@sics.ac.cn
Shenzhen Institute of

Computing Sciences, China

Jie Zhu
Yilin Zhu

zhujie@sics.ac.cn
zhuyilin@sics.ac.cn
Shenzhen Institute of

Computing Sciences, China

ABSTRACT
We demonstrate Rock, a system for cleaning relational data. Rock
highlights the following unique features: (1) it extends logic rules
by embedding machine learning models as predicates, to benefit
from both ML and logic deduction; (2) it supports entity resolution,
conflict resolution, timeliness deduction and missing data impu-
tation in a unified process; and (3) it provides parallelly scalable
algorithms for rule discovery, error detection and error correction,
in batch and incremental modes. We will demonstrate Rock for
its (a) easy-to-use interface, (b) scalability when cleaning large
datasets, (c) accuracy for detecting and correcting errors across
multiple tables, and (d) applications at banks and HR departments.

PVLDB Reference Format:
Zian Bao, Binbin Bie, Wenfei Fan, Daji Li, Mengyun Li, Kaiwen Lin, Wei
Lin, Peijie Liu, Peng Liu, Zhicong Lv, Mingliang Ouyang, Chenyang Sun,
Shuai Tang, Yaoshu Wang, Qiyuan Wei, Xiangqian Wu, Min Xie, Jing
Zhang, Runxiao Zhao, Jie Zhu, and Yilin Zhu. Rock: Cleaning Data with
both ML and Logic Rules. PVLDB, 17(12): 4373 - 4376, 2024.
doi:10.14778/3685800.3685878

1 INTRODUCTION
Dirty data has been a longstanding challenge. Real-life data is often
dirty, evidenced by duplicates, conflicts, missing data and obsolete
∗Author names are listed in alphabetical order.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 12 ISSN 2150-8097.
doi:10.14778/3685800.3685878

values commonly found in our datasets. Data-driven decisions based
on dirty data can be worse than making decisions with no data.

In light of these, data cleaning systems have been studied for
decades. Nonetheless, when we work with practitioners in industry,
we often hear the following questions and requests.
• Machine learning (ML) or logic deduction? Existing systems ap-
proach data quality typically via either logic rules or ML models.
However, none of the two is super to the other. On the one hand, it
is hard to find a small number of logic rules that cover all errors and
data in practice. On the other hand, ML solutions are probabilistic
and hard to interpret; practitioners may not want to deploy ML
models when cleaning critical data such as medical records.

Is it possible to unify ML and logic rules in the same process, to
benefit from both? How effective can such a uniform framework
be, compared to logic deduction and ML predictions alone?
• Functionality. Data cleaning systems have mostly focused on two
primitive issues: (a) entity resolution (ER), to determine whether
two tuples refer to the same real-world entity, in order to catch
duplicates; and (b) conflict resolution (CR), to detect and resolve
semantic inconsistencies among attribute values of the entities.

However, there are two other critical issues of data quality: (c)
missing data imputation (MI), to enrich tuples by filling in the miss-
ing values (null); and (d) timeliness deduction (TD), to deduce tem-
poral orders on attribute values, and infer the latest values of each
entity. The need for addressing these is evident in practice. For
example, 42.5% of epidemiological records are incomplete [13], and
“58% of organizations make decisions based on outdated data” [4].

Moreover, these critical issues interact with each other. On the
one hand, deducing missing values and temporal orders help us
identify entities and fix inconsistencies. On the other hand, ER and

4373

https://doi.org/10.14778/3685800.3685878
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3685800.3685878

CR facilitate us to enrich tuples by instantiating missing values and
deduce timeliness by providing more correlated values.

Is it possible to support all of ER, CR, MI and TD in a system? Can
we leverage their interactions to improve the overall data quality?
• Performance. To clean dirty data, a cleaning system should support
the following: (a) rule discovery, to learn logic rules and/or train
ML models; (b) error detection, to catch errors (duplicates, incon-
sistencies, missing and stale values) with the rules/models learned;
and (c) error correction, to fix the errors detected (merge duplicates,
resolve conflicts, fill in null values and deduce the latest values).

Can we have a system that scales with large datasets? Can it
ensure that its error correction has the “certainty”, i.e., it fixes an
existing error and introduces no new errors?

Rock (Section 2). To answer these questions, we have devel-
oped Rock [1, 3], a system for cleaning relational data. Rock has
been deployed at banks, delivery services, mobile operators and e-
commerce, and proven effective there. It is unique in the following.

(1) ML in logic rules. Rock proposes REE++s, an extension of Entity
Enhancing Rules (REEs) [9, 11]. REE++s (a) embed ML models as
predicates, to benefit from both ML predictions and logic deduction,
and (b) express rules for ER, CR, TD [12] and MI [8], and subsume
conditional functional dependencies (CFDs) [7], denial constraints
(DCs) [2] and matching dependencies (MDs) [5] as special cases.

(2) A unified process. Rock supports ER, CR, TD and MI in the same
process, and leverages their interactions to improve the overall
quality of the data. It provides algorithms for rule discovery [9, 10],
error detection and error correction [8, 11], in batch and incremental
modes [11], to deal with static and dynamic datasets, respectively.

(3) Scalability and accuracy. The algorithms underlying Rock are
provably parallel scalable [14], i.e., they guarantee to reduce runtime
whenmoremachines are used, and hence in principle, can scale with
large datasets. Rock also develops other optimization strategies,
e.g., top-𝑘 discovery to reduce excessive and redundant rules [10].
Moreover, its fixes to errors are logical consequences of the rules
employed, ground truth accumulated and ML predictions; if the
rules, ground truth and predictions are accurate, so are the fixes.

Demonstration (Section 3). Participants can interact with Rock to
experience its (a) friendly user interface, (b) accuracy improvement
from its unification of ML and logic deduction and the interactions
among ER, CR, TD and MI; and (c) capability to scale with large
datasets ensured by the parallel scalability and optimization strate-
gies of its underlying algorithms. We will also showcase how Rock
works in regularity reporting and human resource management.

2 AN OVERVIEW OF ROCK
This section presents the foundation and architecture of Rock [3].

2.1 Foundation of Rock
Rock is based on the class of REE++s, which are defined over a
database schema R = (𝑅1, . . . , 𝑅𝑚), where 𝑅 𝑗 is a relation schema
𝑅(𝐴1, . . . , 𝐴𝑘), and each 𝐴𝑖 is an attribute of relation 𝑅.

An REE++s (Entity Enhancing Rule) over schema R is defined as
𝜑 : 𝑋 → 𝑝0,

where 𝑋 is a conjunction of predicates over R, and 𝑝0 is a predicate

Table 1: Example Drug relation 𝐷1
tid did fid Name Spec Descr Admin
𝑡1 𝑑1 𝑓1 Inosine Oral 20ml*10;0.2g*10 for hepatitis ... OA
𝑡2 𝑑2 𝑓2 Inosine 200ml;20g Hepatitis disease ... OA
𝑡3 𝑑3 𝑓3 Finasteride 5mg treat BPH ... OA

Table 2: Example Factory relation 𝐷2
tid fid CName Addr Legal Annual (M) CSize Type
𝑡4 𝑓1 B. medicine 12 Beijing Str. null 2 30 micro
𝑡5 𝑓2 B. medicine 15 Nanjing null 2.5 36 large
𝑡6 𝑓2 B. 14 Beijing Str. null 2.5 37 small
𝑡7 𝑓2 medicine 14 Beijing Str. Q. Zhang 2.5 37 null
𝑡8 𝑓3 medicine 14 Beijing Str. Q. Zhang 2.5 37 small

over R such that its tuple variables are bounded in 𝑋 (see below).
Predicates over schema R include the following:
𝑝 ::= 𝑅(𝑡) | 𝑡 .𝐴 ⊕ 𝑐 | 𝑡 .𝐴 ⊕ 𝑠 .𝐵 | 𝑡 ⊗𝐴 𝑠 | 𝑝𝐺 | M(𝑡 [�̄�], 𝑠 [�̄�])

Here (a) 𝑅(𝑡) is a relation atom over R, where 𝑅 ∈ R, and 𝑡 is a
tuple variable bounded by 𝑅(𝑡); (b) 𝑡 .𝐴 ⊕ 𝑠 .𝐵 compares compatible
attributes 𝑡 .𝐴 and 𝑠 .𝐵, where ⊕ is one of =,≠, <, ≤, >, ≥, tuple 𝑡

(resp. 𝑠) is bounded by 𝑅(𝑡) (resp. 𝑅′ (𝑠)), and 𝐴 ∈ 𝑅 and 𝐵 ∈ 𝑅′

have the same type; similarly for 𝑡 .𝐴 ⊕ 𝑐 ; (c) ⊗ is either ≺ or ⪯, and
𝑡 ≺𝐴 𝑠 says that the value of attribute 𝑠 [𝐴] is more up-to-date than
𝑡 [𝐴]; similarly for 𝑡 ⪯𝐴 𝑠; (d) 𝑝𝐺 denotes predicates for extracting
values from a knowledge graph and filling in missing values of a
tuple (see [8] for details); and M(𝑡 [�̄�], 𝑠 [�̄�]) is an ML predicate,
where 𝑡 [�̄�] and 𝑠 [�̄�] are vectors of pairwise compatible attributes.

ML predicates. REE++s may embed ML models M as predicates.
HereM can be any black-box function that returns a Boolean value,
for classification, similarity checking, link prediction, and error de-
tection, e.g., Mreg ≥ 𝛿 for the strength of a regression model Mreg
and a predefined threshold 𝛿 . In particular, Rock trains several mod-
els for temporal ranking [12] and assessing correlation between
a (partial) tuple and another attribute [8]; e.g., Mrank (𝑡1, 𝑡2, ≺𝐴)
returns true if it predicts 𝑡1 ≺𝐴 𝑡2, and false otherwise.

As an example, consider a drug database schemaR with relations
in Tables 1 and 2. Below are two REE++s over schema R.
𝜑1 : Drug(𝑡) ∧Drug(𝑠) ∧Mnorm (𝑡 .Spec, 𝑠 .Spec) ∧Msim (𝑡 .Name,
𝑠 .Name) → 𝑡 .Admin = 𝑠 .Admin, whereMsim is a semantic match-
ing model to identify drug names, andMnorm normalizes the speci-
fications of drugs and checks whether the capacities and weights of
two drugs are the same. The rule says two drugs have the same drug
administration if they have similar names and same specifications.

𝜑2 : Factory(𝑡) ∧ Factory(𝑠) ∧ 𝑋 → Madd (𝑡 [Addr], 𝑠 [Addr]),
where Maddr checks whether two addresses are the same, 𝑋 =⋀︁

𝐴∈T 𝑡 .𝐴 = 𝑠 .𝐴 and T is a set of attributes about factory addresses
(not shown), e.g., zipcode and neighborhood information. Rock
discovers conditions in 𝑋 to explain whyMaddr predicts true.

A full range of ER, CR, TD and MI. REE++s are able to express
rules for the four central issues of data quality. As an example, 𝜑1
above is an REE++s for CR. Below are more REE++s for CR and ER:
𝜑3 : Factory(𝑡) ∧ Factory(𝑠) ∧ 𝑡 .fid = 𝑠 .fid ∧ Mrange (𝑡 [Annual,
CSize], 𝑠 [Annual,CSize]) → 𝑡 .Type=𝑠 .Type, whereMrange checks
whether the annual revenues and the employee numbers of two fac-
tories are in the same range based on the national standard. The rule
states that if records 𝑡 and 𝑠 are for the same factory, and have similar
revenues and employee numbers, then the two have the same type.

𝜑4 : Drug(𝑡)∧Drug(𝑡 ′)∧Factory(𝑠)∧Factory(𝑠′)∧Msim (𝑡 .Descr,
𝑡 ′ .Descr) ∧ 𝑡 .Admin = 𝑡 ′ .Admin ∧ 𝑡 .fid = 𝑠 .fid ∧ 𝑡 ′ .fid =

4374

Figure 1: Rock architecture

𝑠′ .fid∧𝑠 .CName = 𝑠′ .CName∧𝑠 .Type = 𝑠′ .Type → 𝑡 .did = 𝑡 ′ .did,
where Msim checks the semantic similarity between the descrip-
tions of two drugs. It states that two drug records refer to the same
one if they have the similar descriptions, the same drug administra-
tions and they are produced by the same factory. Unlike CFDs and
DCs, 𝜑4 involves four tuples in two tables, beyond bi-variable rules.

REE++s with temporal predicates can express interesting proper-
ties, e.g., monotonicity, comonotonicity and correlation, for TD.
𝜑5 : Factory(𝑡) ∧ Factory(𝑠) ∧ 𝑡 .fid = 𝑠 .fid ∧ 𝑡 .Type = “micro” ∧
𝑠 .Type = “small” → 𝑡 ⪯Type 𝑠 . It says the types of the factory
typically changes monotonically, i.e., from “micro” to “small”.

𝜑6 : Factory(𝑡) ∧Factory(𝑠) ∧𝑡 .fid = 𝑠 .fid∧𝑡 ⪯Type 𝑠 → 𝑡 ⪯Addr 𝑠,

i.e., ⪯Type and ⪯Addr are often comonotonic: when the type of a
factory changes, then the address of this factory may also change.

The following REE++s impute missing values for MI.
𝜑7 : Factory(𝑡) ∧ vertex(𝑥,KG) ∧ HER(𝑡, 𝑥) ∧ match(𝑡 [Legal],
𝑥 .(legal)) → 𝑡 [Legal] = val(𝑥 .(legal)). It says that if a factory 𝑡

matches a vertex 𝑥 in a KG of enterprise and if 𝑥 reaches vertex
𝑣 via path 𝜌 = (legal), let 𝑡 [Legal] take 𝐿(𝑣) as its value. Here
HER(𝑡, 𝑥) is a predicate that returns true if a tuple 𝑡 in a relation
and a vertex 𝑥 in a graph refer to the same real-world entity, by
heterogeneous entity resolution across relations and graphs [6].
𝜑8 : Factory(𝑡) ∧Factory(𝑡 ′) ∧Factory(𝑡 ′′) ∧𝑡 .fid = 𝑡 ′ .fid∧𝑡 .fid =

𝑡 ′′ .fid ∧ 𝑡 [Addr] = null ∧ 𝑡 ′ ⪯Addr 𝑡
′′ → 𝑡 .Addr = 𝑡 ′′ .Addr. It fills

in the null Addr of 𝑡 by a more recent address.

The interaction. Better still, Rock makes use of the interaction
among ER, CR, TD andMI, to improve the overall quality. It can also
automatically generate a sequence of decision-making processes
for any subset of functionalities above [3]. Consider Tables 1-2.
(1) ER helps CR. Applying 𝜑4 to (𝑡1, 𝑡2) of 𝐷1, we identify 𝑑1 and 𝑑2,
i.e., ER. By applying another rule 𝜑9 : Drug(𝑡) ∧ Drug(𝑠) ∧ 𝑡 .did =

𝑠 .did → 𝑡 .fid = 𝑠 .fid, we deduce that 𝑓1 and 𝑓2 are the same factory.
Then applying 𝜑3 of CR to (𝑡4, 𝑡5) of 𝐷2, we fix the erroneous type
of 𝑡5 (shown in bold) by letting 𝑡5 [Type] =“micro”.

(2) CR helps TD. Once the errors in Type are fixed by CR, we can
rank the timeliness for tuples 𝑡4−𝑡6 in𝐷2. For example, by applying
𝜑5 and 𝜑6, we can deduce that “small” and “14 Beijing Str.” are the
latest Type and Addr of the factory, respectively.

(3) TD helps MI. After identifying the latest type “small” of 𝑡6, we ap-
ply 𝜑8 to (𝑡6, 𝑡7) in 𝐷2, and impute the missing type of 𝑡7 as “small”.

(4) MI helps ER. After knowing the type of 𝑡7, we apply REE++s 𝜑10 :
Factory(𝑡) ∧ Factory(𝑠) ∧ 𝑡 .Legal = 𝑠 .Legal ∧ 𝑡 .Addr = 𝑠 .Addr ∧
𝑡 .Type = 𝑠 .Type → 𝑡 .fid = 𝑠 .fid to (𝑡7, 𝑡8), to identify 𝑓2 and 𝑓3 (ER).

Remark. (1) Popular data quality rules such asDCs,MDs andCFDs
are special cases of REE++s [11]. For example, 𝜑9 can be written as
a DC, MD or CFD, and is expressed an REE++. (2) As opposed to
previous rules, REE++s embed M as predicates in precondition 𝑋

(see 𝜑1), and moreover, can uniformly express rules for ER, CR, TD
and MI. (3) As shown by 𝜑2, for certain ML models M, Rock can
discover logic conditions 𝑋 to provide high-level rational behind
predictions ofM, via REE++ of the form 𝑋 → M(𝑡 [�̄�], 𝑠 [�̄�]).

2.2 The Architecture of Rock
As shown in Figure 1, Rock is developed based on a three-tier archi-
tecture. User interface (UI) is the topmost level of the architecture.
It displays standard graphical interfaces, receives user requests,
communicates with other layers via Web socket (WS) and returns
the results to users. The business logic layer (BLL) conducts process-
ing. It also moves and processes data between the two surrounding
layers. The data access layer (DAL) provides APIs for BLL to access
and manage the stored data. The retrieved data is passed back to
BLL for processing, and is eventually returned back to the users.

Given a dataset D of schema R, Rock automatically discovers
a set Σ of REE++s over R offline [9, 10]. It then detects and fixes
errors in D online, using the REE++s in Σ. Moreover, the users may
use Rock to monitor changes to D, and incrementally detect and
fix errors in response to updates. Rock also accumulates a library
of pre-trained ML models with various functionalities.

3 DEMONSTRATION OVERVIEW
This section presents the setting and plan of our demonstration.
Demonstration setup. A binary version of Rock is available at [1].
Platform. We will demonstrate Rock and its applications by using
a single machine powered by 16GB RAM and 8 processors with
Intel(R) Xeon(R) Gold 5320 CPU @2.20GH.
Datasets. We will use masked data in the sales domain (see [3]).
Additionally, we will utilize two benchmark datasets [15].
System comparison. We will demonstrate the performance of Rock
in comparison with SOTA data cleaning systems Raha [16] for
error detection, Baran [15] andHoloClean [17] for error correction.
Since HoloClean requires logical rules as inputs, we will provide it
with the discovered REE++s, but excluding the ML predicates.
ML models. We will embed ML models for e.g., an address normal-
ization model and SKU identification in REE++s as predicates.

Demonstration plan. We will showcase Rock as follows.
Ease of use. Users are invited to play with the interface of Rock, and
explore its internal functionalities to understand how these could
impact the accuracy/quality of repairs, e.g., the interaction of ER,
CR, TD and MI. As shown in Figure 2, Rock provides the following.

(1) Data configuration. Rock can load datasets from various sources,
and users may mark a set of attributes of their interest.

(2) Data standardization and ML pre-processing. Users may pre-
process the datawith built-in rules and pre-trainedMLmodels. They
will see (a) the roles of attributes that are automatically predicted,

4375

Figure 2: Snapshots of the user panel of Rock

(b) cells with syntactic errors detected by interpretable rules, (c)
normalization of cells by (inter-)national standard, (d) enriched
attributes by pre-trainedMLmodels and external knowledge graphs,
and (e) data standardization by pre-trained ML models.

(3) Data quality enhancement. Users can enhance the quality of
their datasets in either the online or offline mode. (a) Offline mode.
When enough ground truth is accumulated, users may let Rock
repair all errors via the chase without user interaction, and return
the cleaned datasets at the end. (b)Online mode. Users may pick a set
of entities of their interest, and interact with Rock to clean the data.
As shown in Figure 2, at the user panel, users are shown erroneous
(colored) cells detected; the darkness of the colors indicates how
certain the cell is erroneous. Users may click on any cell in the
tables, and see (a) the REE++s that detect the potential errors; (b) the
distribution of conflicts and the recommended value for repair, and
(c) a preview of all tuples that have conflicts with the cell. Users
may then select/enter the right value for the cell, and Rock extends
its ground truth with the input. Rock propagates the corrections
to other tuples, incrementally executes the chase, and shows the
users with other/new errors. The process proceeds until all errors
to entities of users’ interest are fixed. The users may opt to trigger
incremental rule discovery when the data distribution changes.

(4) Data quality assessment. Users may pick a dataset and view a
report with (a) an overall score of its quality, (b) the score of each ta-
ble in the dataset, (c) error distributions across attributes, tuples and
tables, and (d) statistical information, e.g., types/numbers of errors.

Performance. Users are invited to interact with Rock, and see how
Rock (a) learns their prior knowledge and discovers top-𝑘 REE++s
that meet their need, instead of excessive rules, (b) detects and fixes
errors in batch and incremental modes, as well as (c) its efficiency,
scalability and accuracy, and the impacts of its key parameters on
the performance. They will also witness how Rock outperforms
SOTA data cleaning systems in both accuracy and efficiency.

Applications. We will walk users through two real-life cases.

(1) Scenario 1: Bank. Reports from banks are required to conform
to the directives of regulatory authorities. We will mimic how
Rock helps the regulatory reporting system at a bank. Rock discov-
ers REE++s across different tables with arithmetic expressions, and
checks consistencies and regulation conformance with the rules. It
reduces the regulatory checking from days to hours at the bank.

Figure 3: Rock for HR (compared with Raha, Baran and HoloClean)

(2) Scenario 2: Human resources (HR). We will also show how Rock
helps HR manage personnel data. As shown in Figure 3, Rock im-
proves the data quality scores by detecting and correcting errors in
their data, e.g.,mismatched personnel records, unrecorded changes,
outdated salary. It saves hours of HR work each day. Rock outper-
forms HoloClean and Baran because of its support for unification
of logic reasoning and ML predication, and interaction of CR, ER,
TD and MI; it is easy to use and ensures its fixes to be certain.

ACKNOWLEDGMENTS
This work was supported by NSFC 62202313, Guangdong Basic and
Applied Basic Research Foundation 2022A1515010120, Longhua Sci-
ence and Technology Innovation Bureau 10162A20220720B12AB12.

REFERENCES
[1] 2023. Rock. http://www.grandhoo.com/en.
[2] Marcelo Arenas, Leopoldo Bertossi, and Jan Chomicki. 1999. Consistent Query

Answers in Inconsistent Databases. In PODS. 68–79.
[3] Bao et. al. 2024. Rock: Cleaning Data by Embedding ML in Logic Rules. In

SIGMOD (industrial paper). ACM.
[4] Exasol. 2020. Exasol Research Finds 58% of Organizations Make Decisions

Based on Outdated Data. https://www.exasol.com/news-exasol-research-finds-
organizations-make-decisions-based-on-outdated-data/.

[5] Wenfei Fan, Hong Gao, Xibei Jia, Jianzhong Li, and Shuai Ma. 2011. Dynamic
constraints for record matching. VLDB J. 20, 4 (2011), 495–520.

[6] Wenfei Fan, Ling Ge, Ruochun Jin, Ping Lu, and Wenyuan Yu. 2022. Linking
Entities across Relations and Graphs. In ICDE. IEEE, 634–647.

[7] Wenfei Fan, Floris Geerts, Xibei Jia, and Anastasios Kementsietsidis. 2008. Condi-
tional Functional Dependencies for Capturing Data Inconsistencies. ACM Trans.
Database Syst. 33, 1 (2008), 25:1–25:49.

[8] Wenfei Fan, Ziyan Han, Weilong Ren, Ding Wang Yaoshu Wang, Min Xie, and
Mengyi Yan. 2024. Splitting Tuples of Mismatched Entities. Proc. ACM Manag.
Data (2024).

[9] Wenfei Fan, Ziyan Han, YaoshuWang, andMin Xie. 2022. Parallel Rule Discovery
from Large Datasets by Sampling. In SIGMOD. ACM, 384–398.

[10] Wenfei Fan, Ziyan Han, Yaoshu Wang, and Min Xie. 2023. Discovering Top-k
Rules using Subjective and Objective Criteria. Proc. ACM Manag. Data (2023).

[11] Wenfei Fan, Chao Tian, YanghaoWang, and Qiang Yin. 2021. Parallel Discrepancy
Detection and Incremental Detection. PVLDB 14, 8 (2021), 1351–1364.

[12] Wenfei Fan, Resul Tugay, Yaoshu Wang, Min Xie, and Muhammad Asif Ali. 2023.
Learning and Deducing Temporal Orders. PVLDB 16, 8 (2023), 1944–1957.

[13] Rachael A Hughes, Jon Heron, Jonathan AC Sterne, and Kate Tilling. 2019. Ac-
counting for missing data in statistical analyses: Multiple imputation is not
always the answer. International journal of epidemiology 48, 4 (2019), 1294–1304.

[14] Clyde P. Kruskal, Larry Rudolph, and Marc Snir. 1990. A Complexity Theory of
Efficient Parallel Algorithms. Theor. Comput. Sci. 71, 1 (1990), 95–132.

[15] Mohammad Mahdavi and Z. Abedjan. 2020. Baran: Effective Error Correction
via a Unified Context Representation and Transfer Learning. PVLDB (2020).

[16] Mohammad Mahdavi, Ziawasch Abedjan, Raul Castro Fernandez, Samuel Mad-
den, Mourad Ouzzani, Michael Stonebraker, and Nan Tang. 2019. Raha: A
Configuration-Free Error Detection System. In SIGMOD. 865–882.

[17] Theodoros Rekatsinas, Xu Chu, Ihab F. Ilyas, and Christopher Ré. 2017. Holo-
Clean: Holistic Data Repairs with Probabilistic Inference. PVLDB (2017).

4376

http://www.grandhoo.com/en

	Abstract
	1 Introduction
	2 An Overview of Rock
	2.1 Foundation of Rock
	2.2 The Architecture of Rock

	3 Demonstration Overview
	Acknowledgments
	References

