
Revisiting RISC-style Data Management System Design

Danica Porobic
Oracle

danica.porobic@oracle.com

Microprocessors have followed the CICS (Complex Instruc-
tion Set Computer) path of increasing complexity where
new functionality required increasingly complex instructions,
that made processors costly to design and hard to debug,
in addition to being hard to program. In the early 1980s,
David Patterson and John Hennessy proposed a radically
simpler RISC (Reduced Instruction Set Computer) approach
that is now used in almost all processor designs. In the
lecture following their 2018 Turing award for RISC design,
Hennessy and Patterson reflect on the RISC journey and
argue that we are currently at a new crossroads where dark
silicon [4] and modern applications require more effective
hardware-software codesign that is already bearing fruit for
hyperscalers [3, 7]. Modern domain-specific languages are
the key enabling technology in the development of such spe-
cialized hardware designs [1].

We have witnessed similar trends in the data management
community: relational databases became the dominant type
of databases in the 1990s due to their dominance in trans-
action processing. Analytical (OLAP) processing, object
oriented databases, and semi-structured (XML) databases
all challenged relational databases, however, they all failed
to gain dominance in the marketplace. At the same time
relational databases gained capabilities of these specialized
systems, thus increasing their complexity and leading to
arguments in favor of specialization [9].

Specialization has been an attractive approach for address-
ing the challenge of the ever increasing size and diversity of
data. Furthermore, the value of many internet companies is
measured by the amount of data they have and the ability
to extract actionable information in a timely manner. Both
the data deluge and the exponential rise of types of ques-
tions asked about that data are leading to a large number of
data management systems specialized for different types of
data (graphs, JSON, spatial, time series...), different types
of applications (reporting, machine learning, streaming, op-
erational...) and different platforms (enterprise class servers,
virtualized cloud environments, heterogenous compute and
storage hierarchies...).

In modern software architectures based on microservices
and functions, data is rarely produced and consumed by the
same system. Instead, it is generated in one system, cleaned

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro-
vided that you attribute the original work to the author(s) and CIDR 2017.
9th Biennial Conference on Innovative Data Systems Research (CIDR ‘17)
January 13-16, 2019 , Asilomar, California, USA.

in another, transformed in the third, integrated in the fourth,
and analyzed in the fifth. While each of components of a
complex data pipeline is very efficient on its own, actual
question answering represents a small fraction of the overall
time and energy spent by the system. Additionally, the
system complexity requires a number of experts to develop,
optimize, and operate such data pipelines.

However, if we step back and examine architectures of
both traditional general and modern specialized data man-
agement systems, they are remarkably similar: they all have
similar components, including data storage, data consistency,
access method selection, and query processing. This is not
surprising as they are all fundamentally doing the same thing:
storing, accessing, and processing data. Thus, data manage-
ment systems are very suitable to ”RISC” architecture [2].
Furthermore, modern compiler technology [8] and machine
learning [5] are more than capable of enabling data manage-
ment systems tuned to specific workloads. By making all
major components of data management systems composable
and self-tuning, we can go even further and dynamically
specialize data management systems to the applications, as
we are already doing for hardware in engineered systems [6].

1. REFERENCES
[1] J. Bachrach et al. Chisel: constructing hardware in a

scala embedded language. In DAC, 2012.

[2] S. Chaudhuri and G. Weikum. Rethinking Database
System Architecture: Towards a Self-Tuning RISC-Style
Database System. In VLDB, pages 1–10, 2000.

[3] J. Dean, D. Patterson, and C. Young. A new golden age
in computer architecture: Empowering the
machine-learning revolution. IEEE Micro, 38(2), 2018.

[4] N. Hardavellas, M. Ferdman, B. Falsafi, and
A. Ailamaki. Toward dark silicon in servers. IEEE Micro,
31(4):6–15, 2011.

[5] S. Idreos, K. Zoumpatianos, B. Hentschel, M. S. Kester,
and D. Guo. The data calculator: Data structure design
and cost synthesis from first principles and learned cost
models. In SIGMOD, pages 535–550, 2018.

[6] J. Loaiza. Engineering database hardware and software
together. PVLDB, 8(12):2052, 2015.

[7] A. Putnam et al. A reconfigurable fabric for accelerating
large-scale datacenter services. In ISCA, pages 13–24,
2014.

[8] E. Sedlar. How I Learned to Stop Worrying and Love
Compilers. In SIGMOD, pages 1–2, 2014.

[9] M. Stonebraker and U. Cetintemel. ”one size fits all”: an
idea whose time has come and gone. In ICDE, 2005.


