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Protein interaction network analyses have moved beyond simple topological ob-
servations to functional and evolutionary inferences based on the construction of
putative ancestral networks. Evolutionary studies of protein interaction networks
are generally derived from network comparisons, are limited in scope, or are the-
oretic dynamic models that aren’t contextualized to an organism’s specific genes.
A biologically faithful network evolution reconstruction which ties evolution of the
network itself to the actual genes of an organism would help fill in the evolution-
ary gaps between the gene network “snapshots” of evolution we have from different
species today. Here we present a novel framework for reverse engineering the evo-
lution of protein interaction networks of extant species using phylogenetic gene
trees and protein interaction data. We applied the framework to Saccharomyces
cerevisiae data and present topological trends in the evolutionary lineage of yeast.

1. Introduction

Among the tasks utilizing protein interaction networks (PIN) are inferences
of how the network itself evolved. With the availability of large-scale protein
interaction datasets'™®, the properties of these networks have been analyzed
and theoretical models of evolving networks have been produced which
incorporate some aspect of biological evolution in an effort to reproduce
properties observed in experimentally-derived networks”®.

Evolutionary PIN analysis has been widely explored in network com-
parisons which are based on the premise that disparate organisms share a
common ancestor’. Such comparisons generally elucidated protein func-
tion and predicted interactions. Protein interaction evolution has also
been studied through structures of protein complexes'®12. These meth-
ods have identified a number of important properties of protein interaction
evolution including the role self-interacting proteins play in forming com-
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plexes of paralogous proteins and the development of homologous protein
complexes through a stepwise progression of duplications of complex con-
stituents rather than via a single monolithic duplication event. Presser, et
al.'3 studied PIN evolution using a probabilistic model of motifs formed by
paralogous protein pairs born of the Whole Genome Duplication (WGD)
event in Saccharomyces cerevisiae’s evolutionary history. With the model
they found that self-interactions were prevalent in the motifs formed by pre-
WGD protein interactions. This study provides a probabilistic view of pre-
and post-WGD motifs. A few studies have provided an evolving view of
organism-contextualized protein interaction networks. Notably Vernon, et
al.'* reconstructed the interaction evolution of MADS domain MIKC-type
proteins, and Pinney, et al.'® reconstructed the bZIP family of transcription
factors.

Here we extend the ability to analyze evolutionary trajectories with a
novel framework which incorporates interaction data and phylogenetic gene
trees into an evolving view of the protein interaction networks of species
sharing the gene trees’ phylogeny. The framework meets three criteria
required to measure the evolutionary trajectory of some aspect of protein
interaction network evolution:

(1) The reconstruction evolves. It includes a modern network, an an-
cestral network, and transitions between them.

(2) The evolving PIN is associated with a specific organism. That is,
each vertex in the evolving network can be traced to an extant gene.

(3) The PIN encompasses the entire interactome.

Existing studies fail to meet all three criteria. Theoretical models are
decontextualized—each vertex in the model is simply a generic protein.
These models have no power to elucidate organismal evolution beyond iden-
tifying broad evolutionary processes which produce network characteristics
consistent with those of empirical networks. Comparative studies allow
functional and topological inferences, but are less informative of the evolu-
tion of the interaction network itself. The structural and stochastic studies
have identified important factors in interaction evolution, but do not in-
corporate them into the larger, network-level evolutionary context. Those
studies which have formed organism-specific, multi-step evolutionary views
of protein interaction networks have been isolated to individual protein
families.

In the following sections we introduce the framework, present some ini-
tial findings having applied it to the Saccharomyces cerevisiae lineage, and
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discuss possible future research the framework readily accommodates.

2. Evolutionary considerations

Gene duplication is readily accepted as a primary mechanism for generat-
ing organismal complexity. Two evolutionary mechanisms have been pro-
posed for the fate of gene duplicates: neofunctionalization and subfunc-
tionalization. Neofunctionalization posits that the functional redundancy
intrinsic to initially identical gene duplicates releases one duplicate from
selective pressure. While under neutral selection one of the duplicates can
accumulate random mutations and potentially acquire novel and beneficial
functions'®. Subfunctionalization states that both gene duplicates acquire
mutations resulting in each duplicate assuming a complementary subset of
the ancestral gene’s original functions'”. Gene duplication and subsequent
neofunctionalization and subfunctionalization have straightforward analogs
in models of protein interaction network (PIN) evolution. With proteins as
nodes, edges between proteins represent physical interactions and serve as
an indication of protein function. Proteins with identical sets of interact-
ing partners are presumed to have identical functions. Gene duplication is
modeled by copying a protein vertex in the network along with its inter-
actions. Neofunctionalization and subfunctionalization are modeled by the
gain and loss of interactions respectively.

The high false negative rate endemic of interaction data sets makes it dif-
ficult to distinguish neofunctionalization from subfunctionalization in PINs,
even with the availability of PIN data from several related species. We have
recently found that the established ubiquity of neofunctionalization was
based on three independent flaws: a bias against observing homodimers in
both yeast two-hybrid (Y2H) and affinity-purification mass-spectrometry
(AP-MS) high-throughput interaction assays, a failure to consider gene du-
plications of interacting partners subsequent to the duplication event under
analysis, and theoretical models unable to produce clustering coefficients
found in empirical protein interaction networks and biologically untenable
parameter requirements'®. In the absence of compelling evidence of ubig-
uitous de novo interaction formation, we include only the well-established
ubiquity of subfunctionalization!”19:20

The evolutionary dynamics integrated into the evolutionary framework
assume that interactions between paralogs arose via the duplication of a
self-interacting protein. If either paralog is homomeric, or if a paralogous
interaction exists between them, then the ancestral protein is assumed to

in our framework.
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Figure 1. Duplication of self-interacting proteins. (A) A self-interacting protein. (B)
When the self-interacting protein duplicates, a paralogous interaction is formed. Either
or both of the two self-interactions, or the paralogous interaction may be lost in evolution,
but any one of the three interactions is sufficient information to reconstitute the original
ancestral gene with a homomeric interaction.

be self-interacting (see Figure 1).

3. Methods

We now introduce our framework for reverse engineering the evolution of
an organism’s protein interaction network. To assist in the exposition, we
refer the reader to Figure 2 which graphically represents an example of the
entire framework.

3.1. Framework inputs

As the figure shows, there are three inputs (highlighted in yellow) the frame-
work requires. The first is a phylogenetic tree of the species subject to the
evolutionary reconstruction. Second are gene family trees reconciled against
the phylogenetic tree: trees describing each gene family’s speciations, du-
plications, and losses (not shown in figure). Figure 2 has been color-coded
to identify the portion of the phylogeny each phase of the reconstruction is
associated with (i.e., extant species, common ancestor, last common ances-
tor).

The third input is protein interaction data for the extant species present
in the phylogenetic tree. Semantically, all of the genes identified in the gene
trees comprise the nodes of a single large network. The edges of the network
may be drawn from the interaction data of more than one species. The
example in Figure 2 shows the genes for all three species, and interaction
data for two of the three species.

3.2. Evolutionary event identification

Prior to reverse-engineering the network evolution,t his phase simple pro-
cesses information found from the previously-published inputs. Each spe-
ciation, duplication, and loss event in the gene trees are associated with a
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node of the phylogenetic tree. In Figure 2, the evolutionary events iden-
tified from the gene trees are shown within the soft-cornered box running
down the center of the figure and are color-coded to the phylogenetic node
they are associated with.

3.3. Reverse engineering

The protein interaction network input is combined with the evolutionary
events generated in the previous step to reverse engineer the network evolu-
tion. The phylogenetic tree drives the ordering of the process. The extant
species leaves of the phylogenetic tree are processed first, followed by the
common ancestor nodes. The tree is iteratively “rolled up” until the last
common ancestor is reached.

With each phylogenetic node, the evolutionary events associated with
the node are applied to the protein interaction network. The evolutionary
events are reversed with respect to time. Note that each evolutionary event
identified previously describes an action on a single gene. A gene loss is
the loss of a single gene. A duplication event produces two genes from one.
Similarly, a gene speciation event produces two genes (one for each species)
from a single (common ancestor’s) gene. During reverse engineering, the
opposite action is taken. A gene loss becomes a gene gain. A duplication
or speciation event joins two separate genes into a single ancestral gene.

Paralogs which interact with the same neighbor are assumed to be
preserving a redundant ancestral function (see Figure 3). An interaction
present in only one paralog is presumed to have been genetically silenced
in the other paralog after duplication. As evolutionary events are reverse
engineered, the ancestor of each gene duplication acquires interactions with
all of the neighbors its paralogous progeny pair interact with (Figure 3B).

Running down the left side of Figure 2 is a complete example of re-
verse engineering network evolution. Starting with the extant species and
iterating through the phylogenetic tree, speciation and duplication events
are reversed to join nodes from the protein interaction network together®.
As proteins in the network are joined, the merged protein interacts with
the union of the set of neighbors each protein interacted with individually.
Later when the evolutionary re-creation is rolled forward and the merged
protein is again separated into two separate proteins, it will be necessary to
reproduce the sets of neighbors the separate proteins interact with. There-
fore as proteins are merged, the neighbors not included in each separate

2There are no gene loss evolutionary events in the example.
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Figure 3. Reverse engineering and forward evolutionary re-creation. For this example
assume a duplication event to duplicate gene G into G; and G2 was generated during
event identification (Section 3.2). (A) The extant protein interaction network. (B)
During reverse engineering, G1, G2, and their interactions are collapsed into a single gene
G. At this time the interactions to be lost after duplication are recorded. (C) Forward
evolutionary re-creation. After the gene and its interactions are duplicated (including a
paralogous interaction born of the self-interaction), the interaction losses recorded during
reverse engineering are processed. Note that speciation differs from gene duplication in
that a speciating self-interacting protein never produces a paralogous interaction between
species duplicates. Forward evolutionary re-creation naturally segments the last common
ancestor into species-specific components.

protein’s interacting neighbor set is recorded. Once reverse-engineering is
completed, the resulting network represents the last common ancestor’s
putative protein interaction network.

3.4. Forward evolution

Forward evolution in the framework begins with the last common ancestor’s
putative protein interaction network. The evolutionary events associated
with the last common ancestor are processed first, followed by iteratively
moving through the phylogenetic tree until the evolutionary events of the
extant species are processed. Network nodes and interactions are dupli-
cated, and the interaction losses are removed (Figure 3C). The lost interac-
tions for each duplication and speciation event are recorded during reverse
engineering process. Because redundant interactions have been found to

19.20 " redundant interactions are

diverge rapidly between paralogous genes
removed immediately after the duplication event (i.e., prior to the next
speciation event in the phylogenetic tree.

Figure 2 shows a complete example of the forward evolutionary re-

creation running up the right side of the figure. The end of the forward
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evolutionary re-creation recapitulates the protein interaction network used
at the beginning of the reverse-engineering process.

4. Results

We implemented our framework in Python and ran it on a standard PC
running Linux. For the protein interaction framework input we com-
bined multi-validated protein interactions?’ and high confidence interac-
tions culled from a genome-wide in vivo screen using a protein-fragment
complementation assay (PCA)?2. Both data sets are Saccharomyces cere-
visiae interactions

The phylogenetic tree and gene tree inputs were drawn from a study
which generated 25,408 gene trees reconciled against a phylogeny of 19
species of Ascomycota fungi®® P.

The Evolutionary Event Identification phase generated 103,091 gene
loss events, 7,711 gene duplication events, and 84,167 speciation events
among the 19 species. The protein interaction network included 117,286
individual genes spread across 19 yeast species. Protein interaction input
included only Saccharomyces cerevisiae so the vertices in the protein inter-
action network associated with the other species were not connected. The
Saccharomyces cerevisiae vertices contain 5,780 genes, 4,052 of them in the
largest component, and 12,341 edges, of which 12,241 are contained in the
largest component. From this network, and the evolutionary events created
previously, the evolving network was reconstituted.

The evolutionary reconstruction requires no computationally difficult
algorithms. With the stated inputs and implementation the entire recon-
struction runs in under half an hour.

Figure 4 illustrates the effect the forward evolutionary re-creation has on
the evolutionary trajectories of the average degree and clustering coefficient.
The average degree does not include self-interactions in the count. Self-
interactions are absent from the Vézquez, et al. model, and omitting them
from degree calculations is consistent with other protein interaction network
analyses.

The plot has been highlighted between timesteps 5 and 6, indicating
the time period within which the whole-genome duplication event occurred
during Saccharomyces cerevisiae’s evolution?4. The curves are flat beyond
timestep 6 indicating an absence of further duplication or loss events.

bWe utilized an updated and expanded data set acquired from Ref. 23’s companion Web
site.



Pacific Symposium on Biocomputing 14:190-202 (2009)

September 24, 2008 0:53 Proceedings Trim Size: 9in x 6in gibson

Figure 4A shows that the average degree decreases during evolution.
Intuitively we might expect that as network vertices become less well-
connected with their neighbors, they would become less clustered as well.
However, Figure 4B indicates that the clustering coefficient increases.
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Figure 4. Basic topological properties of the evolving protein interaction network. The
solid line is the evolutionary re-creation of Saccharomyces cerevisiae. The dashed line
is the Vazquez, et al*.model of protein interaction network evolution. The grey bar
between timepoints 5 and 6 represent the evolutionary period within which the whole-
genome duplication event occurred. (A) Average degree of the large component. (B)
Clustering coefficient of the large component.

We next tracked the same topological values in an implementation of
the Vazquez, et al.® theoretical model. Viazquez, et al. was selected be-
cause it reflects the principles of gene duplication, subfunctionalization, and
homomeric duplication central to our framework. It is also appropriate as
the model generates high clusterings consistent with empirical networks.
Other theoretical models, in particular that of Solé, et al.” are unable to
attain high clusterings and do not specifically address evolution of self-
interactions'®.

To eliminate biases introduced by seed graphs?®, the theoretical model
was seeded with the ancestral network which begins the forward evolu-
tionary re-creation. The topological values of the theoretical model were
measured each time the number of proteins in the model equaled that of
the evolutionary re-creation at the same timepoint.
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The Vazquez, et al. model takes two parameters: p, the probability of
adding an edge between protein duplicates (i.e., probability of duplicating
a self-interacting protein), and ¢, the probability of a redundant edge being
lost from either the progeny or progenitor genes due to subfunctionalization.
The parameter values were selected based on the number of paralogous
interactions which survived duplication of a self-interacting protein in the
evolutionary re-creation itself (p = 0.98,¢ = 0.046). The theoretical model
was run 1,000 times and the mean of their topological values plotted.

Figure 4A shows that the theoretical model produces a similar reduc-
tion in the average degree as in the evolutionary re-creation. However,
as Figure 4B shows, the clustering coefficient decreases with the addi-
tion of new genes. The parameter values published by Vazquez, et al.®
(p =0.7,¢ = 0.1) produced similar curves (data not shown).

5. Discussion

The evolutionary framework provides a novel, dynamic view of an organ-
ism’s protein interaction network. Previous efforts have identified the in-
fluence of evolution on topologically-relevant factors (e.g., self-interacting
proteins), and the few which have measured the evolution of protein in-
teraction networks across several evolutionary periods have been isolated
to small subnetworks. Despite the dynamic nature of theoretical models,
theoretical model validation has commonly involved post hoc analysis of
the generated network. A comparison of the evolutionary trajectories of
Vézquez, et al.® and the yeast evolutionary re-creation reveal that while
in both models the proteins on average interact with fewer neighbors over
time, the yeast evolution generates higher clustering while the clustering
is reduced in the theoretical model. This is of particular interest due to
the high clustering levels found in empirically-derived protein interaction
networks'® 726728 These results suggest that surviving gene duplicates are
not distributed randomly throughout the interactome.

The framework may also provide some inferential power to species for
which interaction data is not available but are nonetheless represented in
the re-creation by phylogenetic gene trees. Under these conditions the
species’ genes are represented in the network as zero-degree vertices. As
the gene duplication, speciation, and loss events are reverse-engineered,
the ancestors of these genes interact with other ancestral genes based on
interaction data available from other species. For example, the ancestral
genes « and [ in Figure 2 acquire interactions based on interaction data of
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other species.

As the evolutionary re-creation moves forward in evolutionary time,
these genes speciate, duplicate and ultimately lose all ancestral interactions
to return to their non-interacting empirical state. To construct initial in-
ferences on genes or entire species which are lacking interaction data, inter-
action losses associated with gene duplication and speciation events can be
selectively suppressed. For species in the phylogenetic tree without interac-
tion data, this amounts to creating a first-pass putative interaction network
based on homologous data sets. Though the inferred network surely con-
tains false positives, the candidate set of interactions have novel derivation.
Specifically, the putative network is derived directly from the last common
ancestor rather than solely, for example, sequence similarity with homol-
ogous genes2’,
product of the gene duplication and loss events. This effectively combines

Putative interactions produced from the re-creation are a

the homology-based prediction of interactions?® with parameters derived
from networks of species included in the phylogeny input. Indeed, sub-
sequent development of the framework should include a comparison with
homology-based predictions.

Another area for subsequent exploration is the framework’s assumption
that all interactions arise through subfunctionalization. Although it has
been suggested that the de novo acquisition of interactions is not a com-
mon occurrence'®, de novo interactions can not be completely ruled out.
One possibility is the development of an an error model to handle this
uncertainty.

As with all network analyses, the utility of the framework relies in part
on the quality of the interaction data. Generally, high-confidence data sets
eliminate false-positives at the expense of reduced coverage3?. However, as
disparate protein interaction datasets from different species are combined
into common ancestors, ancestral networks benefit from wider coverage
than the individual data sets provide.

The framework presented here reinvigorates the study of network evolu-
tion. Differences in topological properties, development of motifs, and the
development of functional modules are just a few of areas that may now be
analyzed in the context of their evolutionary trajectories. The framework
provides new opportunities to analyze both the evolutionary trajectory of
a single species as well as processes through which network features diverge
between different species. As phylogenetic gene trees come available for a
wider range of species, and additional interaction sets are published, evolu-
tionary network re-creations contextualized to specific species will become
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increasingly valuable.
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