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Abs t rac t 
This paper presents a simple logical framework for ab­
duction, wi th probabilities associated wi th hypotheses. 
The language is an extension to pure Prolog, and it 
has straight-forward implementations using branch and 
bound search wi th either logic-programming technology 
or ATMS technology. The main focus of this paper is 
arguing for a form of representational adequacy of this 
very simple system for diagnostic reasoning. It is shown 
how it can represent model-based knowledge, wi th and 
without faults, and wi th and without non-intermittency 
assumptions. It is also shown how this representation 
can represent any probabilistic knowledge representable 
in a Bayesian belief network. 

1 I n t r o d u c t i o n 
Determining what is in a system from observations (di­
agnosis and recognition) are an important part of A l . 
There have been many logic-based proposals of what a 
diagnosis is [Reiter, 1987; de Kleer and Will iams, 1987; 
Poole, 1989; de Kleer et al., 1990]. One problem with 
these proposals is that for any problem of a reasonable 
size there are far too many "logical possibilities" to han­
dle (for a human or a computer). For example, when 
considering fault models [de Kleer and Wil l iams, 1989; 
Poole, 1989], there is almost always an exponential num-
ber of logical possibilities (e.g., each component could be 
in its normal state or in the abnormal unknown state). 
For practical problems, we find that many of the log­
ically possible diagnoses are so unlikely that it is not 
worth considering them. There is a problem, however, 
in removing the unlikely possibilities a priori: it may 
happen that the unlikely occurrence is the actual t ru th 
in the world. 

Such analysis of the combinatorial explosions would 
tend to suggest that we need to take into account prob­
abilities of the diagnoses [de Kleer and Wil l iams, 1987; 
Peng and Reggia, 1990; Neufeld and Poole, 1987], and 
not generate the unlikely diagnoses. Similar experi­
ence has been found in natural language understanding 
[Hobbs et a/., 1988; Goldman and Charniak, 1988]. 

Probabilistic models of diagnostic reasoning [Pearl, 
1988; Heckerman and Horvitz, 1990; Andreassen et al., 
1987], being purely propositional by nature, do not 
have the modelling power of the logic-based models. 

This paper points to one direction in which probabilis­
tic diagnostic frameworks can be extended to a non-
prop ositional form. 

This paper presents a very simple form of abduction, 
where the background knowledge is Horn, and the as­
sumptions are atomic. Associated wi th hypotheses are 
probabilities. The main features of the approach are: 

• We are trying to carry out a empirical study of auto­
mated reasoning. In order to carry this out we try 
to determine where very simple frameworks work 
and fail. The best way to show that we need cer­
tain features is to t ry to do without them. It is in 
this spirit that we try to use the simplest frame-
work that seems plausible, and only add features 
when they can be demonstrated to be needed. 

• We are try ing to get a good compromise between 
representational (epistemic) adequacy and proce­
dural (heuristic) adequacy [McCarthy and Hayes, 
1969]. 

• As a prima facie case for representational adequacy, 
we note that the language incorporates pure Pro-
log as a special case, and also an ATMS 1 [Reiter 
and de Kleer, 1987], and the language can repre­
sent any probabilistic information that can be rep­
resented in a Bayes net [Pearl, 1988] (see section 4). 
We also demonstrate representational adequacy by 
showing how some common diagnostic representa­
tional problems can be represented in this frame-
work. The representational adequacy can only be 
verified empirically, and we are currently trying to 
test the framework on a variety of problems. 

• It is straight forward to implemented using either 
logic programming [Poole, 1991a] or ATMS [de 
Kleer, 1986] technology. In this paper we use a 
specification of what is to be implemented that is 
independent of the actual implementation strategy 
used. Once we have the specification of what, it is 
we want to compute, we can then compare differ­
ent implementation strategies to determine which is 
more efficient in space and/or time. 

1 Note that we are using the assumption based framework 
as the object language and not as a book keeping mechanism 
for a problem solver. 
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In all of the implementations, we do not generate the 
unlikely explanations unless we need to. Hopefully 
we can cut down on the combinatorial explosions 
that are inherent in considering the set of all logi­
cally possible explanations, but this is beyond the 
scope of this paper. 

2 T h e S y s t e m 

2.1 A b d u c t i v e F r a m e w o r k 

The formulation of abduction used is in terms of Theorist 
[Poole et al., 1987; Poole, 1987]. 

Given a language L, and a consequence relation (wri t­
ten on L, and an abductive scheme is a pair (F,H) 
where F and H are sets of sentences in L. 

D e f i n i t i o n 2.1 [Poole et al., 1987; Poole, 1987] If g is 
a ground formula, an e x p l a n a t i o n of g from (F, H) is a 
set such that 

where is an atom representing false. The first condi­
tion says that, D is a sufficient cause for obs, and the 
second says that D is possible (i.e., is consistent). 

D e f i n i t i o n 2.2 A m i n i m a l e x p l a n a t i o n of g is an ex­
planation of g such that no strict subset is also an ex­
planation. 

Associated wi th each minimal explanation D, is a 
measure [Neufeld and Poole, 1987]. This measure 
could be an assumption cost that is added [Hobbs et a/., 
1988], but in this paper we investigate the use of proba­
bi l i ty as a measure over explanations. 

2.2 P r o b a b i l i s t i c H o r n a b d u c t i o n 

In probabilistic Horn abduction we restrict the language 
L to be Horn clauses. 

We use the normal Prolog definition of an atomic sym­
bol [Lloyd, 1987]. A Horn clause is of the form: 

where a and each a, are atomic symbols, false is a special 
atomic symbol that is not true in any interpretation2. 
A l l variables in F are assumed universally quantified. 

We restrict the elements of H to be ground instances 
of atoms. If we are given a set of open atoms as possible 
hypotheses we mean the the set of ground instances of 
these atoms. 

2Notice that we are using Horn clauses differently from 
how Prolog uses Horn clauses. In Prolog, the database con­
sists of definite clauses, and the queries provide the negative 
clauses [Lloyd, 1987]. Here the database consists of definite 
and negative clauses, and we build a constructive proof of an 
observation. 

2.3 P robab i l i t i e s 
The measure we use is the probabil i ty of the explanation. 

Associated wi th each possible hypothesis (i.e., with 
each ground instance of an open possible hypothesis) is 
a prior probability. The aim is to compute the posterior 
probabil i ty of the explanations given the observations. 
Abduction gives us what we want to compute the prob­
abi l i ty of and probability theory gives a measure over 
the explanations [Neufeld and Poole, 1987]. 

We use the declaration 

assumable(h,p). 

where h can contain free variables, to mean each ground 
instance of h is in H wi th prior probability p. 

To compute the posterior probabil i ty of an explana­
tion given observation obs, we use Bayes 
rule and the fact that P(obs\H) = 1 as the explanation 
logically implies the observation: 

The value, P(obs) is the prior probabil i ty of the obser­
vation, and is a constant factor for all explanations. We 
compute the prior probabil i ty of the conjunction of the 
hypotheses using: 

The value of forms a recursive call, 
wi th P(true) = 1. The only other thing that we need to 
compute is 

The first thing to notice is that if hn is inconsistent with 
the other hypotheses, then its probabil i ty is zero. These 
are exactly the cases that are removed by the incon­
sistency check. Similarly if hn is implied be the other 
hypotheses, its probabil ity is one. This wi l l never be the 
case if the explanations are minimal. While any method 
can be used to compute this conditional probability, the 
assumption of conditional independence is often an ap­
propriate assumption in many domains [de Kleer and 
Wil l iams, 1987; Peng and Reggia, 1990]. We make this 
assumption here and in later sections we show how to al­
low arbitrary probabilistic interactions, without chang­
ing the underlying system. The system uses the following 
assumption: 

A s s u m p t i o n 2.3 Logically independent instances of 
hypotheses are probabilistically independent. 

D e f i n i t i o n 2.4 A set H of hypotheses are log ica l ly i n ­
dependen t (given F) if there is no and 
such that 

The assumptions in a minimal explanation are always 
logically independent. Minimal i ty ensures that no hy­
pothesis in an explanation can be implied by other hy­
potheses in the explanation. Consistency ensures the 
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negation of a hypothesis cannot be implied by other hy-
potheses. 

Under assumption 2.3, if are part of a min-
imal explanation, then 

thus  

To compute the prior of the explanation we mult iply the 
priors of the hypotheses. The posterior probability of 
the explanation is proportional to this. 

One problem that arises is in determining the value of 
P(obs). 

When using abduction we often assume that the di­
agnoses are covering. This can be a valid assumption 
if we have anticipated all eventualities, and the observa­
tions are wi th in the domain of the expected observations 
(usually if this assumption is violated there are no ex­
planations). This is also supported by recent attempts 
at a completion semantics for abduction [Poole, 1988; 
Console et al., 1989; Konolige, 1990]. The results show 
how abduction can be considered as deduction on the 
"closure" of the knowledge base that includes statements 
that the given causes are the only causes. The closure 
implies the observation are logically equivalent to the 
disjunct of its explanations. We make this assumption 
explicit here: 

A s s u m p t i o n 2.5 The diagnoses are covering. 

For the probabilistic calculation we make an additional 
assumption: 

A s s u m p t i o n 2.6 The diagnoses are disjoint (mutually 
exclusive). 

It turns out to be straightforward to ensure that these 
properties hold, for observations that we can anticipate3. 
We make sure that the rules for each possible subgoal are 
disjoint and covering (see section 3.1). 

Under these assumptions, if {e 1 , . . . ,en} is the set of all 
explanations of obs: 

2.4 I m p l e m e n t a t i o n 
The very simple definition of the framework makes im­
plementation straight forward (although some difficult 
problems do arise in t ry ing to make it very efficient). 
We are currently experimenting wi th implementations 
based on Logic programming technology and based on 
ATMS technology (similar to [de Kleer and Will iams, 
1989]). Both implementations keep a priority queue of 
sets of hypotheses that could be extended into explana­
tions ("part ial explanations"). At any time the set of all 
the explanations is the set of already generated expla­
nations, plus those explanations that can be generated 

3Like other systems (e.g., [Pearl, 1988]), we have to as­
sume that unanticipated observations are irrelevant. 

from the partial explanations in the priority queue. It 
is possible to put a bound on the probabil i ty mass in 
the queue, and this allows us to estimate errors on the 
results before the computation is completed (forming an 
"anytime" algorithm). See [Poole, 1991b] for details. 

The difference between these two represents a differ­
ence between "interpreted" and "compiled" approaches 
[Reiter and de Kleer, 1987]. As far as the rest of the 
paper is concerned, it is irrelevant as to how the system 
is implemented. Given a specification of what it is we 
want to compute we can now experiment with trade-offs 
between various implementation strategies. 

Note that the problem is NP-complete [Provan, 1988], 
thus we are never going to expect efficient polynomial 
worst-case algorithms. The best we can expect is good 
average-case behaviour; but this is, of course, what we 
are interested in. 

3 R e p r e s e n t a t i o n a l M e t h o d o l o g y 

Once we have a tool, it is important to know how to 
use it. The problem of a representational methodology 
[Poole, 1990] is an important and much overlooked part 
of automated reasoning research. 

It may seem that the assumptions used in designing 
the system were so restrictive that the system would be 
useless for real problems. In this section, I argue that 
this is not the case. 

3.1 D i s j o i n t and C o v e r i n g E x p l a n a t i o n s 
For our probabilistic analysis (section 2.3), we assumed 
that the explanations were disjoint and covering. If we 
want our probabilities to be correct4, we must ensure 
that the explanations are disjoint and covering. 

If the rules for an atom a are not covering, we 
can invent another cause for the goal representing "all 
the other possible causes" of the atom [de Kleer and 
Will iams, 1989; Poole, 1989], and add 

assumable( some _other_reason_for_a,p). 
Where p is the prior probabil i ty that something else 
would have caused a. 

We can locally ensure that any explanations gener­
ated are disjoint. The following proposition can be easily 
proved: 
P r o p o s i t i o n 3.1 If for any two rules wi th the same con­
sequent and the antecedents are in­
consistent then the minimal 
explanation are disjoint. 

Although disjointedness of explanations places a re­
striction on the knowledge base, it does not place a re­
striction on the sorts of knowledge that we can represent. 
In general, if we have rules 

4 It may be the case that they are "good enough" for any 
decisions that we may want to make, even though they are 
not accurate. 

Poole 1131 



these can be made disjoint by adding hypotheses 
h1,..., hn to the rules 

and making sure these rules are disjoint by having, for 
each different i and j , the fact 

false  

We need to associate a probabil i ty w i th each hypoth­
esis such that This probability represents 
the probability that the particular body was "the cause" 
for a. 

Sometimes we can make the rules naturally disjoint, 
by ordering the rules and making sure that the bodies of 
rules are false if the bodies of previous rules are true. 
E x a m p l e 3.2 Suppose we want to represent an "and-
gate" that should have value 0 if either of the inputs are 
zero. Suppose we represent the proposition that port 
G has output V at time T as val(G, V, T). We can en­
sure that the explanations are disjoint locally by ensur­
ing that only one body can ever be true: 

This has repercussions in biasing the most likely ex­
planation to the first rule which is more general than 
the others. To make it more fair the first rule could 
be split into two cases depending on the value of in­
put 2. This problem of the most likely diagnosis de­
pending on the representation seems endemic to ap­
proaches that t ry to find the diagnosis (either explana­
tion or interpretation) that is "most likely" [Pearl, 1988; 
Poole and Pro van, 1990]. 

3.2 P a r a m e t r i z i n g Hypo theses 
The next important part of the methodology for ab­
duction concerns parametrizing possible hypotheses and 
the interaction wi th the independence assumption. I 
have argued elsewhere [Poole, 1989; Poole, 1990] that 
there is much power obtainable and subtlety involved in 
parametrizing hypotheses appropriately.In this section 
we expand on previous analysis [Poole, 1990], and show 
how probabilities affect parametrization considerations 
by considering some case studies on different proposals. 

3.2.1 Hypo theses w i t h i n d e t e r m i n a t e o u t p u t 
As an example, suppose we have a gate G that takes 

two values as input, and outputs a value that can be in 
the range 1 to n. Suppose we want to represent the gate 
being in an unknown state (this is applicable whether or 

not we have fault models [de Kleer and Wil l iams, 1989; 
Poole, 1989]). Suppose we represent the proposition that 
gate G has output V at t ime T as val(G, V, T). 

We cannot representing the hypothesis that the gate 
is in the unknown state by using the hypothesis u(G) 
and the fact 

The problem is that the above fact states that a gate in 
the unknown state produces all values of output, rather 
than saying that it produces some output. Knowing a 
gate is in an unknown state does not imply any value for 
the output. 

When there are no probabilities involved [Poole, 1990; 
Poole, 1989] we parametrize the hypothesis by the values 
on which it depends. This could be done by having the 
hypothesis produces(G, V, T) and the rule 

We would say that a port has only one value at a time 
by having the constraint 

Suppose we know that gate g\ has probabil i ty e of 
being in the unknown state. If we assume that each 
possible output value has equal chance, and that there 
are n possible output values, then the prior probability 
that it produces output value V is  

When we have more than one observation, there is 
another problem. For the probabilities we assumed that 
the hypotheses were independent. We would not expect 
that 

Once we know that the gate is in an unknown state at 
time t1 it should not be so unlikely that it is in an un­
known state at time t2. Put another way, once we have 
paid the price once for assuming that the gate is in an 
unknown state at time t\ we should not pay the price 
again for assuming that it is in an unknown state at 
time t2. 

To work in general, we need a mixture of the above two 
ideas. Suppose a gate G has probabil ity of c of being in 
the unknown state, and that there are n possible output 
values, each of which has an equal prior chance of being 
produced by a gate in the unknown state. This can be 
represented as the hypotheses 

and the rule 

u(G) means G is in the unknown state, and 
produces(G, V, T) means that given gate G is broken, 
it produces value V at t ime T. We assume once that 
the gate is broken, and then make other assumptions of 
what values it is producing at different times. 
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It is interesting to note that this analysis of dividing 
by n can be done when building the knowledge base and 
does not need to be carried out dynamically (as [de Kleer 
and Wil l iams, 1989] seem to need to do ). This means 
that distributions other than the uniform distribution 
can be given if appropriate. 

3.2.2 I n t e r m i t t e n t versus n o n - i n t e r m i t t e n t 
fau l t s 

Because of the way we parametrized the hypotheses, 
the above representation of faults says that the out­
put is only a function of the time. The hypothesis 
prod(G, V, T) and the above rules places no constraints 
on the values of the outputs at different times. This is 
a way to represent the fact that the gate can have an 
intermittent fault ( i t depends only on the time of ob­
servation). There is no constraint that says the gate 
produces the same output when given the same inputs 
at different times. 

We can give the non-intermittency assumption by say­
ing that the fault only depends on the input and not 
on the time. This can be done instead by having the 
hypothesis (meaning gate G produces 
output V when given I\ and I2 as input) and a rule 

W i t h the same integrity constraint as before, it is in­
consistent to assume that the gate has different outputs 
for the same input. 

3.3 Causa t i on events 
When using abduction we run into the problem of a cause 
not actually implying a symptom. For example, having 
a cold does not imply sneezing, but could cause sneezing. 
To implement this idea we introduce another hypothesis 
that the cold caused the sneezing. This idea is analogous 
to the notion of a "causation event" of Peng and Reggia 
[1990]. 

To implement the causation events, we can use 
the relations has jdisease(D) to mean that the pa­
tient has disease D; actually_jcauses(D,M) to mean 
that disease D "actually caused" manifestation M; and 
has_manifestation(M) to mean that the patient has 
manifestation M. 

We can say that a manifestation is caused by the dis­
ease that actually causes it by: 

has_nanifestation(M)  

We can use the rule to say that there is only one actual 
cause of a manifestation by: 

false  

This rule ensures that the explanations for having a 
manifestation are disjoint. 

The conjunction 

corresponds to Peng and Reggia [l990]'s causation event 
M : D. The completion semantics of abduction [Poole, 
1988; Console et al., 1989; Konolige, 1990] show that, un­
der the covering explanation assumption, we implici t ly 
have the relationship 

We have the possible hypothesis 

where pij is the "conditional causal probabil i ty" ("causal 
strength") of [Peng and Reggia, 1990]. It can be seen 
as the fraction of the cases of d,- being true that mj is 
actually caused by d i. 

We also have the possible hypotheses 

where pi is the prior probability of the disease di. 

4 R e p r e s e n t i n g B a y e s i a n n e t w o r k s 

In this section we give the relationship between Bayesian 
networks and our probabilistic abduction. The analysis 
here is, in some sense, the dual of the analysis given by 
Charniak and Shimony [1990]. We show how any proba­
bilistic knowledge that can be represented in a Bayesian 
network, can be represented in our formalism. 

Suppose we have a Bayes net wi th random variables 
such that random variable a, can have values 

We wi l l represent random variable a, hav­
ing value Vij as the proposition  

The first thing we need to do is to state that the values 
of variables are mutually exclusive. For each t and for 
each j, k such that we have the rule 

A Bayes net [Pearl, 1988] is a directed acyclic network 
where the nodes represent random variables, and the arcs 
represent a directly influencing relation. Terminal nodes 
of a Bayes net are those variables that do not influence 
any other variables. A composite belief [Pearl, 1987] is 
an assignment of a value to every random variable. 

Suppose variable a is directly influenced by variables 
b1,..., bm in a Bayes network. This can represented in 
our system by the rule: 

Here the intended interpretation of 

is that a has value V because b1 has value V1,..., and bm 
has value Vm. 

Associated wi th the Bayes net is a contingency table 
[Pearl, 1988] which gives the marginal probabilities of the 
values of a depending on the values of b1, . . . ,bm . This 
wi l l consist of probabilities of the form 
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This is translated into the assertion 

The following propositions can be proved [Poole, 
1991b]: 
L e m m a 4.1 The minimal explanations of the terminal 
variables having particular values correspond to the com­
posite beliefs in the Bayes net wi th the terminals having 
those values. The priors for the explanations and the 
composite beliefs are identical. 

As the same procedure can be used to get from the 
priors of composite hypotheses and explanations to the 
posteriors given some observations, the following theo-
rem is a direct corollary of lemma 4.1. 
T h e o r e m 4.2 If the observed variables include all ter­
minal variables, the composite beliefs wi th the observed 
variables having particular values correspond exactly to 
the explanations of the observations, and wi th the same 
posterior probability. 

If the observed variables do not include all terminal 
values, we need to decide what it is that we want the 
probabil i ty of [Poole and Provan, 1990]. If we want to 
commit to the value of all variables, as in the composite 
belief of Pearl [1988], then we consider the set of possible 
observations that include assigning values to terminal 
nodes. That is, if o was our observation that did not not 
include observing a value for variables a,, then we need 
to consider the observations 
To find the accurate probabilities we need to normalise 
over the sum of all of the explanations. Whether or not 
we want to do this is debatable. 

It is not only the probabil i ty of a composite hypothesis 
that has a characterisation in terms of explanations. 

Let expl(a) be the set of minimal explanations of 
proposition a. Define 

L e m m a 4.3 If If is a set of assignments to variables in a 
Bayesian Network, and H' is the analogous propositions 
to H in the corresponding probabilistic Horn abduction 
system, then  

A simple corollary of the above lemma can be used 
to determine the posterior probability of a hypothesis 
based on some observations: 
T h e o r e m 4.4 

The denominator can be obtained by finding the ex­
planations of the observations (or can be approximated 
by finding some of the explanations that cover some 
proposition of the probabil i ty mass). The numerators 
can be obtained by explaining from these expla­
nations (see [Poole, 1991a]). 

What is important about the comparison wi th the 
Bayes net is that any probabil i ty distr ibution that can 
be represented as a Bayes net can be represented using 
the probabilistic Horn abduction. The opposite is not 
the case, however, because our Horn abduction is not 
restricted to a propositional language. 

5 C o m p a r i s o n w i t h o t h e r d i a g n o s t i c 
s y s t e m s 

The closest work to that presented here, namely the work 
of de Kleer and Wil l iams [1987; 1989] and Peng and Reg-
gia [1990], both incorporate probabilistic knowledge to 
find the most likely diagnoses. 

5.1 de K l e e r a n d W i l l i a m s 
de Kleer and Wil l iams [1987; 1989] have explored the 
idea of using probabilistic information in consistency-
based diagnosis (see [Poole, 1988; Poole, 1989; Console 
et a/., 1989; Konolige, 1990] for comparisons between 
abductive and consistency-based diagnoses). 

They differ from us in what they compute the prob­
abil i ty of. de Kleer and Wil l iams are finding the most 
likely interpretations (this is the same as the diagnoses 
of Peng and Reggia [1990] and the composite beliefs of 
Pearl [1987], but is different to the kernel or minimal di­
agnoses of de Kleer, Mackworth and Reiter [1990]). We 
are computing the most likely explanations; we want to 
remain agnostic about the value of the irrelevant hy­
potheses, de Kleer and Wil l iams cannot distinguish be­
tween the remaining diagnoses that differ in substantial 
ways from the most likely interpretation, and those that 
differ only in varying values that are irrelevant to the 
diagnosis. In our system, hypotheses that are not part 
of an explanation are ignored, and play no part in the 
probability of a diagnosis. 

We differ in the use of the assumption-based frame-
work. We are using the assumption-based reasoning, 
wi th variables, as the object language. They use the 
ATMS as a book keeping mechanism for their diagnostic 
engine. 

5.2 P e n g a n d Regg ia 
Peng and Reggia [1990] also consider an abductive def­
init ion of diagnosis and incorporate probabilities, and 
best-first search. Like [de Kleer and Will iams, 1989; 
Pearl, 1987] they are t ry ing to find probabilities of in­
terpretations. We also do not assume that the set of 
manifestations is complete. The main difference, how­
ever, is in the underlying language. They use the notion 
of "hyper-bipart i te" graphs made up of causation rela­
tions on sets of manifestations (can be observed), dis­
orders (can be hypothesised), and pathological states. 
We, however, allow the ful l power of Horn clauses. We 
can represent the probabilistic knowledge of Peng and 
Reggia (see section 3.3). 

6 C o n c l u s i o n 

This paper presented a simple but powerful mechanism 
for diagnostic reasoning and showed how it can be used 
to solve diagnostic representation problems. One main 
advantage of the simple specification of what we want 
to compute is that we can investigate different imple­
mentation techniques to determine which works best in 
practice. 

One question that needs to be asked is whether a set 
of most likely explanations is really what we want to 
compute [Poole and Provan, 1990]. We conjecture that 

1134 Qualitative Reasoning 



for real problems, the probabil i ty mass of the most likely 
explanations wil l be so close to one to make the question 
moot. By ignoring the large number of very unlikely 
explanations, we wi l l not make many mistakes. Whether 
this is true in practice remains to be seen. 

We are also investigating the use of the abductive 
framework for differential diagnoses, and for making de­
cisions, but that is beyond the scope of this paper. 
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