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Abstract

We address the problem of communicating do-
main knowledge from a user to the designer of
a clustering algorithm. We propose a protocol
in which the user provides a clustering of a rel-
atively small random sample of a data set. The
algorithm designer then uses that sample to come
up with a data representation under which k-
means clustering results in a clustering (of the
full data set) that is aligned with the user’s clus-
tering. We provide a formal statistical model for
analyzing the sample complexity of learning a
clustering representation with this paradigm. We
then introduce a notion of capacity of a class of
possible representations, in the spirit of the VC-
dimension, showing that classes of representa-
tions that have finite such dimension can be suc-
cessfully learned with sample size error bounds,
and end our discussion with an analysis of that
dimension for classes of representations induced
by linear embeddings.

1 INTRODUCTION

Clustering can be thought as the task of automatically di-
viding a set of objects into “coherent” subsets. This defi-
nition is not concrete, but its vagueness allows it to serve
as an umbrella term for a wide diversity of algorithmic
paradigms. Clustering algorithms are being routinely ap-
plied in a huge variety of fields.

Given a dataset that needs to be clustered for some applica-
tion, one can choose among a variety of different clustering
algorithms, along with different pre-processing techniques,
that are likely to result in dramatically different answers.
It is therefore critical to incorporate prior knowledge about
the data and the intended semantics of the clustering into
the process of picking a clustering algorithm (or, clustering
model selection). Regretfully, there seem to be no system-

atic tool for incorporation of domain expertise for cluster-
ing model selection, and such decisions are usually being
made in embarrassingly ad hoc ways. This paper aims to
address that critical deficiency in a formal statistical frame-
work.

We approach the challenge by considering a scenario in
which the domain expert (i.e., the intended user of the clus-
tering) conveys her domain knowledge by providing a clus-
tering of a small random subset of her data set. For exam-
ple, consider a big customer service center that wishes to
cluster incoming requests into groups to streamline their
handling. Since the data base of requests is too large to
be organized manually, the service center wishes to em-
ploy a clustering program. As the clustering designer, we
would then ask the service center to pick a random sam-
ple of requests, manually cluster them, and show us the
resulting grouping of that sample. The clustering tool then
uses that sample clustering to pick a clustering method that,
when applied to the full data set, will result in a cluster-
ing that follows the patterns demonstrated by that sample
clustering. We address this paradigm from a statistical ma-
chine learning perspective. Aiming to achieve generaliza-
tion guaranties for such an approach, it is essential to intro-
duce some inductive bias. We do that by restricting the
clustering algorithm to a predetermined hypothesis class
(or a set of concrete clustering algorithms).

In a recent Dagstuhl workshop, Blum (2014) proposed to
do that by fixing a clustering algorithm, say k-means, and
searching for a metric over the data under which k-means
optimization yields a clustering that agrees with the train-
ing sample clustering. One should note that, given any do-
main set X , for any k-partitioning P of X , there exists
some distance function dP over X such that P is the op-
timal k-means clustering solution to the input (X, dP )1.
Consequently, to protect against potential overfitting, the
class of potential distance functions should be constrained.
In this paper, we provide (apparently the first) concrete for-
mal framework for such a paradigm, as well as a general-
ization analysis of this approach.

1This property is sometimes called k-Richness



In this work we focus on center based clustering - an im-
portant class of clustering algorithms. In these algorithms,
the goal is to find a set of “centers” (or prototypes), and
the clusters are the Voronoi cells induced by this set of
centers. The objective of such a clustering is to minimize
the expected value of some monotonically increasing func-
tion of the distances of points to their cluster centers. The
k–means clustering objective is arguably the most popular
clustering paradigm in this class. Currently, center-based
clustering tools lack a vehicle for incorporating domain ex-
pertise. Domain knowledge is usually taken into account
only through an ad hoc choice of input data representa-
tion. Regretfully, it might not be realistic to require the do-
main expert to translate sufficiently elaborate task-relevant
knowledge into hand-crafted features.

As a model for learning representations, we assume that the
user-desirable clustering can be approximated by first map-
ping the sample to some Euclidean (or Hilbert) space and
then performing k-means clustering in the mapped space
(or equivalently, replacing the input data metric by some
kernel and performing center-based clustering with respect
to that kernel). However, the clustering algorithm is sup-
posed to learn a suitable mapping based on the given sam-
ple clustering.

The main question addressed in this work is that of the sam-
ple complexity: what is the size of a sample, to be clustered
by the domain expert, that suffices for finding a close-to-
optimal mapping (i.e., a mapping that generalizes well on
the test data)? Intuitively, this sample complexity depends
on the richness of the class of potential mappings that the
algorithm is choosing from. In standard supervised learn-
ing, there are well established notions of capacity of hy-
pothesis classes (e.g., VC-dimension) that characterize the
sample complexity of learning. This paper aims to provide
such relevant notions of capacity for clustering.

1.1 Previous Work

In practice, there are methods that use some forms of super-
vision for clustering. These methods are sometimes called
“semi-supervised clustering” (Basu et al. (2002, 2004);
Kulis et al. (2009)). The most common method to convey
such supervision is through a set of pairwise must/cannot-
link constraints on the instances (Wagstaff et al. (2001)).
A common way of using such information is by chang-
ing the objective of clustering so that violations of these
constraints are penalized (Demiriz et al. (1999); Law et al.
(2005); Basu et al. (2008)). Another approach, which is
closer to ours, keeps the clustering optimization objective
fixed, and instead, searches for a metric that best fits given
constraints. The metric is learned based on some objective
function over metrics ((Xing et al., 2002; Alipanahi et al.,
2008)), so that pairs of instances marked must-link will be
close in the new metric space (and cannot-link pairs be con-

sidered as far apart). The two above approaches can also be
integrated (Bilenko et al. (2004)). However, these objective
functions are usually rather ad hoc. In particular, it is not
clear in what sense they are compatible with the adopted
clustering algorithm (such as k-means clustering).

A different approach to the problem of communicating user
expertise for the purpose of choosing a clustering tool is
discussed in Ackerman et al. (2010). They considered a set
of properties, or requirements, for clustering algorithms,
and investigated which of those properties hold for vari-
ous algorithms. The user can then pick the right algorithm
based on the requirements that she wants the algorithm to
meet. However, to turn such an approach into a practically
useful tool, one will need to come up with properties that
are relevant to the end user of clustering –a goal that is still
far from being reached.

Statistical convergence rates of sample clustering to the
optimal clustering, with respect to some data generating
probability distribution, play a central role in our analysis.
From that perspective, most relevant to our paper are re-
sults that provide generalization bounds for k-means clus-
tering. Ben-David (2007) proposed the first dimension-
independent generalization bound for k-means clustering
based on compression techniques. Biau et al. (2008) tight-
ened this result by an analysis of Rademacher complex-
ity. Maurer and Pontil (2010) investigated a more general
framework, in which generalization bounds for k-means as
well as other algorithms can be obtained. It should be noted
that these results are about the standard clustering setup
(without any supervised feedback), where the data repre-
sentation is fixed and known to the clustering algorithm.

1.2 Contributions

Our first contribution is to provide a statistical framework
to analyze the problem of learning representation for clus-
tering. We assume that the expert has some implicit target
clustering of the dataset in his mind. The learner however,
is unaware of it, and instead has to select a mapping among
a set of potential mappings, under which the result of k-
means clustering will be similar to the target partition. An
appropriate notion of loss function is introduced to quantify
the success of the learner. Then, we define the analogous
notion of PAC-learnability2 for the problem of learning rep-
resentation for clustering.

The second contribution of the paper is the introduction of
a combinatorial parameter, a specific notion of the capacity
of the class of mappings, that determines the sample com-
plexity of the clustering learning tasks. This combinatorial
notion is a multivariate version of pseudo-dimension of a
class of real-valued mappings. We show that there is uni-
form convergence of empirical losses to the true loss, over

2PAC stands for the well known notion of “probably approxi-
mately correct”, popularized by Valiant (1984).



any class of embeddings, F , at a rate that is determined
by the proposed dimension of that F . This implies that any
empirical risk minimization algorithm (ERM) will success-
fully learn such a class from sample sizes upper bounded by
those rates. Finally, we analyze a particular natural class –
the class of linear mappings from Rd2 to Rd1– and show
that a roughly speaking, sample size of O(d1d2ε2 ) is suffi-
cient to guarantee an ε-optimal representation.

The rest of this paper is organized as follows: Section 2
defines the problem setting. Then in Section 3, we inves-
tigate ERM-type algorithms and show that, “uniform con-
vergence” is sufficient for them to work. Furthermore, this
section presents the uniform convergence results and the
proof of an upper bound for the sample complexity. Finally,
we conclude in section 4 and provide some directions for
future work.

2 PROBLEM SETTING

2.1 Preliminaries

Let X be a finite domain set. A k-clustering of X is a
partition of X into k subsets. If C is a k-clustering, we
denote the subsets of the partition by C1, ..., Ck, therefore
we have C = {C1, .., Ck}. Let πk denote the set of all
permutations over [k] where [k] denotes {1, 2, ..., k}. The
clustering difference between two clusterings, C1 and C2,
with respect to X is defined by

∆X(C1, C2) = min
σ∈πk

1

|X|

k∑
i=1

|C1
i ∆C2

σ(i)| (1)

where |.| and ∆ denote the cardinality and the symmetric
difference of sets respectively. For a sample S ⊂ X , and
C1 (a partition of X), we define C1

∣∣∣
S

to be a partition of

S induced by C1, namely C1
∣∣∣
S

= {C1
1 ∩ S, . . . , C1

k ∩ S}.
Accordingly, the sample-based difference between two par-
titions is defined by

∆S(C1, C2) = ∆S(C1
∣∣∣
S
, C2

∣∣∣
S

) (2)

Let f be a mapping from X to Rd, and µ = (µ1, . . . µk) be
a vector of k centers in Rd. The clustering defined by (f, µ)
is the partition over X induced by the µ-Voronoi partition
in Rd. Namely,

Cf (µ) = (C1, . . . Ck), where for all i,

Ci = {x ∈ X : ‖f(x)−µi‖2 ≤ ‖f(x)−µj‖2 for all j 6= i}

The k-means cost of clustering X with a set of centers µ =
{µ1, . . . , µk} and with respect to a mapping f is defined by

COSTX(f, µ) =
1

|X|
∑
x∈X

min
µi∈µ
‖f(x)− µi‖22 (3)

The k-means clustering algorithm finds the set of centers
µfX that minimize this cost3. In other words,

µfX = arg min
µ

COSTX(f, µ) (4)

Also, for a partition C and mapping f , we can define the
cost of clustering as follows.

COSTX(f, C) =
1

|X|
∑
i∈[k]

min
µj

∑
x∈Ci

‖f(x)− µj‖22 (5)

For a mapping f as above, let CfX denote the k-means clus-
tering of X induced by f , namely

CfX = Cf (µfX) (6)

The difference between two mappings f1 and f2 with re-
spect to X is defined by the difference between the result
of k-means clustering using these mappings. Formally,

∆X(f1, f2) = ∆X(Cf1X , C
f2
X ) (7)

The following proposition shows the “k-richness” property
of k-means objective.

Proposition 1. Let X be a domain set. For every k-
clustering of X , C, and every d ∈ N+, there exist a map-
ping g : X 7→ Rd such that CgX = C.

Proof. The mapping g can be picked such that it collapses
each cluster Ci into a single point in Rn (and so the image
of X under mapping g will be just k single points in Rn).
The result of k-means clustering under such mapping will
be C.

In this paper, we investigate the transductive setup, where
there is a given data set, known to the learner, that needs to
be clustered. Clustering often occurs as a task over some
data generating distribution (e.g., Von Luxburg and Ben-
David (2005)). The current work can be readily extended
to that setting. However, in that case, we assume that the
clustering algorithm gets, on top of the clustered sample, a
large unclustered sample drawn form that data generating
distribution.

3We assume that the solution to k-means clustering is unique.
We will elaborate about this issue in the next sections.



2.2 Formal Problem Statement

Let C∗ be the target k-clustering of X . A (supervised) rep-
resentation learner for clustering, takes as input a sample
S ⊂ X and its clustering, C∗

∣∣∣
S

, and outputs a mapping f
from a set of potential mappings F . In the following, PAC
stands for the notion of “probably approximately correct”.
Definition 1. PAC Supervised Representation Learner for
K-Means (PAC-SRLK)

Let F be a set of mappings from X to Rd. A represen-
tation learning algorithm A is a PAC-SRLK with sample
complexity mF : (0, 1)2 7→ N with respect to F , if for
every (ε, δ) ∈ (0, 1)2, every domain set X and every clus-
tering of X , C∗, the following holds:

if S is a randomly (uniformly) selected subset of X of size
at least mF (ε, δ), then with probability at least 1− δ

∆X(C∗, CfAX ) ≤ inf
f∈F

∆X(C∗, CfX) + ε (8)

where fA = A(S,C∗
∣∣∣
S

), is the output of the algorithm.

This can be regarded as a formal PAC framework to an-
alyze the problem of learning representation for k-means
clustering. The learner is compared to the best mapping in
the class F .

A natural question is providing bounds on the sample com-
plexity of PAC-SRLK with respect to F . Intuitively, for
richer classes of mappings, we need larger clustered sam-
ples. Therefore, we need to introduce an appropriate no-
tion of “capacity” for F and bound the sample complexity
based on it. This is addressed in the next sections.

3 ANALYSIS AND RESULTS

3.1 Empirical Risk Minimization

In order to prove an upper bound for the sample complexity
of representation learning for clustering, we need to con-
sider an algorithm, and prove a sample complexity bound
for it. Here, we show that any ERM-type algorithm can be
used for this purpose. Therefore, we will be able to prove
an upper bound for the sample complexity of PAC-SRLK.

Let F be a class of mappings and X be the domain set. A
TERM4 learner for F takes as input a sample S ⊂ X and
its clustering Y and outputs:

ATERM (S, Y ) = arg min
f∈F

∆S(CfX

∣∣∣
S
, Y ) (9)

Note that we call it transductive, because it is implicitly
assumed that it has access to unlabeled dataset (i.e., X). A

4TERM stands for Transductive Empirical Risk Minimizer

TERM algorithm goes over all mappings in F and selects
the mapping which is the most consistent mapping with the
given clustering: the mapping under which if we perform
k-means clustering of X , the sample-based ∆-difference
between the result and Y is minimized.

Note that we are not studying this algorithm as a computa-
tional tool; we only use it to show an upper bound for the
sample complexity.

Intuitively, this algorithm will work well when the empiri-
cal ∆-difference and the true ∆-difference of the mappings
in the class are close to each other. In this case, by min-
imizing the empirical difference, the algorithm will auto-
matically minimize the true difference as well. In order to
formalize this idea, we define the notion of “representative-
ness” of a sample.

Definition 2. (ε-Representative Sample) Let F be a class
of mappings from X to Rd. A sample S is ε-representative
with respect to F , X and the clustering C∗, if for every
f ∈ F the following holds

|∆X(C∗, CfX)−∆S(C∗, CfX))| ≤ ε (10)

The following theorem shows that for the TERM algorithm
to work, it is sufficient to supply it with a representative
sample.

Theorem 1. (Sufficiency of Uniform Convergence) Let F
be a set of mappings from X to Rd. If S is an ε

2 -
representative sample with respect to X , F and C∗ then

∆X(C∗, C f̂X) ≤ ∆X(C∗, Cf
∗

X ) + ε (11)

where f∗ = arg minf∈F ∆X(C∗, CfX) and f̂ =

ATERM (S,C∗
∣∣∣
S

).

Proof. Using ε
2 -representativeness of S and the fact that f̂

is the empirical minimizer of the loss function, we have

∆X(C∗, C f̂X) ≤ ∆S(C∗, C f̂X) +
ε

2
(12)

≤ ∆S(C∗, Cf
∗

X ) +
ε

2
(13)

≤ ∆X(C∗, Cf
∗

X ) +
ε

2
+
ε

2
(14)

≤ ∆X(C∗, Cf
∗

X ) + ε (15)



Therefore, we just need to provide an upper bound for the
sample complexity of uniform convergence: “how many
instances do we need to make sure that with high probabil-
ity our sample is ε-representative?”

3.2 Classes of Mappings with a Uniqueness Property

In general, the solution to k-means clustering may not be
unique. Therefore, the learner may end up with finding a
mapping that corresponds to multiple different clusterings.
This is not desirable, because in this case, the output of the
learner will not be interpretable. Therefore, it is reason-
able to choose the class of potential mappings in a way that
it includes only the mappings under which the solution is
unique.

In order to make this idea concrete, we need to define an
appropriate notion of uniqueness. We use a notion similar
to the one introduced by Balcan et al. (2009) with a slight
modification5.

Definition 3. ((η, ε)-Uniqueness) We say that k-means
clustering for domain X under mapping f : X 7→ Rd has
a (η, ε)-unique solution, if every η-optimal solution of the
k-means cost is ε-close to the optimal solution. Formally,
the solution is (η, ε)-unique if for every partition P that
satisfies

COSTX(f, P ) < COSTX(f, CfX) + η (16)

would also satisfy

∆X(CfX , P ) < ε (17)

In the degenerate case where the optimal solution to k-
means is not unique itself (and so CfX is not well-defined),
we say that the solution is not (η, ε)-unique.

It can be noted that the definition of (η, ε)-uniqueness not
only requires the optimal solution to k-means clustering
to be unique, but also all the “near-optimal” minimizers
of the k-means clustering cost should be “similar”. This
is a natural strengthening of the uniqueness condition, to
guard against cases where there are η0-optimizers of the
cost function (for arbitrarily small η0) with totally different
solutions.

Now that we have a definition for uniqueness, we can de-
fine the set of mappings for X under which the solution
is unique. We say that a class of mappings F has (η, ε)-
uniqueness property with respect to X , if every mapping in
F has (η, ε)-uniqueness property over X .

Note that given an arbitrary class of mappings F , we can
find a subset of it that satisfies (η, ε)-uniqueness property

5Our notion is additive in both parameters rather than multi-
plicative

over X . Also, as argued above, this subset is the useful
subset to work with. Therefore, in the rest of the paper,
we investigate learning for classes with (η, ε)-uniqueness
property. In the next section, we prove uniform conver-
gence results for such classes.

3.3 Uniform Convergence Results

In Section 3.1, we defined the notion of ε-representative
samples. Also, we proved that if a TERM algorithm is fed
with such a representative sample, it will work satisfacto-
rily. The most technical part of the proof is then about the
question “how large should be the sample in order to make
sure that with high probability it is actually a representative
sample?”

In order to formalize this notion, let F be a set of mappings
from a domain X to (0, 1)n6. Define the sample complex-
ity of uniform convergence, mUC

F (ε, δ), as the minimum
number m such that for every fixed partition C∗, if S is
a randomly (uniformly) selected subset of X with size m,
then with probability at least 1− δ, for all f ∈ F we have

|∆X(C∗, CfX)−∆S(C∗, CfX)| ≤ ε (18)

The technical part of this paper is devoted to provide an
upper bound for this sample complexity.

3.3.1 Preliminaries

Definition 4. (ε-cover and covering number) Let F be a
set of mappings from X to (0, 1)n. A subset F̂ ⊂ F is
called an ε-cover for F with respect to the metric d(., .) if
for every f ∈ F there exists f̂ ∈ F̂ such that d(f, f̂) ≤ ε.
The covering number, N (F , d, ε) is the size of the smallest
ε-cover of F with respect to d.

In the above definition, we did not specify the metric d.
In our analysis, we are interested in the L1 distance with
respect to X , namely:

dXL1
(f1, f2) =

1

|X|
∑
x∈X
‖f1(x)− f2(x)‖2 (19)

Note that the mappings we consider are not real-valued
functions, but their output is an n-dimensional vector. This
is in contrast to the usual analysis used for learning real-
valued functions. If f1 and f2 are real-valued, then L1 dis-
tance is defined by

dXL1
(f1, f2) =

1

|X|
∑
x∈X
|f1(x)− f2(x)| (20)

6In the analysis, for simplicity, we will assume that the set
of mappings is a function to the bounded space (0, 1)n wherever
needed



We will prove sample complexity bounds for our prob-
lem based on the L1-covering number of the set of map-
pings. However, it will be beneficial to have a bound based
on some notion of capacity, similar to VC-dimension, as
well. This will help in better understanding and easier
analysis of sample complexity of different classes. While
VC-dimension is defined for binary valued functions, we
need a similar notion for functions with outputs in Rn. For
real-valued functions, we have such notion, called pseudo-
dimension (Pollard (1984)).

Definition 5. (Pseudo-Dimension) Let F be a set of func-
tions from X to R. Let S = {x1, x2, . . . , xm} be a subset
of X . Then S is pseudo-shattered by F if there are real
numbers r1, r2, . . . , rm such that for every b ∈ {0, 1}m,
there is a function fb ∈ F with sgn(fb(xi) − ri) = bi for
i ∈ [m]. Pseudo dimension of F , called Pdim(F), is the
size of the largest shattered set.

It can be shown (e.g., Theorem 18.4. in Anthony
and Bartlett (2009)) that for a real-valued class F , if
Pdim(F ) ≤ q then logN (F, dXL1

, ε) = O(q) where O()

hides logarithmic factors of 1
ε . In the next sections, we will

generalize this notion to Rn-valued functions.

3.3.2 Reduction to Binary Hypothesis Classes

Let f1, f2 ∈ F be two mappings and σ be a permutation
over [k]. Define the binary-valued function hf1,f2σ (.) as fol-
lows

hf1,f2σ (x) =

{
1 x ∈ ∪ki=1(Cf1i ∆Cf2σ(i))

0 otherwise
(21)

Let HFσ be the set of all such functions with respect to F
and σ:

HFσ = {hf1,f2σ (.) : f1, f2 ∈ F} (22)

Finally, let HF be the union of all HFσ over all choices of
σ. Formally, if π is the set of all permutations over [k], then

HF = ∪σ∈πHFσ (23)

For a set S, and a binary function h(.), let h(S) =
1
|S|
∑
x∈S h(x). We now show that a uniform convergence

result with respect to HF is sufficient to have uniform con-
vergence for the ∆-difference function. Therefore, we will
be able to investigate conditions for uniform convergence
of HF rather than the ∆-difference function.

Theorem 2. Let X be a domain set, F be a set of map-
pings, and HF be defined as above. If S ⊂ X is such that

∀h ∈ HF , |h(S)− h(X)| ≤ ε (24)

then S will be ε-representative with respect to F , i.e., for
all f1, f2 ∈ F we will have

|∆X(Cf1X , C
f2
X )−∆S(Cf1X , C

f2
X )| ≤ ε (25)

Proof.

|∆S(Cf1X , C
f2
X )−∆X(Cf1X , C

f2
X )| (26)

=

∣∣∣∣∣
(

min
σ

1

|S|
∑
x∈S

hf1,f2σ

)
−

(
min
σ

1

|X|
∑
x∈X

hf1,f2σ

)∣∣∣∣∣
(27)

≤

∣∣∣∣∣max
σ

(
1

|S|
∑
x∈S

hf1,f2σ − 1

|X|
∑
x∈X

hf1,f2σ

)∣∣∣∣∣ (28)

≤
∣∣∣max
σ

(
hf1,f2σ (S)− hf1,f2σ (X)

)∣∣∣ ≤ ε (29)

The fact that HF is a class of binary-valued functions en-
ables us to provide sample complexity bounds based on
VC-dimension of this class. However, providing bounds
based on VC-Dim(HF ) is not sufficient, in the sense that
it is not convenient to work with the class HF . Instead, it
will be nice if we can prove bounds directly based on the
capacity of the class of mappings, F . In the next section,
we address this issue.

3.3.3 L1-Covering Number and Uniform
Convergence

The classes introduced in the previous section, HF and
HFσ , are binary hypothesis classes. Also, we have shown
that proving a uniform convergence result for HF is suffi-
cient for our purpose. In this section, we show that a bound
on the L1 covering number of F is sufficient to prove uni-
form convergence for HF .

In Section 3.2, we argued that we only care about the
classes that have (η, ε)-uniqueness property. In the rest of
this section, assume that F is a class of mappings from X
to (0, 1)n that satisfies (η, ε)-uniqueness property.
Lemma 1. Let f1, f2 ∈ F . If dL1

(f1, f2) < η
12 then

∆X(f1, f2) < 2ε

We leave the proof of this lemma for the appendix, and
present the next lemma.
Lemma 2. Let HF be defined as in the previous section.
Then,

N (HF , dXL1
, 2ε) ≤ k!N (F , dXL1

,
η

12
) (30)



Proof. Let F̂ be the η
12 -cover corresponding to the cover-

ing number N (F , dXL1
, η12 ). Based on the previous lemma,

HF̂σ is a 2ε-cover for HFσ . But we have only k! permuta-
tions of [k], therefore, the covering number for HF̂ is at
most k! times larger than HF̂σ . This proves the result.

Basically, this means that if we have a small L1 covering
number for the mappings, we will have the uniform conver-
gence result we were looking for. The following theorem
proves this result.

Theorem 3. Let F be a set of mappings with (η, ε)-
uniqueness property. Then there for some constant α we
have

mUC
F (ε, δ) ≤ O(

log k! + logN (F , dXL1
, ηα ) + log( 1

δ )

ε2
)

(31)

Proof. Following the previous lemma, if we have a small
L1-covering number for F , we will also have a small cov-
ering number for HF as well. But based on standard uni-
form convergence theory, if a hypothesis class has small
covering number, then it has uniform convergence prop-
erty. More precisely, (e.g., Theorem 17.1 in Anthony and
Bartlett (2009)) we have:

mUC
HF (ε0, δ) ≤ O(

logN (HF , dXL1
, ε016 ) + log( 1

δ )

ε20
) (32)

Applying Lemma 2 to the above proves the result.

3.4 Bounding L1-Covering Number

In the previous section, we proved if the L1 covering num-
ber of the class of mappings is bounded, then we will have
uniform convergence. However, it is desirable to have a
bound with respect to a combinatorial dimension of the
class (rather than the covering number). Therefore, we will
generalize the notion of pseudo-dimension for the class of
mappings that take value in Rn.

Let F be a set of mappings form X to Rn. For every map-
ping f ∈ F , define real-valued functions f1, . . . , fn such
that f(x) = (f1(x), . . . , fn(x)). Now let Fi = {fi : f ∈
F}. This means that F1, F2, . . . , Fn are classes of real-
valued functions. Now we define pseudo-dimension of F
as follow.

Pdim(F) = nmax
i∈[n]

Pdim(Fi) (33)

Proposition 2. Let F be a set of mappings form X to Rn.
If Pdim(F ) ≤ q then logN (F, dXL1

, ε) = O(q) whereO()
hides logarithmic factors.

Proof. The result follows from the corresponding result for
bounding covering number of real-valued functions based
on pseudo-dimension mentioned in the preliminaries sec-
tion. The reason is that we can create a cover by com-
position of the ε

n -covers of all Fi. However, this will at
most introduce a factor of n in the logarithm of the cover-
ing number.

Therefore, we can rewrite the result of the previous section
in terms of pseudo-dimension.

Theorem 4. Let F be a class of mappings with (η, ε)-
uniqueness property. Then

mUC
F (ε, δ) ≤ O(

k + Pdim(F) + log( 1
δ )

ε2
) (34)

where O() hides logarithmic factors of k and 1
η .

3.5 Sample Complexity of PAC-SRLK

In Section 3.1, we showed that uniform convergence is suf-
ficient for a TERM algorithm to work. Also, in the previous
section, we proved a bound for the sample complexity of
uniform convergence. The following theorem, which is the
main technical result of this paper, combines these two and
provides a sample complexity upper bound for PAC-SRLK
framework.

Theorem 5. Let F be a class of (η, ε)-unique mappings.
Then the sample complexity of learning representation for
k-means clustering with respect to F is upper bounded by

mF (ε, δ) ≤ O(
k + Pdim(F) + log( 1

δ )

ε2
) (35)

where O hides logarithmic factors of k and 1
η .

The proof is done by combining Theorems 1 and 4.

The following result shows an upper bound for the sample
complexity of learning linear mappings (or equivalently,
Mahalanobis metrics).

Corollary 1. Let F be a set of (η, ε)-unique linear map-
pings from Rd1 to Rd2 . Then we have

mF (ε, δ) ≤ O(
k + d1d2 + log( 1

δ )

ε2
) (36)

Proof. It is a standard result that the pseudo-dimension of
a vector space of real-valued functions is just the dimen-
sionality of the space (in our case d1) (e.g., Theorem 11.4
in Anthony and Bartlett (2009)). Also, based on our defini-
tion of Pdim for Rd2 -valued functions, it should scale by
a factor of d2.



4 CONCLUSIONS AND OPEN
PROBLEMS

In this paper we provided a formal statistical framework for
learning the representation (i.e., a mapping) for k-means
clustering based on supervised feedback. The learner, un-
aware of the target clustering of the domain, is given a clus-
tering of a sample set. The learner’s task is then finding
a mapping function f̂ (among a class of mappings) under
which the result of k-means clustering of the domain is as
close as possible to the true clustering. This framework was
called PAC-SRLK.

A notion of ε-representativeness was introduced, and it was
proved that any ERM-type algorithm that has access to
such a sample will work satisfactorily. Finally, a techni-
cal uniform convergence result was proved to make sure
that a large enough sample is (with high probability) ε-
representative. This was used to prove an upper bound for
the sample complexity of PAC-SRLK based on covering
numbers of the set of mappings. Furthermore, a notion of
pseudo-dimension for the class of mappings was defined,
and the sample complexity was upper bounded based on it.

Note that in the analysis, the notion of (η, ε)-uniqueness
(similar to that of Balcan et al. (2009)) was used and it was
argued that it is reasonable to require the learner to output
a mapping under which the solution is “unique” (because
otherwise the output of k-means clustering would not be
interpretable). Therefore, in the analysis, we assumed that
the class of potential mappings has the (η, ε)-uniqueness
property.

It can be noted that we did not analyze the computational
complexity of algorithms for PAC-SRLK framework. We
leave this analysis to the future work. We just note that
a similar notion of uniqueness proposed by Balcan et al.
(2009) resulted in being able to efficiently solve the k-
means clustering algorithm.

One other observation is that representation learning can be
regarded as a special case of metric learning; because for
every mapping, we can define a distance function that com-
putes the distance in the mapped space. In this light, we
can make the problem more general by making the learner
find a distance function rather than a mapping. This is
more challenging to analyze, because we do not even know
a generalization bound for center-based clustering under
general distance functions. An open question will be pro-
viding such general results.
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5 APPENDIX

Proof of Lemma 1. Let F : X 7→ (0, 1)n be a set
of mappings that have (η, ε)-uniqueness property. Let

f1, f2 ∈ F and dL1
(f1, f2) < η

12 . We need to prove that
∆X(f1, f2) < 2ε. In order to prove this, note that due to
triangular inequality, we have

∆X(f1, f2) = ∆X(Cf1(µf1), Cf2(µf2))

≤ ∆X(Cf1(µf1), Cf1(µf2))+

∆X(Cf1(µf2), Cf2(µf2)) (37)

Therefore, it will be sufficient to show that each of the ∆-
terms above is smaller than ε. We start by proving a useful
lemma.

Lemma 3. Let f1, f2 ∈ F and dL1
(f1, f2) < η

6 . Let µ be
an arbitrary set of k centers in (0, 1)n. Then

|COSTX(f1, µ)− COSTX(f2, µ)| < η

2

Proof.

|COSTX(f1, µ)− COSTX(f2, µ)|

=

∣∣∣∣∣
(

1

|X|
∑
x∈X

min
µj∈µ

‖f1(x)− µj‖2
)

−

(
1

|X|
∑
x∈X

min
µj∈µ

‖f2(x)− µj‖2
)∣∣∣∣∣ (38)

≤ 1

|X|
∑
x∈X

max
µj∈µ

∣∣∣‖f1(x)− µj‖2 − ‖f2(x)− µj‖2
∣∣∣ (39)

=
1

|X|
∑
x∈X

max
µj∈µ

∣∣∣‖f1(x)‖2−‖f2(x)‖2−2 < µj , f1−f2 >
∣∣∣

(40)

=
1

|X|
∑
x∈X

max
µj∈µ

∣∣∣ < f1 − f2, f1 + f2 − 2µj >
∣∣∣ (41)

≤ 3

|X|
∑
x∈X
‖f1 − f2‖ ≤

3η

6
≤ η

2
(42)

Now we are ready to prove that the first ∆-term is smaller
than ε, i.e., ∆X(Cf1(µf1), Cf1(µf2)) < ε. But to
do so, we only need to show that COSTX(f1, µ

f2) −
COSTX(f1, µ

f1) < η; because in that case, due to (η, ε)-
uniqueness property of f1, the result will follow. Now, us-
ing Lemma 3, we have



COSTX(f1, µ
f2)− COSTX(f1, µ

f1) (43)

≤
(
COSTX(f2, µ

f2) +
η

2

)
− COSTX(f1, µ

f1) (44)

= min
µ

(COSTX(f2, µ))−min
µ

(COSTX(f1, µ)) +
η

2
(45)

≤ max
µ

(COSTX(f2, µ)− COSTX(f1, µ)) +
η

2
(46)

≤ η

2
+
η

2
≤ η (47)

where in the first and the last line we used Lemma 3.

Finally, we need to prove the second ∆-inequality, i.e.,
∆X(Cf1(µf2), Cf2(µf2)) ≤ ε. Assume contrary. But
based on (η, ε)-uniqueness property of f2, we conclude that
COSTX(f2, C

f1(µf2))−COSTX(f2, C
f2(µf2)) ≥ η. In

the following, we prove that this cannot be true, and hence
a contradiction.

Let mx = arg minµ0∈µf2 ‖f1(x) − µ0‖2. Then, based on
the boundedness of f1(x),f2(x) and we have:

COSTX(f2, C
f1(µf2))− COSTX(f2, C

f2(µf2)) (48)

=

(
1

|X|
∑
x∈X
‖f2(x)−mx‖2

)
− COSTX(f2, µ2) (49)

=

(
1

|X|
∑
x∈X
‖f2(x)− f1(x) + f1(x)−mx‖2

)
− COSTX(f2, µ2) (50)

=
1

|X|
∑
x∈X
‖f2(x)− f1(x)‖2

+
1

|X|
∑
x∈X
‖f1(x)−mx‖2

+
1

|X|
∑
x∈X

2 < f2(x)− f1(x), f1(x)−mx >

− COSTX(f2, µ2) (51)

≤ 2

|X|
∑
x∈X
‖f2(x)− f1(x)‖

+ COSTX(f1, µ1)

+
4

|X|
∑
x∈X
‖f2(x)− f1(x)‖

− COSTX(f2, µ2) (52)

≤ 6

|X|
∑
x∈X
‖f2(x)− f1(x)‖

+ (COSTX(f1, µ1)− COSTX(f2, µ2))

(53)

≤ 6η

12
+
η

2
≤ η (54)

References
Ackerman, M., Ben-David, S., and Loker, D. (2010).

Towards property-based classification of clustering
paradigms. In Advances in Neural Information Process-
ing Systems, pages 10–18.

Alipanahi, B., Biggs, M., Ghodsi, A., et al. (2008). Dis-
tance metric learning vs. fisher discriminant analysis. In
Proceedings of the 23rd national conference on Artificial
intelligence, pages 598–603.

Anthony, M. and Bartlett, P. L. (2009). Neural network
learning: Theoretical foundations. cambridge university
press.

Balcan, M.-F., Blum, A., and Gupta, A. (2009). Approxi-
mate clustering without the approximation. In Proceed-
ings of the twentieth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 1068–1077. Society for In-
dustrial and Applied Mathematics.

Basu, S., Banerjee, A., and Mooney, R. (2002). Semi-
supervised clustering by seeding. In In Proceedings
of 19th International Conference on Machine Learning
(ICML-2002.

Basu, S., Bilenko, M., and Mooney, R. J. (2004). A prob-
abilistic framework for semi-supervised clustering. In
Proceedings of the tenth ACM SIGKDD international
conference on Knowledge discovery and data mining,
pages 59–68. ACM.

Basu, S., Davidson, I., and Wagstaff, K. (2008). Con-
strained clustering: Advances in algorithms, theory, and
applications. CRC Press.

Ben-David, S. (2007). A framework for statistical clus-
tering with constant time approximation algorithms for



k-median and k-means clustering. Machine Learning,
66(2-3):243–257.

Biau, G., Devroye, L., and Lugosi, G. (2008). On the per-
formance of clustering in hilbert spaces. Information
Theory, IEEE Transactions on, 54(2):781–790.

Bilenko, M., Basu, S., and Mooney, R. J. (2004). Integrat-
ing constraints and metric learning in semi-supervised
clustering. In Proceedings of the twenty-first interna-
tional conference on Machine learning, page 11. ACM.

Blum, A. (2014). Approximation-stability and
perturbation-stability. In DAGSTUHL Workshop
on Analysis of Algorithms Beyond the Worst Case.

Demiriz, A., Bennett, K. P., and Embrechts, M. J. (1999).
Semi-supervised clustering using genetic algorithms.
Artificial neural networks in engineering (ANNIE-99),
pages 809–814.

Kulis, B., Basu, S., Dhillon, I., and Mooney, R. (2009).
Semi-supervised graph clustering: a kernel approach.
Machine learning, 74(1):1–22.

Law, M. H., Topchy, A. P., and Jain, A. K. (2005). Model-
based clustering with probabilistic constraints. In SDM.
SIAM.

Maurer, A. and Pontil, M. (2010). k-dimensional coding
schemes in hilbert spaces. Information Theory, IEEE
Transactions on, 56(11):5839–5846.

Pollard, D. (1984). Convergence of stochastic processes.
David Pollard.

Valiant, L. G. (1984). A theory of the learnable. Commu-
nications of the ACM, 27(11):1134–1142.

Von Luxburg, U. and Ben-David, S. (2005). Towards a
statistical theory of clustering. In Pascal workshop on
statistics and optimization of clustering, pages 20–26.

Wagstaff, K., Cardie, C., Rogers, S., Schrödl, S., et al.
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