Computer Science > Information Retrieval
[Submitted on 8 Mar 2022 (v1), last revised 9 May 2023 (this version, v3)]
Title:Reinforced MOOCs Concept Recommendation in Heterogeneous Information Networks
View PDFAbstract:Massive open online courses (MOOCs), which offer open access and widespread interactive participation through the internet, are quickly becoming the preferred method for online and remote learning. Several MOOC platforms offer the service of course recommendation to users, to improve the learning experience of users. Despite the usefulness of this service, we consider that recommending courses to users directly may neglect their varying degrees of expertise. To mitigate this gap, we examine an interesting problem of concept recommendation in this paper, which can be viewed as recommending knowledge to users in a fine-grained way. We put forward a novel approach, termed HinCRec-RL, for Concept Recommendation in MOOCs, which is based on Heterogeneous Information Networks and Reinforcement Learning. In particular, we propose to shape the problem of concept recommendation within a reinforcement learning framework to characterize the dynamic interaction between users and knowledge concepts in MOOCs. Furthermore, we propose to form the interactions among users, courses, videos, and concepts into a heterogeneous information network (HIN) to learn the semantic user representations better. We then employ an attentional graph neural network to represent the users in the HIN, based on meta-paths. Extensive experiments are conducted on a real-world dataset collected from a Chinese MOOC platform, XuetangX, to validate the efficacy of our proposed HinCRec-RL. Experimental results and analysis demonstrate that our proposed HinCRec-RL performs well when comparing with several state-of-the-art models.
Submission history
From: Jibing Gong [view email][v1] Tue, 8 Mar 2022 05:10:55 UTC (9,487 KB)
[v2] Wed, 13 Apr 2022 12:09:14 UTC (7,987 KB)
[v3] Tue, 9 May 2023 13:01:25 UTC (5,406 KB)
Current browse context:
cs.IR
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.