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ABSTRACT 

This paper reports on a quite large experience in 
implementing a procedurally introspective system (PIS), 
ALICE, in which a well known problem is faced: the 
integration between LISP and Horn clauses. This exercise is 
motivated by a recognized lack of experience in implementing 
PISs to deal with actual A.I. programming problems. ALICE 
is composed of two procedurally introspective languages 
based on LISP and on Horn clauses, respectively. The 
integration is achieved by means of a new kind of reflection 
called mutuai reflection. The design of ALICE required the 
generalization of several concepts and mechanisms introduced 
in 3-LISP. The discussion is completed with a set of general 
retrospective considerations. 

I INTRODUCTION 

The mcta-levcls architectures (P.Maes and D.Nardi, 1987) 
constitute one of the most interesting research lines in the field 
of knowledge representation. In this kind of systems, some 
(meta) knowledge about the structure and the role of the 
domain knowledge can be explicitly represented. The problem 
solving activity is thus carried on by alternating the use and the 
transformation of domain and meta knowledge. An interesting 
subclass of the meta level systems is constituted by the 
introspective systems. In this case, in the system is explicitly 
available a description of the structure and of the behaviour of 
the system itself. The system is thus able to reason about itself 
in some ways. 

A quite general definition of introspective systems is 
proposed in (B.C.Smith 1984). It is given by means of three 
conditions that have to be satisfied by a candidate introspective 
system, i) The system must embody in itself a description of 
the system which can be consulted and modified by means of 
tools available in the system, ii) The description has to be 
causally connected to the system structure and behaviour. 
Any event and relation in the system must have a 
corresponding representation in the description and any 
modification in the description must cause a modification in the 
structure and behaviour of the system, iii) The description 
must have a proper vantage point. It has to represent the 
system at a right level of detail to the extent of introspection. 
(The definition in (P.Maes 1987) is more detailed, but for our 
work the above structural definition is accurate enough). 

The first proposal for an introspective system, with respect 
to the definition above, was 3-LISP (B.C.Smith 1984). 3-
USP, as well as Brown (M.Wand and D.P.Friedman, 1986), 
arc procedurally introspective systems. They restrict their 

attention on procedural knowledge. So the relevant aspect in 
computational processes is the behaviour to achieve. In such a 
framework, the expressions of a language are description 
about how to manipulate domain objects and a language is 
described by its interpreter. This restriction is useful to 
concentrate the efforts on the design of the basic mechanisms 
for introspection. In these systems, an explicit representation 
of the interpreter for the language is available and causally 
connected to the behaviour of the system itself. Reflection is 
the mechanism by which the user can change the focus of 
attention from the domain level to the interpreter level to 
inspect and influence the current computation or to modify the 
interpreter's code. Reflection can be used during meta level 
operations, thus the user can make access to a virtually infinite 
tower of causally connected interpreters each interpreting the 
one below. PISs actually are a first step toward general 
introspection. 

The 3-LISP approach to introspection, although 
constrained to the procedural aspects, is elegant and very 
powerful. Nevertheless, this kind of ideas have had a 
relatively limited spreading in the A.I. applications community 
and a very small set of relevant examples of introspective 
programming are available. In our opinion, these problems are 
caused by the lack of a general understanding of the power of 
PISs and of a pragmatical experience on them. In fact, i) 3-
LISP and Brown are quite difficult to use, due to the unusual 
power of reflection as a programming tool; ii) few PISs have 
been developed on languages different from LISP; iii) the 3-
LISP and Brown implementations are quite complex to 
understand and they arc based on a set of innovative concepts. 
It is currently difficult to abstract and export the basic 
mechanisms of procedural introspection. 

So, all we need is experience in implementing procedural 
introspection and in exploring its capabilities while facing 
actual A.I. programming problems. 

The ALICE system is an attempt to deal with the 
integration of LISP and Horn clauses in a conceptually clean 
way in the framework of PISs using reflection as a tool for 
integration. The currently available solutions are based mainly 
on the implementation of a Horn clauses resolutor embedded 
in the LISP environment (J.A.Robinson and E.E.Sibert, 
1982) (CMellish and S.Hardy, 1983). We want to achieve the 
goal without privileging a single language to which all the 
representations eventually collapse in, and without introducing 
an ad hoc communication language. ALICE was developed at 
the University of Milano and a complete running version of it 
is currently available in Franz Lisp on a VAX 11/750. 

As ALICE is mainly an exercise in procedural 
introspection, the focus of attention is on the experience in 
using and implementing PISs. This paper briefly presents the 
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work on ALICE in this perspective. We follow a step by step 
approach. Firstly, a new procedurally introspective dialect of 
LISP is presented.Then, an independent PIS, based on Horn 
clauses, is introduced. Finally, the two languages are 
integrated into a single PIS. This requires a new point of view 
on self description and the introduction of the mutual reflection 
mechanism. Due to space problems, the presentation is very 
schematic and all the details are omitted. A complete report on 
ALICE can be found in (R.Ghislanzoni, L.Spampinato and 
G.Tornielli 1986), (R.Ghislanzoni, L.Spampinato and 
G.Tornielli 1987). We assume the reader knows the ideas in 
(B.C.Smith 1984) and we don't undertake a presentation of 
this theory and we use the Smith's notation in his same sense. 

II STEP ONE: A PROCEDURALLY INTROSPECTIVE 
LISP A LITTLE MORE GENERAL THAN 3-LISP 

The LISP part of ALICE is based on 3-LISP, of which we 
adopt all the basic concepts but for two points: the use of 
explicit data structures instead of closures to represent 
continuations and the introduction of reflecters instead of 
lambda-reflect 

The first choice de-couples the processed language from 
the language in which the processor is written. The one-
language choice binds strictly introspective actions with 
structures of the particular implemented language. In the 
perspective of mutual reflection, the representation of the 
future of the normalization process must be abstracted from the 
implemented language. 

In the LISP part of ALICE, a reflection is achieved by 
means of a reflecter: a new type of pair (notated as a pair but 
preceded by a ~), which indicates that the function application 
has to be performed one level above the current one. So, there 
are only simple lambda expressions which are possibly 
reflectible. For example, in 3-LISP: 
(DEFINE QUIT (LAMBDA REFLECT [Q ENV CONT] 'QUIT!)) 
3-USPl>(QUIT) 
3-USP2>'QUIT! 

In ALICE LISP: 
(define quit (lambda [[] env com] 'quit!)) 
ALICE-LISP 1> -(quit) ALICE-LISP 1> (quit [] [] []) 
ALICE-LISP 2> 'quit! ALICE LISP 1 > 'quit! 

In PIS we consider three concepts about procedures: 
procedure definitions describe manipulations on structures, 
procedure applications describe which manipulation on which 
structures and reflecters describe at which level the 
manipulation has to be realized. In 3-LISP the first and the 
third mechanisms are too strictly coupled. Reflection is not a 
static property of a procedure but a particular way to use it 

The implementation of the ALICE LISP is very similar to 
the 3-LISP one. The finiteness criteria presented in 
(B.C.Smith and J.des Rivifcres 1984) apply directly to our 
modified processor definition (reflecters are treated by the 
normalize function). 

I l l STEP TWO: A PROCEDURAL INTROSPECTIVE 
SYSTEM FOR LOGIC PROGRAMMING 

The second part of ALICE is called Logic. Logic, as an 
independent system, is a simple programming language, in 
which programs arc sets of Horn clauses. The basic idea is to 
recover as much as possible of the clear and simple initial 

concept of logic programming (R.A. Kowalski 1974). We are 
willing to obtain at least the power of current PROLOG 
(L.Sterling and E.Shapiro 1986) by means of introspection. 
The goal is to build a system based on 'pure' refutation at 
domain level and on explicit procedural import at meta level. 
From this point of view, Logic can be considered yet another 
proposal in the set of Horn clauses based languages with meta 
level programming (K.A.Bowen and R.A.Kowalski 1982). 

Sentences, clauses, conjunctions and variables are 
represented with new types of structures added to the 
structural field of the LISP part. The structures of the LISP 
part are terms for Logic. 

We define the procedural import (1st factor, ) and the 
designation (2nd factor 4>) (B.C.Smith 1984) of Logic with 
respect to refutation realized with the SLD resolution 
procedure. Thus, the designation of a sentence is the truth 
value TRUE or FALSE whether it can be proven in the current 
theory with the defined procedure. The refutation by SLD 
procedure defines the behaviour of Logic: it actually 
constitutes the normalization process. Thus sentences 
normalize to the boolean $T or $F whether the procedure 
refutates them or it doesn't. 

In order to make Logic semantically flat we defined a 
category alignment for it (R.Ghislanzoni, L.Spampinato and 
G.Tornielli 1986), following the way traced by B.C.Smith. 

Logic contains the code of a metacircular processor as the 
description of its own behaviour. It is the code (in Logic) of an 
implementation of the refutation by SLD resolution procedure. 
The state of the normalization process is explicitly represented 
by a search tree and an environment, which is the structure 
representing the current theory. The resolution tree is a 
complex rail in the structural field with construction and 
selection primitives. 

Reflective acts are represented in Logic with logic 
reflecters. Their notation is similar to sentences' one but with 
a - at the beginning. The basic idea of reflection is the same of 
the LISP part: the atomic sentence in the reflecter is modified 
to include the terms for the representation of the environment 
and the tree and it is processed as it were inserted in the 
processor's code at a defined point. 

The implementation of Logic is also based on a shifting 
processor which recognizes the need of a reflection, makes 
explicit (reifies) the state of the computation, and shifts up to 
process the processor code augmented with the user reflective 
code. If it realizes it is processing a part of the processor code, 
it shifts down to directly process the user code, after recording 
the state of the upper level for a potential successive reflection. 

The precondition for the realization of a shifting processor 
is the finiteness of the metacircular processor which describes 
the system. The point, in the context of Logic, is the creation 
of the representation of the search tree to be used by the 
processor at the level n+2 when a reflection takes place 
carrying the computation from level n to level n+1. We need a 
standard way to produce a search tree for the state of a 
processor processing itself. Otherwise, we have to provide the 
state of the processor at any level and a finite implementation 
can't be afforded. 

As for continuation in 3-LISP, it is possible to verify that 
the search tree of the processor processing the processor is 
always the same. The tree must not change when considered at 
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any two successive resolutions involving a processor's clause. 
In (R.Ghislanzoni, L.Spampinato and G.Tornielli 1986), we 
introduce a concept of invariance for the resolution tree of 
Logic. We also provide an informal proof of the invariance of 
the Logic processor tree while processing itself. 

The construction of a new PIS, based on a language so 
different from LISP, has revealed very interesting and 
stimulating although not completely straightforward. It lead us 
to the following considerations. 

1) The crucial points are the choices of a proper 
representation of the normalization process' state and the 
way reflection is described in the processor's code. The first 
choice has to be made in the perspective of the system actual 
use. In Logic, the representation of the search tree was 
designed to achieve the power of current logic programming 
systems by means of reflection. For SLD a stack is enough, 
but a richer representation allows the user to profoundly 
influence the search strategy writing simple reflective code. 

2) The mechanism which restarts the computation after each 
input-normalize-output loop, is quite difficult to design. In 
Logic, the generalization of the reply-continuation approach 
of 3-LISP, required several attempts and the exploitation of 
some tricky properties of the resolution tree representation. 

3) The finite nature of the processor can be a little painful to 
verify also if it is easy to guess. The notion of tail recursion 
must be considerably generalized to be applied to 
interpretation structures more complex than a stack. 

IV STEP THREE: INTEGRATION AND MUTUAL 
REFLECTION 

We introduce mutual reflection with two observations 
about the preconditions for procedural introspection. 

1) Only when introspection takes place (by means of a 
reflective act), it is necessary to explicitly know the 
formalism in which the processor is written. If a program 
does not introspect, it is processed by an implicit processor 
the description of which has not a role in computation. In 
other words, the actual form of the processor description has 
to be fixed when some reflective code makes access to it. 

2) The description of the system itself, which a PIS 
embodies, must: i) completely describe the reflection 
mechanism; ii) be suitable for a finite implementation 
(shifting processor); iii) be completely processed by the 
processor it defines. Such requirements are implicitly 
satisfied by 3-LISP and by every PIS based on a single 
language. Nevertheless, it is not mandatory for the self-
description of a PIS to be homogeneous with respect to the 
representation formalism. 

With mutual reflection the formalisms in which the 
processor currently running is explicitly represented can be 
chosen dynamically at each reflective act. 

In ALICE the user can employ, at the starting level, LISP 
or Horn clauses starting the normalization of a program in the 
chosen formalism; let's say LISP. If there are no reflections, 
the running program is normalized by a LISP processor whose 
description is unspecified. In the user program LISP or Logic 
reflecters can be freely used. The normalization of a LISP 
reflecter forces the current processor to be represented in LISP 
and the reflective user code is merged in it. The second level 

processor is a LISP one but its representation remains 
unspecified. The normalization of a Logic reflecter at the 
starting level forces the processor at the first level to be a LISP 
one represented in Logic and the reflective user code (a 
sentence) is merged in it. So the second level processor is a 
processor for Logic but its representation remains unspecified. 
When starting from Logic the same holds with Logic for LISP 
and vice versa. As ALICE is a PIS, reflective acts give access 
to the representation of a normalization process' state. 

This behaviour can be obtained if the descriptions of four 
processors are available: one for each pair representation 
language - normalized languago. The normalization of a LISP 
reflecter in a LISP program gives access to the LISP in LISP 
processor. A Logic reflecter in a logic program gives access to 
the Logic in Logic one. The normalization of a LISP reflecter 
in a Logic program gives access to the Logic processor written 
in LISP and a Logic reflecter in a LISP program gives access 
to the LISP processor written in Logic. In this sense we speak 
about mutual reflection. 

Interaction is now easy. When the user introduces a 
reflection, whatever reflecter she may use, she can both get the 
state of the current normalization of her code in the starting 
language and start a new normalization process with respect to 
the other language. In this way she is given a simple and 
powerful tool to construct the 'bridge' between Horn clauses 
and LISP more convenient for each specific application. 

The ALICE description available (in ALICE) is composed 
of two parts. The first consists of the code of the two 
processors written in LISP (the LISP description). The second 
consists of the two processors written in Logic (the Logic 
description). Each description represents the two normalization 
processes. Thus, each of the normalizations has a double 
description. The choices in the representation of the state of the 
normalization process are the same for the corresponding 
descriptions. This makes it possible to keep the representation 
of the state independent from a normalization process and from 
the particular language the processor is written in. 

The LISP description represents the way LISP reflecters 
are processed (reflection mechanism) when they are inserted 
both in LISP and in Logic code. The Logic description 
represents how Logic reflecters are processed symmetrically. 
In this sense, the two descriptions are complementary in 
describing the whole system. ALICE is procedurally 
introspective as a whole but its model of itself is decomposed 
in two parts. It has a single polymorphic introspective ability. 

A finite implementation is possible due to the finiteness of 
the whole ALICE description as informally proved in 
(R.Ghislanzoni, L.Spampinato and G.Tornielli 1986). 

V EXAMPLES 

In ALICE it is possible to move the computation above the 
current level and start an interaction with the chosen processor. 
The reflectible function quit, as defined above, allows to move 
in the LISP description of the current level: 

'Lisp 1> "(quit) 'Horn 34> "(quit) 

'Lisp 2= 'quitted 'Lisp 35= 'quitted 

One can also move in the Logic description of the current level: 

{clauses: {QUIT :x :y :z}} 
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•Hornl> ~{QUIT} 
'Horn2=$F 

*Lisp89> '{QUIT} 
'Horn90« $F 

A reflectible ALICE LISP function to be used in LISP 
reflecters within Logic programs follws. It asks about the 
provability of a sentence when it cannot be proven otherwise. 

(define ask (lambda [[to-prove] env tree] 
(let [[unif (unif-env-and (and-level tree))]] 

(cond [(prove env (make-tree to-prove unif)) 
(prove env tree)] 

[$F (block 
(output 'can-be-proven?) 
(output (expand to-prove unif)) 
(if (= (input) 'yes) 

(prove env tree) 
(prove env 

(clcar-and-level tree)))))]))) 

For example: 
'Horn 1 > {A 1} 
Horn 1 = $F 
Horn 1 >~(ask{Al}) 
'can-be-proven? '{A 1} 
yes 
'Horn 1 « $T 

The last example is a couple of Logic reflectibe predicates to be 
used in Logic reflecters within a LISP expression. It is the 
definition of the well known *catch-*throw control structure. 

(clauses: {rule {*catch :args xatch-env xatch-cont :result} 
{lst:args:tag} 
{2nd :args xatch-body} 
{up xatch-cont :upped-catch-cond} 
{bind :tag xatch-cont xatch-env :augmented-env} 
{normalize :catch-body :augmented-env 

xatch-cont :result}}} 
{clauses: {rule {*throw :args :throw-env :throw-cont :result} 

{1st :args :tag} 
{2nd :args :throw-exp} 
{binding :tag :throw-env :upped-catch-cont} 
{down :upped-catch-cont xatch-cond} 
{normalize :throw-exp :throw-env 

xatch-cont :result}}} 

They can be used as follows: 

(define member (lambda [atm list] 
-{♦catch stop 

(mapc (lambda [x] 
(if(=xatm) 

~{*throw stop $T})) 
list)})) 

VI CONCLUSIONS 

The experience of the ALICE project lead us to a couple of 
general consideration about the actual development of PISs. 

1) The shifting processor approach can actually help in 
embodying procedural reflection in systems more complex 
than 3-LISP. Moreover, the method - implicit in it - of 
incremental generation of the explicit representations when 
they are needed, make it possible to use reflection as a 
powerful tool for the integration of different formalisms. 

2) Mutual reflection can be extended to any set of procedural 
languages, provided that each of them can be implemented in 
a PIS and a new reflecter type can be added to its structures. 
This extended ALICE system would have n descriptions of 
itself, (for n involved languages). Each of the descriptions 
would contain an interpreter for each language and describes 
the system when only reflecters of the language in which is 
written are used. All the descriptions together would 
constitute the self description of the system which would be 
procedurally introspective as a whole. In this sense, ALICE 
can be seen as an achitectural proposal for systems in which 
many different formalisms are integrated in a modular way. 
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