
R E F L E C T I O N AS A T O O L FOR I N T E G R A T I O N :
A N EXERCISE I N PROCEDURAL INTROSPECTION.

Roberto Ghislanzoni Luca Spampinato Giorgio Torniclli

QUINARY,via Scttcmbrini 40,20124 Milano, ITALY, 39-2-222703.
Dipartimcnto di Scienze dclllnformazione, University di Milano, ITALY

ABSTRACT

This paper reports on a quite large experience in
implementing a procedurally introspective system (PIS),
ALICE, in which a well known problem is faced: the
integration between LISP and Horn clauses. This exercise is
motivated by a recognized lack of experience in implementing
PISs to deal with actual A.I. programming problems. ALICE
is composed of two procedurally introspective languages
based on LISP and on Horn clauses, respectively. The
integration is achieved by means of a new kind of reflection
called mutuai reflection. The design of ALICE required the
generalization of several concepts and mechanisms introduced
in 3-LISP. The discussion is completed with a set of general
retrospective considerations.

I INTRODUCTION

The mcta-levcls architectures (P.Maes and D.Nardi, 1987)
constitute one of the most interesting research lines in the field
of knowledge representation. In this kind of systems, some
(meta) knowledge about the structure and the role of the
domain knowledge can be explicitly represented. The problem
solving activity is thus carried on by alternating the use and the
transformation of domain and meta knowledge. An interesting
subclass of the meta level systems is constituted by the
introspective systems. In this case, in the system is explicitly
available a description of the structure and of the behaviour of
the system itself. The system is thus able to reason about itself
in some ways.

A quite general definition of introspective systems is
proposed in (B.C.Smith 1984). It is given by means of three
conditions that have to be satisfied by a candidate introspective
system, i) The system must embody in itself a description of
the system which can be consulted and modified by means of
tools available in the system, ii) The description has to be
causally connected to the system structure and behaviour.
Any event and relation in the system must have a
corresponding representation in the description and any
modification in the description must cause a modification in the
structure and behaviour of the system, iii) The description
must have a proper vantage point. It has to represent the
system at a right level of detail to the extent of introspection.
(The definition in (P.Maes 1987) is more detailed, but for our
work the above structural definition is accurate enough).

The first proposal for an introspective system, with respect
to the definition above, was 3-LISP (B.C.Smith 1984). 3-
USP, as well as Brown (M.Wand and D.P.Friedman, 1986),
arc procedurally introspective systems. They restrict their

attention on procedural knowledge. So the relevant aspect in
computational processes is the behaviour to achieve. In such a
framework, the expressions of a language are description
about how to manipulate domain objects and a language is
described by its interpreter. This restriction is useful to
concentrate the efforts on the design of the basic mechanisms
for introspection. In these systems, an explicit representation
of the interpreter for the language is available and causally
connected to the behaviour of the system itself. Reflection is
the mechanism by which the user can change the focus of
attention from the domain level to the interpreter level to
inspect and influence the current computation or to modify the
interpreter's code. Reflection can be used during meta level
operations, thus the user can make access to a virtually infinite
tower of causally connected interpreters each interpreting the
one below. PISs actually are a first step toward general
introspection.

The 3-LISP approach to introspection, although
constrained to the procedural aspects, is elegant and very
powerful. Nevertheless, this kind of ideas have had a
relatively limited spreading in the A.I. applications community
and a very small set of relevant examples of introspective
programming are available. In our opinion, these problems are
caused by the lack of a general understanding of the power of
PISs and of a pragmatical experience on them. In fact, i) 3-
LISP and Brown are quite difficult to use, due to the unusual
power of reflection as a programming tool; ii) few PISs have
been developed on languages different from LISP; iii) the 3-
LISP and Brown implementations are quite complex to
understand and they arc based on a set of innovative concepts.
It is currently difficult to abstract and export the basic
mechanisms of procedural introspection.

So, all we need is experience in implementing procedural
introspection and in exploring its capabilities while facing
actual A.I. programming problems.

The ALICE system is an attempt to deal with the
integration of LISP and Horn clauses in a conceptually clean
way in the framework of PISs using reflection as a tool for
integration. The currently available solutions are based mainly
on the implementation of a Horn clauses resolutor embedded
in the LISP environment (J.A.Robinson and E.E.Sibert,
1982) (CMellish and S.Hardy, 1983). We want to achieve the
goal without privileging a single language to which all the
representations eventually collapse in, and without introducing
an ad hoc communication language. ALICE was developed at
the University of Milano and a complete running version of it
is currently available in Franz Lisp on a VAX 11/750.

As ALICE is mainly an exercise in procedural
introspection, the focus of attention is on the experience in
using and implementing PISs. This paper briefly presents the

44 ARCHITECTURES AND LANGUAGES

work on ALICE in this perspective. We follow a step by step
approach. Firstly, a new procedurally introspective dialect of
LISP is presented.Then, an independent PIS, based on Horn
clauses, is introduced. Finally, the two languages are
integrated into a single PIS. This requires a new point of view
on self description and the introduction of the mutual reflection
mechanism. Due to space problems, the presentation is very
schematic and all the details are omitted. A complete report on
ALICE can be found in (R.Ghislanzoni, L.Spampinato and
G.Tornielli 1986), (R.Ghislanzoni, L.Spampinato and
G.Tornielli 1987). We assume the reader knows the ideas in
(B.C.Smith 1984) and we don't undertake a presentation of
this theory and we use the Smith's notation in his same sense.

II STEP ONE: A PROCEDURALLY INTROSPECTIVE
LISP A LITTLE MORE GENERAL THAN 3-LISP

The LISP part of ALICE is based on 3-LISP, of which we
adopt all the basic concepts but for two points: the use of
explicit data structures instead of closures to represent
continuations and the introduction of reflecters instead of
lambda-reflect

The first choice de-couples the processed language from
the language in which the processor is written. The one-
language choice binds strictly introspective actions with
structures of the particular implemented language. In the
perspective of mutual reflection, the representation of the
future of the normalization process must be abstracted from the
implemented language.

In the LISP part of ALICE, a reflection is achieved by
means of a reflecter: a new type of pair (notated as a pair but
preceded by a ~), which indicates that the function application
has to be performed one level above the current one. So, there
are only simple lambda expressions which are possibly
reflectible. For example, in 3-LISP:
(DEFINE QUIT (LAMBDA REFLECT [Q ENV CONT] 'QUIT!))
3-USPl>(QUIT)
3-USP2>'QUIT!

In ALICE LISP:
(define quit (lambda [[] env com] 'quit!))
ALICE-LISP 1> -(quit) ALICE-LISP 1> (quit [] [] [])
ALICE-LISP 2> 'quit! ALICE LISP 1 > 'quit!

In PIS we consider three concepts about procedures:
procedure definitions describe manipulations on structures,
procedure applications describe which manipulation on which
structures and reflecters describe at which level the
manipulation has to be realized. In 3-LISP the first and the
third mechanisms are too strictly coupled. Reflection is not a
static property of a procedure but a particular way to use it

The implementation of the ALICE LISP is very similar to
the 3-LISP one. The finiteness criteria presented in
(B.C.Smith and J.des Rivifcres 1984) apply directly to our
modified processor definition (reflecters are treated by the
normalize function).

I l l STEP TWO: A PROCEDURAL INTROSPECTIVE
SYSTEM FOR LOGIC PROGRAMMING

The second part of ALICE is called Logic. Logic, as an
independent system, is a simple programming language, in
which programs arc sets of Horn clauses. The basic idea is to
recover as much as possible of the clear and simple initial

concept of logic programming (R.A. Kowalski 1974). We are
willing to obtain at least the power of current PROLOG
(L.Sterling and E.Shapiro 1986) by means of introspection.
The goal is to build a system based on 'pure' refutation at
domain level and on explicit procedural import at meta level.
From this point of view, Logic can be considered yet another
proposal in the set of Horn clauses based languages with meta
level programming (K.A.Bowen and R.A.Kowalski 1982).

Sentences, clauses, conjunctions and variables are
represented with new types of structures added to the
structural field of the LISP part. The structures of the LISP
part are terms for Logic.

We define the procedural import (1st factor,) and the
designation (2nd factor 4>) (B.C.Smith 1984) of Logic with
respect to refutation realized with the SLD resolution
procedure. Thus, the designation of a sentence is the truth
value TRUE or FALSE whether it can be proven in the current
theory with the defined procedure. The refutation by SLD
procedure defines the behaviour of Logic: it actually
constitutes the normalization process. Thus sentences
normalize to the boolean $T or $F whether the procedure
refutates them or it doesn't.

In order to make Logic semantically flat we defined a
category alignment for it (R.Ghislanzoni, L.Spampinato and
G.Tornielli 1986), following the way traced by B.C.Smith.

Logic contains the code of a metacircular processor as the
description of its own behaviour. It is the code (in Logic) of an
implementation of the refutation by SLD resolution procedure.
The state of the normalization process is explicitly represented
by a search tree and an environment, which is the structure
representing the current theory. The resolution tree is a
complex rail in the structural field with construction and
selection primitives.

Reflective acts are represented in Logic with logic
reflecters. Their notation is similar to sentences' one but with
a - at the beginning. The basic idea of reflection is the same of
the LISP part: the atomic sentence in the reflecter is modified
to include the terms for the representation of the environment
and the tree and it is processed as it were inserted in the
processor's code at a defined point.

The implementation of Logic is also based on a shifting
processor which recognizes the need of a reflection, makes
explicit (reifies) the state of the computation, and shifts up to
process the processor code augmented with the user reflective
code. If it realizes it is processing a part of the processor code,
it shifts down to directly process the user code, after recording
the state of the upper level for a potential successive reflection.

The precondition for the realization of a shifting processor
is the finiteness of the metacircular processor which describes
the system. The point, in the context of Logic, is the creation
of the representation of the search tree to be used by the
processor at the level n+2 when a reflection takes place
carrying the computation from level n to level n+1. We need a
standard way to produce a search tree for the state of a
processor processing itself. Otherwise, we have to provide the
state of the processor at any level and a finite implementation
can't be afforded.

As for continuation in 3-LISP, it is possible to verify that
the search tree of the processor processing the processor is
always the same. The tree must not change when considered at

Ghislanzoni, Spamplnato, and Tornielll 45

any two successive resolutions involving a processor's clause.
In (R.Ghislanzoni, L.Spampinato and G.Tornielli 1986), we
introduce a concept of invariance for the resolution tree of
Logic. We also provide an informal proof of the invariance of
the Logic processor tree while processing itself.

The construction of a new PIS, based on a language so
different from LISP, has revealed very interesting and
stimulating although not completely straightforward. It lead us
to the following considerations.

1) The crucial points are the choices of a proper
representation of the normalization process' state and the
way reflection is described in the processor's code. The first
choice has to be made in the perspective of the system actual
use. In Logic, the representation of the search tree was
designed to achieve the power of current logic programming
systems by means of reflection. For SLD a stack is enough,
but a richer representation allows the user to profoundly
influence the search strategy writing simple reflective code.

2) The mechanism which restarts the computation after each
input-normalize-output loop, is quite difficult to design. In
Logic, the generalization of the reply-continuation approach
of 3-LISP, required several attempts and the exploitation of
some tricky properties of the resolution tree representation.

3) The finite nature of the processor can be a little painful to
verify also if it is easy to guess. The notion of tail recursion
must be considerably generalized to be applied to
interpretation structures more complex than a stack.

IV STEP THREE: INTEGRATION AND MUTUAL
REFLECTION

We introduce mutual reflection with two observations
about the preconditions for procedural introspection.

1) Only when introspection takes place (by means of a
reflective act), it is necessary to explicitly know the
formalism in which the processor is written. If a program
does not introspect, it is processed by an implicit processor
the description of which has not a role in computation. In
other words, the actual form of the processor description has
to be fixed when some reflective code makes access to it.

2) The description of the system itself, which a PIS
embodies, must: i) completely describe the reflection
mechanism; ii) be suitable for a finite implementation
(shifting processor); iii) be completely processed by the
processor it defines. Such requirements are implicitly
satisfied by 3-LISP and by every PIS based on a single
language. Nevertheless, it is not mandatory for the self-
description of a PIS to be homogeneous with respect to the
representation formalism.

With mutual reflection the formalisms in which the
processor currently running is explicitly represented can be
chosen dynamically at each reflective act.

In ALICE the user can employ, at the starting level, LISP
or Horn clauses starting the normalization of a program in the
chosen formalism; let's say LISP. If there are no reflections,
the running program is normalized by a LISP processor whose
description is unspecified. In the user program LISP or Logic
reflecters can be freely used. The normalization of a LISP
reflecter forces the current processor to be represented in LISP
and the reflective user code is merged in it. The second level

processor is a LISP one but its representation remains
unspecified. The normalization of a Logic reflecter at the
starting level forces the processor at the first level to be a LISP
one represented in Logic and the reflective user code (a
sentence) is merged in it. So the second level processor is a
processor for Logic but its representation remains unspecified.
When starting from Logic the same holds with Logic for LISP
and vice versa. As ALICE is a PIS, reflective acts give access
to the representation of a normalization process' state.

This behaviour can be obtained if the descriptions of four
processors are available: one for each pair representation
language - normalized languago. The normalization of a LISP
reflecter in a LISP program gives access to the LISP in LISP
processor. A Logic reflecter in a logic program gives access to
the Logic in Logic one. The normalization of a LISP reflecter
in a Logic program gives access to the Logic processor written
in LISP and a Logic reflecter in a LISP program gives access
to the LISP processor written in Logic. In this sense we speak
about mutual reflection.

Interaction is now easy. When the user introduces a
reflection, whatever reflecter she may use, she can both get the
state of the current normalization of her code in the starting
language and start a new normalization process with respect to
the other language. In this way she is given a simple and
powerful tool to construct the 'bridge' between Horn clauses
and LISP more convenient for each specific application.

The ALICE description available (in ALICE) is composed
of two parts. The first consists of the code of the two
processors written in LISP (the LISP description). The second
consists of the two processors written in Logic (the Logic
description). Each description represents the two normalization
processes. Thus, each of the normalizations has a double
description. The choices in the representation of the state of the
normalization process are the same for the corresponding
descriptions. This makes it possible to keep the representation
of the state independent from a normalization process and from
the particular language the processor is written in.

The LISP description represents the way LISP reflecters
are processed (reflection mechanism) when they are inserted
both in LISP and in Logic code. The Logic description
represents how Logic reflecters are processed symmetrically.
In this sense, the two descriptions are complementary in
describing the whole system. ALICE is procedurally
introspective as a whole but its model of itself is decomposed
in two parts. It has a single polymorphic introspective ability.

A finite implementation is possible due to the finiteness of
the whole ALICE description as informally proved in
(R.Ghislanzoni, L.Spampinato and G.Tornielli 1986).

V EXAMPLES

In ALICE it is possible to move the computation above the
current level and start an interaction with the chosen processor.
The reflectible function quit, as defined above, allows to move
in the LISP description of the current level:

'Lisp 1> "(quit) 'Horn 34> "(quit)

'Lisp 2= 'quitted 'Lisp 35= 'quitted

One can also move in the Logic description of the current level:

{clauses: {QUIT :x :y :z}}

46 ARCHITECTURES AND LANGUAGES

•Hornl> ~{QUIT}
'Horn2=$F

*Lisp89> '{QUIT}
'Horn90« $F

A reflectible ALICE LISP function to be used in LISP
reflecters within Logic programs follws. It asks about the
provability of a sentence when it cannot be proven otherwise.

(define ask (lambda [[to-prove] env tree]
(let [[unif (unif-env-and (and-level tree))]]

(cond [(prove env (make-tree to-prove unif))
(prove env tree)]

[$F (block
(output 'can-be-proven?)
(output (expand to-prove unif))
(if (= (input) 'yes)

(prove env tree)
(prove env

(clcar-and-level tree)))))])))

For example:
'Horn 1 > {A 1}
Horn 1 = $F
Horn 1 >~(ask{Al})
'can-be-proven? '{A 1}
yes
'Horn 1 « $T

The last example is a couple of Logic reflectibe predicates to be
used in Logic reflecters within a LISP expression. It is the
definition of the well known *catch-*throw control structure.

(clauses: {rule {*catch :args xatch-env xatch-cont :result}
{lst:args:tag}
{2nd :args xatch-body}
{up xatch-cont :upped-catch-cond}
{bind :tag xatch-cont xatch-env :augmented-env}
{normalize :catch-body :augmented-env

xatch-cont :result}}}
{clauses: {rule {*throw :args :throw-env :throw-cont :result}

{1st :args :tag}
{2nd :args :throw-exp}
{binding :tag :throw-env :upped-catch-cont}
{down :upped-catch-cont xatch-cond}
{normalize :throw-exp :throw-env

xatch-cont :result}}}

They can be used as follows:

(define member (lambda [atm list]
-{♦catch stop

(mapc (lambda [x]
(if(=xatm)

~{*throw stop $T}))
list)}))

VI CONCLUSIONS

The experience of the ALICE project lead us to a couple of
general consideration about the actual development of PISs.

1) The shifting processor approach can actually help in
embodying procedural reflection in systems more complex
than 3-LISP. Moreover, the method - implicit in it - of
incremental generation of the explicit representations when
they are needed, make it possible to use reflection as a
powerful tool for the integration of different formalisms.

2) Mutual reflection can be extended to any set of procedural
languages, provided that each of them can be implemented in
a PIS and a new reflecter type can be added to its structures.
This extended ALICE system would have n descriptions of
itself, (for n involved languages). Each of the descriptions
would contain an interpreter for each language and describes
the system when only reflecters of the language in which is
written are used. All the descriptions together would
constitute the self description of the system which would be
procedurally introspective as a whole. In this sense, ALICE
can be seen as an achitectural proposal for systems in which
many different formalisms are integrated in a modular way.

ACKNOWLEDGEMENTS

We are grateful to G.Degli Antoni, B.C.Smith and J.des
Rivieres for the discussions which were of great help in
making clear to us the role of our work. We would also thank
D.Friedman for his encouraging comments .

REFERENCES

K.A.Bowen and R.A.Kowalski, Amalgamating Language
and Metalanguage in Logic Programming, in K.L.Clark and
S-A.Tarnlund (eds.), Logic Programming, Academic Press,
London, 1982.

R.Ghislanzoni, L.Spampinato and G.Tornielli, The
Reflective System ALICE, QUINARY QR-86-2, Italy, 1986.

R.Ghislanzoni, L.Spampinato and G.Tornielli,
Communication between USP and Horn Clauses by Mutual
Reflection, In (P.Maes and D.Nardi 1987)

R.A.Kowalski, Predicate Logic as a Programming Language,
Proc. of IFEP Conference, 1974.

P.Maes, Computational Reflection, Ph.D. Thesis, Vrije
Universiteit Brussels, Belgium, 1987.

P.Maes and D.Nardi (eds.) Proc. of of the Workshop on
Meta Level Architectures and Reflection, Alghero, Italy,
North Holland, 1987 (in publication).

CMellish and S.Hardy, Integrating Prolog into the POPLOG
Environment, Proc.UCAI-83, Karlsrhue, RFG, 1983.

J.A.Robinson and E.E.Sibert, LOGUSP: Motivations,
Design and Implementation, in K.L.Clark and S-A.Tarnlund
(eds.), Logic Programming, Academic Press, London, 1982.

B.C.Smith, Reflection and Semantics in USP, Xerox PARC
ISL-5,PaloAltoCA, 1984.

B.C.Smith and J. des Rivieres, Interim 3-USP Manual,
Xerox PARC ISL-1, Palo Alto CA, 1984.

L.Sterling and E.Shapiro, The Art of Prolog: Advanced
Programming Techniques, MIT press, London, 1986.

M.Wand and D.P.Friedman, The Mystery of the Tower
Revealed: A Non-Reflective Description of the Reflective
Tower, Proc.ACM LISP Conference, Boston MA, 1986.

$

Ghialanzoni, Spampinato, and Tornielll 47

