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Abstract

This paper extends Shapiro's Model Inference
System for synthesizing logic programs from ex-
amples of input/output behavior. A new re-
finement operator for clause generation, based
upon the decomposition of Prolog programs
into skeletons, basic Prolog programs with a
well-understood control flow, and techniques,
standard Prolog programming practices is de-
scribed. Shapiro's original system is intro-
duced, skeletons and techniques are discussed,
and simple examples are provided, to familiar-
ize the reader with the necessary terminology.
The Model Inference System equipped with this
new refinement operator is compared and con-
trasted with the original version presented by
Shapiro. The strengths and weaknesses of ap-
plying skeletons and techniques to synthesizing
Prolog programs is discussed.

1 Introduction

Inductive learning of concepts, given a set of examples
and counterexamples, has been given a lot of attention
in the Artificial Intelligence community. This paper con-
cerns a special case of inductive learning, synthesizing
Prolog programs from examples of their input/output
behavior. An incremental inductive inference algorithm
was developed in [Shapiro, 1983] for synthesizing logic
programs. Shapiro named his implementation the Model
Inference System (MIS).

MIS has several components including: detection and
removal of a false clause, detection of the inability to
prove a goal known to be true, and the ability to find a
new clause to justify the known truth of a goal. Anyone
experimenting with MIS quickly discovers that some pro-
grams are easy to learn, others can be synthesized with
difficulty, and others are beyond the scope of the sys-
tem. The reason for the variation in performance can be
traced to the refinement operator used to produce new
clauses, and the search strategy employed to determine
if the new clause correctly implies the examples. Hence
the refinement operator, due to its influence upon the
scope of the system, is the focal point for this paper.

This paper will describe MIS with one ofits refinement

Case Western Reserve University
Cleveland, Ohio 44106
U.S.A.

operators and with a new refinement operator based
on work on decomposing Prolog programs into skele-
tons, basic Prolog programs with a well-understood con-
trol flow, and techniques, standard Prolog programming
practices. In contrast to Shapiro's refinement operator,
which checks and adds new clauses one at a time, the new
operator produces all refinements and then checks the
clauses generated. In fact, every time MIS tries to learn
a new clause the refinement operator goes through the
same order of clause generation. By checking previously
refuted clauses, the program refrains from repeating its
mistakes. We will denote MIS equipped with our new
operator as the Model Inference System with Skeletons
and Techniques (MISST).

In MISST the refinement operator consists of two
phases. The first phase matches the necessary data
structures with a skeleton - an appropriate control flow
for the program. This generation of a skeleton is ac-
complished by creating a template using only the input
arguments from the program to be synthesized. Once
the skeleton is created, the second phase enhances the
skeleton by applying a technique to it. Each technique
will generate a program to be checked for correctness.
Examples of the types of programs which are hard or
impossible to learn and those easy to learn will be given
for each system. We will examine the implications of the
results and cite areas for future research.

2 The Model Inference System

The Model Inference System is an implementation of an
incremental inductive inference algorithm. Given a set
of examples and counterexamples of a new concept, MIS
produces a set of Horn clauses to represent the concept.
Whenever the current set of clauses prove a counterex-
ample true, the proof tree is used to determine the faulty
clause in the set which is then removed. If there exists
an example not explained by the current set of clauses, a
new clause is generated using a refinement operator. A
major assumption of the system is that an oracle exists
which knows the truth or falsity of any particular ground
instance of the concept to be learned.

The refinement operator determines the type of Prolog
programs which can easily/not easily be learned through
MIS. One refinement operator given in [Shapiro, 1983]
was specialized for generating clauses for definite clause
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grammars whereas a second operator was presented as
a more general operator. Each operator was designed
for synthesizing a different type of program. In this pa-
per, we use the generalised refinement operator for all
comparisons with MISST.

MIS needs to have access to certain knowledge to suc-
cessfully synthesize a logic program. The following two
types of knowledge are specific to the intended target
program and are supplied by the user.

Declarations about the type and mode of each variable
are used to determine how the variables will be instan-
tiated.

Information about 'allowable' predicates guides clause
creation. An added goal is related to the other goals
in the clause through the instantiation of variables as
specified by the type and mode declarations.

Other knowledge is included as part of the MIS
database. For example, there is a list of instantiations
for each type. A list variable can be instantiated to [] or
[X|X.].

The general refinement operator performs in the fol-
lowing way:

1. Instantiate output variables to some input variables,

removing those variables from the yet to instantiate
output list.

2. Instantiate inputs in the head of the clause to one
in the list of possibilities. In the case of lists, this
could create two new input variables, one for the
head of the list and one for the tail.

3. Instantiate outputs in the head of the clause to one
in the list of possibilities. In the case of lists, this
could create two new output variables, one for the
head of the list and one for the tail.

4. Unify two input variables which are selected at ran-
dom.

5. Add a goal which generates some output.

6. Add a goal for test purposes. The input variables for
the new goal are selected from the input variables
for the head.

MIS has specialized search strategies to determine if
a clause generated by the refinement operator covers a
particular goal. A clause A +~ By, B, =, B, covers a
goal A ifthere is a substitution @ such that A8 = A'# and
B;0 are true for 1 << 14 < n. The three given strategies
described in [Shapiro, 1983] are called eager, lazy, and
adaptive. The eager strategy will find a clause to cover
the goal in question and, if necessary, query the user to
determine the truth of the goals in the body. This is
a powerful strategy in the sense that it will go beyond
the current set of facts to synthesize a program. The
obvious drawback is the numerous interactions required
with the user. The lazy strategy behaves in an oppo-
site manner, only using goals known to be true when
checking the examples against the hypothesized clauses.
The lazy strategy is less powerful than the eager one but
does have the advantage of not requiring any assistance
from the user. The adaptive strategy is a combination
of the previous two. Like the lazy approach, the adap-
tive strategy will not query the user, but it will try to
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see if a goal is correct by not only checking the facts for
that goal but also by checking the facts for the body of
the clause. The strategy choice is important as to which
kind of programs can be synthesized as can be seen with
the well-known program append, given below, which can
only be synthesized using the eager strategy.

append([],Ys,Ys).
append([X|Xs],Ys,[X|Za]} :-
append({Xs,Ys,Zs).

The complete MIS algorithm is given in Figure 1. The
repeat loop in Figure 1 is bounded by the allowed depth
of the proof tree. The default depth used is 25.

The MIS Algorithm

Given a possibly empty set of Horn clauses (back-
ground information), goals to be called by the target
concept p, false-solutions = [}, and true.solutions = [].

repeat

Read the next example or counterexample of p
and add it to the corresponding list of true or
false solutions,

repeat

If it is possible to derive a fact in
false_solutions then find a false clause
and remove it from the set of Horn
clauses representing the hypothesis.

If it is impossible to derive a fact in
true solutions then generate the re-
finements until a previously untried
clause covers this fact. Add this
clause to the set of Horn clauses.

until neither of the If tests is entered
Output the current set of Horn clauses.

forever

Figure 1

3 Skeletons and Techniques

Wirth presented the idea of stepwise refinement as a
methodology to be used during program development to
produce clear, well structured programs [Wirth, 1971].
Currently, the collection of Prolog examples available
from the literature is lacking in structure. We have de-
veloped the method of stepwise enhancement to provide
this missing structure [Kirschenbaum and Sterling, 1990;
Lakhotia and Sterling, 1990].

Stepwise enhancement delivers a structured and pro-
cedural approach to Prolog program development which
can be described as follows: When a new problem is at-
tempted, isolate the basic control flow needed to solve
the problem and embody it in a skeleton. Once the
skeleton has been determined, extra computations are in-
cluded by applying appropriate programming methods,
which we call techniques, to yield an extension. Sepa-
rate extensions can be combined to produce the desired
product. The extension(s) can then be regarded as an-
other skeleton allowing us to repeat the process until
the final program has been developed. The number of



refinements made during the top-down development of
the program will determine how often the above process
will be repeated.

Stepwise enhancement can be applied to manipulating
recursive data structures, one of Prolog's strengths, since
the various methods available for handling recursive data
structures can be naturally partitioned into several skele-
tons based on a common control flow. These skeletons
constitute the basic building blocks for program devel-
opment. For example, if we need to process an entire list
of elements, we might want to use the following skeleton:

traverse([]).
traverse([X|Xs]) :-
traverse{ Xs}.

If we want to process a list until we find a particular
element then the appropriate skeleton is:

search({X|Xs]).
search([X|Xs])
search(Xs).

Two points need mentioning here. First, a slight mod-
ification in the base case produces a different skeleton.
Second, the only purpose of a skeleton is to drive com-
putations built upon it.

In contrast to the characterization of skeletons in
terms of control flow, techniques should be conceived
in terms of the specific goal to be accomplished. For ex-
ample, the appropriate method for counting the number
of elements of a list, the number of nodes in a tree, or
the number of goal reductions or depth in a proof tree,
has been to increment an argument and then carry it as
a context. Standard Prolog programming practices, or
techniques, like this one have the common feature that
they build upon an already existing program. The tech-
nique calculate can be applied to fraverse to produce a
program to find the length of a list. There are different
variants of calculate, one for each type of arithmetic op-
eration that could be added to the skeleton as an extra
goal.

Intuitively, one can think of skeletons as the mech-
anism which controls the program whereas techniques
determine what is done with the data. Skeletons, there-
fore, make explicit the control flow that the program is
expected to follow. A consequence of this is our restric-
tion of induction to Prolog programs rather than logic
programs more generally since logic programs are non-
deterministic and therefore display no predetermined
control flow. The separation of control flow from tech-
nique is the main idea for providing extra structure for
program synthesis. For more information about skele-
tons and techniques see [Kirschenbaum and Sterling,
1990].

4 MISST's Clause generation

In our prototype MISST system, we have restricted our
attention to list data structures. The skeletons are gen-
erated by choosing one or more list arguments to recurse
upon and by determining all the reasonable base cases.
We have made the same assumption as MIS that there
exists an all knowing oracle to answer the queries posed

by the system. We also assume the presence of informa-
tion detailing allowable predicates for clause creation.

An interesting aspect of skeleton generation occurs
when the target program uses other predicates for test-
ing and updating arguments. Predicates like < and >
require the comparison of two variables which, in all gen-
erality, may be any of the variables in the head of the
clause or even worse it may be output variables from
some other goal in the body of the clause. For example,
here are a few of the reasonable possibilities for a skele-
ton predicate with one list, two element variables and
which uses < and >.

sk([X|Xs),Y,Z) :- sk([X|Xe],Y,Z) :-

X <Y, X<z,
sk(Xs,Y,Z). sk(Xs,Y,Z).
sk([X)Xs],Y,2) :- sk([X|Xs),Y,Z) =
Y < Z, X>Y,
sk(Xs,Y,Z). sk(Xs,Y,Z).

Without using some knowledge we will generate too
many possibilities. The following quick estimate clearly
shows why. Let

« N = the arity of the skeleton predicate
* pi = number of arguments in the predicate pi

* M = number of possible predicates to be used in the
skeleton

s S=%¢M p.

E=1" %
Then, in the special case where each of the M predicates
is included in the skeleton once, and all the arguments
come from the head of the clause, we will generate N°
skeletons. Therefore the total number of skeletons gen-
erated is at least O(NS). An example of a poorly gen-
erated skeleton would be

sk([X|Xs},Y,Z) :-

X > X,

X>X,

sk{Xs,Y,Z).

Therefore, we have added the following knowledge to
MISST.

1. Mode of variables - unify input variables for the ex-
tra predicates only with the input variables for the
head of the clause or with an output variable from
another predicate.

2. Type of variables - only unify variables of the same
type.

3. Incompatible predicates - a ©predicate exclu-
sive (P red IPred2, Type) is used to indicate if two
predicates can only be used together under certain
restrictions. For example, < and > cannot be used
in the same clause if they have the same arguments
in the same order. Another situation we would
like to avoid would be having both X < Y and
Y > X in the same clause. For binary predicates
this can be accomplished by having a predicate op-
posite(Predl,Pred2), which will tell if the two predi-
cates produce the same results if the arguments are
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switched. A third category checks for symmetry.
We do not want to produce one clause having X #
Y and another clause which is identical except it
contains Y # X.

4. Last recursive call - every recursive skeletal clause
has the recursive predicate as the last goal.

This information is used both in the creation of the
clauses and for pruning the redundant clauses. In the
sense that this is knowledge about the program, it could
be called meta knowledge. Related terms in machine
learning are background knowledge and preference crite-
ria. The effect of the knowledge is to bias what programs
are learned. The skeleton creation phase can be thought
of as a description language to determine which concepts
are describable. This use of a restricted hypothesis space
is one kind of bias description found in [Utgoff, 1986].

The only technique we have implemented so far is col-
lect. This technique adds one output variable to the
sought after predicate. Depending upon the other goals,
the current head of the list is added or not to the out-
put variable. This technique is similar to calculate men-
tioned earlier in that it adds an output variable, and
depending upon the other goals in the clause, the value
of the head of the list is combined with other values
to be put into the output variable. An example of ap-
plying a collect technique to the skeleton search is to
return the list remaining after the element has been
found. In this case, the head of the input list is never
added to the output list. This generates the program
search with remainder(Xs,Ys).

search _with _remainder({X|Xs],Xs).
scarch_with_remainder({X|Xs],Ys) :-
search. with remainder{Xs, Ya).

5 Comparisons between MIS and
MISST

MISST is given a fact for the target Prolog program and
creates all possible skeletons using the knowledge men-
tioned above. These in turn are given to an enhance-
ment module to produce all possible extensions to those
clauses. The component of MIS which removes incorrect
clauses when counterexamples are supplied is applied
to the generated clauses to produce the final program.
Thus, the skeleton creation and the various techniques
in the enhancement module determine the possible pro-
grams to be learned.

MISST will synthesize programs having only lists and
elements as variables and either has no output vari-
ables or the output variable is used for some type of
collection. This last restriction can be overcome by in-
cluding more techniques but it isn't clear at this point
how slow the system will become as more techniques are

added. Some of the programs used for comparison in-
clude: prefix (3.13), suffix (3.13), append (3.15), sublist
(3.14), member (3.12), nonmember (7.5), select (3.19),

and subset (7.7). The number in parenthesis after each of
the above predicate names refers to the program number
used in The Art of Prolog [Sterling and Shapiro, 1986].
We also used predicates wunion, difference, and intersec-
tion in our comparison. The code for union is
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union([ ],Ys,Ys).

union([X|Xs],Ys,[X)Zs]} :-
nonmember(X,Ys),
union(Xs,Ys,Zs).

union([X|Xs},Ys,Zs) :-
member(X,Ys),
union(Xs,Ys,Zs)}.

The code for difference and intersection is similar to the
code for union. In each case, the third argument exem-
plifies a collect technique.

Unfortunately, since MISST is based upon MIS, it also
cannot remove redundant clauses. The program learned
for prefix given below demonstrates this unwanted be-
havior.

prefix(X,X}.
prefix({],[])-
prefix([],X).
prefix([X|Xs],[X[Ys]) -
prefix(Xs,Ya).

Removing redundant clauses is, in general, too compu-
tationally expensive to be practically implemented. One
possible way of avoiding redundant clauses is to take a
correct set of hypothesized clauses and form a new set of
clauses by selecting a base clause plus all the recursive
clauses and check if the examples can be proven by this
new set of clauses. If not, repeat the above with a dif-
ferent base case. Of course, in general, a program might
require two or more base cases and it is also possible that
some of the recursive clauses will be redundant.

Prefix, suffix, and append were easy for both systems to
learn. Not surprisingly, member, select and append were
very easy for MIS to learn since that refinement operator
gives a high priority to expanding and unifying elements
on a list. MISST found member, select and append to be
nontrivial programs to learn due to the large number of
clauses created by the refinement operator. Once these
clauses have been generated, it is necessary to feed the
system counterexamples to weed out the inappropriate
clauses. Subset was difficult for MISST to learn without
select being learned first because the first program pro-
duced for select in conjunction with the one produced
for subset will have an infinite loop in it. MISST will
recognize the non-terminating condition but, due to the
large default depth bound and the numerous clauses to
be tested, this is a very slow process. Union has the same
problems if nonmember and member are not synthesized
first. It took a lot of memory to complete the synthesis
of union even when its called goals are synthesized first.
The code generated for subset is

submet([][}).
subset([],X).
subset(X,X).
subset([X|Xs],Ys) :-
select(X,Ys,Ysl},
subset(Xs,Ys1).
subset([X|Xs],[X|Ys]) :-
subset(Xs,Ys).
subset{Xs,[Y|Ya]) :-



select(Y,Xs,Xsl),

subset(Xsl,Ys).
subset(X,[Y|Ys]) :-

subset(X,Ys).

The expected Prolog program is comprised of the sec-
ond and fourth clause above. The reason why select was
easy for MIS to learn, caused MIS to fail to learn both
subset and wunion even when the eager search strategy
was employed. Memory ran out! The refinement oper-
ator used for MIS gives priority to expanding the vari-
ables in contrast to adding goals to a clause. The variable
[X]Xs] will be expanded to [X,Y|Zs] making it difficult to
learn a program which calls numerous goals. Both sub-
set and union make use of the predicates member and
nonmember.

A nice feature of MISST can be seen in the synthesis
of the program for union. |f nonmember and member are
previously known to the system, the user does not inter-
act with the system from the time the initial declarations
are made until the list of possible clauses are generated.
The ability to free the user from system queries during
the clause generation stage will generalize for any tar-
get program that has all of its called goals previously
synthesized.

The weakness of MISST is the volume of clauses pro-
duced. The removal of the duplicate clauses produced by
MISST, before they are asserted as hypothesized clauses,
is the most expensive operation in the system. After
the duplicate clauses have been removed it is still nec-
essary to feed the system counterexamples to weed out
the inappropriate clauses. However, judicious selection
of counterexamples will limit the number required by the
system. A possible solution to this problem is to modify
MISST to keep all the generated clauses in a list to be
processed one at a time

Due to the combinatorial explosion of clause genera-
tion, a restriction was made in MISST to not allow an
expanded variable [X|Xs] to have both X and Xs in the
same goal in the body of the clause. This restriction
made it impossible to synthesize a program to remove
repeated elements in a list. |If the above restriction is
removed, union will explode with generated clauses. A
possible solution to this is to have different search strate-
gies similar to what is found in MIS.

6 Discussion

We believe this work will have a greater impact upon
learning when knowledge is introduced to direct the gen-
eration of skeletons. This is truly the bottleneck in
MISST. We may need to add knowledge in the form of
a relationship between the number of elements in lists,
or which list is to be recursed upon, or something else
to minimize the number of possible skeletons being gen-
erated. If we think of skeleton creation as the 'getting
started' process of learning, then MISST's difficulty is
that it is does not know how to get started. This is a
typical problem for learning systems.

The knowledge required to determine which of all the
possible skeletons are appropriate for a particular learn-
ing exercise is not currently captured in MISST. One

possible approach to reduce the complexity of clause gen-
eration without requiring too much from the user would
be to ask the user to give the position of the argument(s)
to be recursed upon. For union, the number of clauses
generated would be cut in half.

A promising source of insight for structuring skeleton
creation is the work of [Deviile, 1990]. The knowledge
included in his concept of logic specification overlaps
with the knowledge in MISST described in section 4 and
also contains extra information, for example multiplicity.
Deville's use of induction schemes in logic descriptions
may also be relevant since modifying the logical descrip-
tion of a skeleton can be interpreted as a shifting to a
weaker bias as described in [Utgoff, 1986]. The required
heuristic methods for deciding exactly how to modify the
skeleton creation process needs to be determined.

Work done by [Muggleton and Buntine, 1988] presents
a framework for Prolog induction which introduces new
predicates into the language it is supplied. Inverting
resolution is the tool used to weaken the bias description.
At this time, we do not know how usefull this will be for
skeleton generation.
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