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Abstract—Thematic groups are gaining a lot of attention and
high centrality in online community, as users share opinions
and/or mutually collaborate for reaching their targets. In this
paper we consider the concept of clique in the social networks.
A clique is a group of actors connected to each other more closely
than the overall network of which they are a part. In the common
language, the term clique means an informal and restricted
social group formed by people who share common interests or
characteristics. This paper proposes a new trust measure in social
networks which focuses on cliques. In particular, we represent
this scenario by means of a specific model, and we introduce
an algorithm for detecting trust recommendations. We show a
complete example of how our approach works.

Index Terms—Recommendation, Online Communities, Trust,
Group.

I. INTRODUCTION

In the last few years, the number of users of online social
networks has grown at an unprecedented rate. Many social
networks provide tools which recommend friends, and some-
times resources, to their users. These tools rely on a notion
of similarity between users or between a user and a resource.
Obviously, they are not able to recommend to a user new social
networks potentially relevant to him.

For this reason, an important target in Online Social Net-
works (OSNs) is to implement recommender systems capable
to supply users with profitable suggestions about users to
contact as interlocutors or interesting content to access. To
achieve this goal it is necessary to consider the opinions
provided by the community about the other users or the OSN
content [1]–[3]. However, some users have malicious or even
fraudulent behaviours in OSNs, thus the recommender sys-
tems could generate unreliable recommendations. Therefore,
in these contexts, it is necessary to introduce the concept of
trust.

The issue of trusting interlocutors largely emerged in online
e-Commerce communities as, for instance eBay, and now it is
discussed in many OSNs which allow their users to create
and share contents with other users as well as opinions. For
example, in the social networks EPINIONS1 and CIAO2 the
users supply reviews about commercial products of different
categories. Almost all of these platforms tackle this goal by
adopting a reputation system.

Reputation is a form of indirect trust, where a user takes
advantage from the opinions coming from other users for

1www.epinions.com
2www.ciao.it

evaluating the level of trustworthiness of an interlocutor.
Commonly, in the traditional OSN contexts, the reputation of
a user is evaluated by averaging feedbacks provided by all the
other users belonging to the same community.

In the past literature, there are many approaches based on
global reputation [4]–[6] which is calculated on the evaluation
of the users’ behaviours shared with the entire community,
and local reputation [7] that is based on the recommendations
coming by the entourage of the user (friends, friends of friends
and so on). The first type of approaches shows a limitation
due to the difficulty of taking into account the effects of
malicious or fraudulent behaviours, thus making the feedback
themselves. Also, they are limited by the fact they need
a training phase in generating recommendations. The latter
overcome these limitations but they do not consider a group-
based structure [8]–[10].

In this paper we present an approach to find a certain class
of groups of users linked by trust relationships. In particular,
we apply the BronKerbosch algorithm [11] to find the cliques
in a social network. The algorithm is a simple backtracking
procedure that recursively solves subproblems specified by
three sets of vertices: the vertices that are required to be
included in a partial clique, the vertices that are to be excluded
from the clique, and some remaining vertices whose status still
needs to be determined. Moreover, our approach depends on
two main parameters: the relevance given to the reliability with
respect to the reputation and the threshold of recommendation
under which a product can be considered as not interesting. We
propose an algorithm for detecting trust recommendations for
a user considering the recommendations that come from users
within his own cliques and those of other cliques weighted
with the global reputation. We also present a complete example
of how our approach works and an application to a real social
network.

The paper is organised as follows. In the next section,
we describe the BronKerbosch algorithm. In Section III, we
provides technical details about our approach for finding trust
recommendations about products. In Section IV, we survey
the related work of the recent literature. In Sections V and VI,
we describe a possible case study of the application. Finally,
in Section VII we draw our conclusions and illustrate some
possible future works.

II. THE BRONKERBOSCH ALGORITHM

The BronKerbosch algorithm [11] is a recursive backtrack-
ing algorithm used to find all maximal cliques in a graph. A
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recursive call to the BronKerbosch algorithm supplies three
sets of vertices C, S, and B as arguments, where C is a
(possibly non-maximal) clique and S ∪ B = Γ(C) are the
vertices that are adjacent to every vertex in C. Within the
recursive call, the algorithm lists all cliques in S ∪C that are
maximal within the subgraph induced by S ∪ C ∪B.

The algorithm selects v ∈ S to add to the clique C, and
makes a recursive call in which v has been moved from C to
S. In this phase, it restricts B to the neighbors of v because
non-neighbours cannot affect the maximality of the resulting
cliques. At the end of the recursive call, v is moved to B. The
recursion procedure ends when S and B are empty and the
output C is a maximal clique. To obtain all maximal cliques
in the graph, This recursive algorithm is called with S equal
to the set of all vertices in the graph and with C and B empty.
The algorithm is shown in Listing 1.

Listing 1. BronKerbosch algorithm
p roc BronKerbosch (C , S , B)
1 : i f (S ∪B = 0) t h e n
2 : r e p o r t C as a maximal c l i q u e
3 : end i f
4 : f o r each v e r t e x v ∈ S do
5 : BronKerbosch (S ∩ Γ(v) , C ∪ {v} , B ∩ Γ(v) )
6 : S := S\{v}
7 : B := B ∪ {v}
8 : end f o r

III. OUR SCENARIO

We introduce a virtual community V , formally denoted as
V = 〈A, C〉, where A is the set of agents joined with V and C
is the set of cliques contained in V . Moreover, each clique c is
handled by an administrator agent ac. All such communities
are organised in social structures based on social relationship
(like, Facebook or Twitter). The formation of a group (i.e.
cliques) is a process based on two main events: a user asks
for joining with a group and the administrator of the group
accepts or refuses the request.

In our proposal, we introduce two measures to ensure that
the recommendation system generates correct outputs. The first
measure is the trust. We denote it by the mapping TRUSTx,y
that receives as input two agents x and y and produces as
output a value representing the degree of trust between two
agents: TRUSTx,y = 0 (resp. TRUSTx,y = 1) means that x
assigns the minimum (resp. maximum) trustworthiness to y.
The trust measure is asymmetric. If x does not have a sufficient
direct knowledge of y, the agent must use the recommenda-
tions coming from the other agents of the community. For
this reason, we introduce a more general trust measure, by
combining two components RELx,y and REPy , where (i)
RELx,y is the direct reliability of y because has interacted
in the past with x while (ii) REPy is the global reputation
of y, i.e. the trustworthiness that the whole community has
in y. In particular, RELx,y assumes values ranging in the
domain [0 . . . 1]

⋃
{NULL}, while RELx,y = NULL means

that y did not have past interactions with x and thus it is not

able to evaluate y’s trustworthiness. In order to compute the
reputation, we adopt the notion of

REPy =
1

hmax|REVy|
∑

ρ∈REVy

hρ (1)

where |REVy| is the set of the reviews made by the user y
and h is the helpfulness, i.e., it is associated with each review
and represents the level of satisfaction of the other users for
that review. To normalise REPy , we divide it by the maximum
value of the helpfulness hmax. REPy assumes values ranging
in the interval [0 . . . 1]εR. Finally, we define TRUSTx,y of x
about y in the interval [0 . . . 1] as follows:

TRUSTx,y = α ·RELx,y + (1− α) ·REPy (2)

where α is a real number, ranging in [0...1], which is set
by x to weight the relevance he/she assigns to the reliability
with respect to the reputation.

A. The Trust-Based Recommendation System without and with
cliques

At this step, x receives some recommendations about the
community products. In particular, RECpx is the recommenda-
tion that the user x receives about the product p. It is calculated
as follows:

RECpx =

∑
y∈A,y 6=x TRUSTx,y · ratepy∑

y∈A,y 6=x TRUSTx,y
(3)

where ratepy is the review of the the user y about the product
p (a number between 1 and 6), weighed by the trust of y.
This means that his/her opinion about a product is taken into
account if his/her trustworthiness is high.

1) Cliques: Now, we introduce the clique’s concept in the
community. The cliques are calculated following the BronKer-
bosch algorithm described in the section II. In this case, we
suppose that the trust perceived by an agent x with respect
to the component of its clique is equal to tx,y + ∆, instead
the agent x considers the trust that user has in the whole
community (see Equation 2). In other words, if a user y
belongs to the same clique of x, tx,y can be increased by
a value ∆. Being part of the same clique, even if x and y do
not know each other directly, they have interests in common
and there is an indirect connection between them. ∆ is a
real number, ranging in [0...1], which is set by x to weight
the relevance he/she assigns to the clique with respect to the
standard configuration. tx,y + ∆ must not exceed 1.

IV. RELATED WORK

Concerning the concept of trust, there are several proposals
in the literature and in several domains [12]–[16] In particular,
a large number of papers in the literature investigated on the
topic we deal with here, therefore, in this section we cite
only those approaches which we consider comparable with
that discussed in this paper.

Sherchan et al. [17] present an important review of trust,
in which they comprehensively examine trust definitions and
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Fig. 1. The cliques obtained by applying the BronKerbosch algorithm.

measurements, from multiple fields including sociology, psy-
chology, and computer science. Trust models [18]–[21] allow
to exploit information derived by direct experiences and/or
opinions of others to trust potential partners by means of a
single measure [22], [23]. Xia et al. [24] build a subjective trust
management model AFStrust, which considers multiple factors
including direct trust, recommendation trust, incentive function
and active degree, and treats those factors based on the analytic
hierarchy process (AHP) theory and the fuzzy logic rule.
[25] describes how to build robust reputation systems using
machine learning techniques, and defines a framework for
translating a trust modelling problem into a learning problem.

In many disciplines, there is a population of people which
should be optimally divided into multiple groups based on
certain attributes to collaboratively perform a particular task
[26], [27]. The problem becomes more complex when some
other requirements are also added: homogeneity, heterogene-
ity or a mixture of teams, amount of consideration to the
preferences of individuals, variability or invariability of group
size, having moderators, aggregation or distribution of persons,
overlapping level of teams, and so forth [5], [28]–[30]. Basu
et al. [31] consider the problem of how to form groups such
that the users in the formed groups are most satisfied with
the suggested top-k recommendations. They assume that the
recommendations will be generated according to one of the
two group recommendation semantics, called Least Misery and
Aggregate Voting. Rather than assuming groups are given, or
rely on ad hoc group formation dynamics, their framework
allows a strategic approach for forming groups of users in
order to maximise satisfaction. In [32], the authors reveal how
these problems can be mathematically formulated through a
binary integer programming approach to construct an effective
model which is solvable by exact methods in an acceptable
time.

V. AN E-COMMERCE CASE STUDY

Now, we explain how it is possible to use cliques to generate
the recommendations of products for the users inserted into an
online e-Commerce communities. As an example, we propose
to model our community by a graph G.

We apply the BronKerbosch algorithm (see Section II) to the
graph depicted in Figure 1, which also contains the final set of
cliques obtained by the algorithm itself. In our case, there are
four cliques called c1, c2, c3 and c4. Moreover, the values of
REL are as follows: REL1,2 = 0.6, REL1,5 = 1, REL1,7 =
0, 82, REL1,8 = 0, 4, REL1,9 = 0, 3, REL1,11 = 0, 1,
REL2,3 = 0, 81, REL2,4 = 0, 81, REL3,2 = 0, 9, REL3,4 =
0, 85, REL4,2 = 0, 9, REL4,3 = 0, 81, REL5,1 = 0, 9,
REL5,7 = 0, 85, REL5,11 = 0, 4, REL6,8 = 0, 9, REL7,1 =
0, 81, REL7,5 = 0, 95, REL8,6 = 0, 81, REL9,10 = 0, 86,
REL9,11 = 0, 85, REL10,9 = 0, 91, REL10,11 = 0, 85,
REL11,9 = 0, 86, REL11,7 = 0, 3 and REL11,10 = 0, 9.

In particular, in our example, there are nine products that are
divided in three main categories called Electronics, Informatics
and Software, these are shown in Table I, while in Table II,
we show an example of dataset.

productID name categoryID
1 Car TomTom, Display 5” Electronics
2 Smartphone Android 5.1 Electronics
3 TV HD Ready 15,6” Format 16:9 Electronics
4 Notebook 15” i7, RAM 8 GB, HDD 500GB Informatics
5 Black and white laser printer Informatics
6 Tablet 7”, Wi-Fi, 8 GB Informatics
7 Microsoft Windows 7 PRO SP1 32/64-bit Software
8 Microsoft Office 365 Personal - 32/64 Bit Software
9 Nuance Power PDF Standard Software

TABLE I
LIST OF PRODUCTS

In our model, we have associated with each agent a profile
contained, as unique feature, the reputation to review the
products. This reputation has been computed by averaging, on
all the reviews posted by the agent, the helpfulness associated
with each review, where the helpfulness is an information
available on the dataset and obtained by the opinions
expressed by the users of the community. We obtain that the
reputation values (see Equation 1) of the agents belonging
to our scenario are as follows: REP1=0.79; REP2=0.76;
REP3=0.66; REP4=0.42; REP5=0.96; REP6=0.62;
REP7=0.66; REP8=0.5; REP9=0.77; REP10=0 and
REP11=0.58. At this point, we calculate the trust (see
Formula 2). Fixed the agent a1, we compute the opinion
(i.e., trust) that a1 has with regard to other agents. Recall
that this value changes with α. We consider three values of
α. In particular, α=1 means that the agent a1 considers only
the opinions of the agents with whom he/she interacted in
the past (contrariwise, α=0). Finally, α=0.5 means that the
agent a1 considers in the same way both the opinions of the
agents with whom he/she interacted both others. For detail,
see Table IV. Let ξ be a threshold fixed by the agent a1, we
suggest only those products that have RECpa greater than ξ
(in our case, we fix ξ > 4). In particular, we note that the
agent a5 that has a high value of reliability for the agent a1
buys the products p8 and p9. Also, a5 assigns to them a high
rate while the rest of the community gives a very low rate.
Surely a1 would be very interested in these products, because
he/she trusts a5 with a high value. At this point, we see how
the algorithm behaves. The agent a1 receives, at the current
step, some recommendations by the other agents, in response
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userID productID categoryID rating helpfulness
1 9 3 3 5
1 5 2 3 5
1 6 2 5 2
1 7 3 1 6
1 8 3 5 6
2 1 1 3 5
2 2 1 4 6
2 5 2 4 5
2 6 2 5 5
2 8 3 5 2
3 1 1 4 2
3 8 3 5 3
3 2 2 3 5
3 4 2 6 6
4 1 1 5 1
4 3 1 5 2
4 6 2 3 6
4 9 3 2 1
5 1 1 2 6
5 3 1 2 6
5 4 2 4 5
5 8 3 6 6
5 9 3 6 6
6 6 2 2 6
6 5 2 4 2
6 7 3 1 4
6 8 3 0 3
7 1 1 4 4
7 9 3 4 6
7 5 2 5 3
7 8 3 4 3
8 1 1 5 2
8 3 1 5 0
8 6 2 2 5
8 9 3 3 5
9 2 1 4 4
9 6 2 2 5
9 9 3 3 5
11 1 1 5 3
11 3 1 3 3
11 2 2 4 3
11 9 3 4 5

TABLE II
AN EXAMPLE OF DATABASE

to previous recommendation requests (see Table III). If α=1,
we suggest to a1 the products p5, p6, p8 and p9. In this case,
we consider the recommendations that come from agents that
have a high reliability. In fact, these products were acquired
and evaluated good by agents a5 and a2. Comparing these
results with truly user-purchased products, it is visible that
four out of four products were actually purchased by a1. If
α=0, we suggest to a1 the products p4 and p5. This is correct
because they are products purchased by agents who have a
high reputation in the community. But, these agents did not
interact directly with a1 therefore they do not know his/her
preferences. Indeed, only the product p5 is of interest to a1.
If α=0.5, we suggest to a1 the products p4, p5 and p9 . This
choice is a good compromise, since two of the three products
are of liking for the agent a1.

α p1 p2 p3 p4 p5 p6 p7 p8 p9
0 3.74 3.76 3.35 4.82 4.32 3.62 1.00 3.61 3.95

0.5 3.56 3.83 3.17 4.50 4.42 3.95 1.00 3.89 4.17
1 3.28 4.00 2.87 4.00 4.58 4.52 0 4.42 4.49

TABLE III
THE RECOMMENDATIONS TO THE AGENT a1

With the introduction of the cliques in the community, we

u v tuv(α = 0) tuv(α = 0.5) tuv(α = 1)
1 2 0.76 0.68 0.6
1 3 0.66 0.33 0
1 4 0.42 0.21 0
1 5 0.96 0.98 1
1 6 0.62 0.31 0
1 7 0.66 0.74 0.82
1 8 0.50 0.45 0.4
1 9 0.77 0.54 0.3
1 10 0 0 0
1 11 0.58 0.34 0.1

TABLE IV
SIMULATION PARAMETERS WHEN VARYING α

can consider the assumption made in the Section III. Recall
that, for the agents that are in the same cliques, the trust is
equal to tx,y + ∆. If tx,y + ∆ is greater than 1, tx,y = 1. This
means that for any value of Delta, tx,y can not assume a value
greater than 1. Now, we can calculate the recommendations
(see Equation 3) to the agent a1 for all the products in the
community in presence of the cliques and ∆ = 0, 5. The table
V shows the results obtained.

α p1 p2 p3 p4 p5 p6 p7 p8 p9
0 3.74 3.76 3.33 4.79 4.42 3.64 1.00 3.65 3.99

0.5 3.92 3.83 3.16 4.47 4.50 3.96 1.00 3.90 4.17
1 3.32 4.00 3.03 4.00 4.62 4.52 0 4.37 4.49

TABLE V
THE RECOMMENDATIONS TO THE AGENT a1 IN THE PRESENCE OF

CLIQUES

The results in the presence of the cliques are best, because
a3 and a7 know better a1 and consequently are able to make
targeted recommendations.

VI. THE APPLICATION OF OUR PROTOCOL TO THE SOCIAL
NETWORK CIAO

In this section, we describe the implementation of our
protocol for the social network CIAO. CIAO dataset, described
in [33], consists in a matrix with a total of about 36k rows,
each of them representing an event in the virtual community,
in the form userID, productID, categoryID, rating, helpful-
ness, timestamp. More in detail, CategoryID represents the
commercial category of the product for which the user has
released a rating, and the helpfulness (a number between 1 and
6) represents the level of satisfaction of the other users for that
rating. In addition, a dataset representing trust relationships is
available. It consists in a list of pairs of user IDs (x, y), where
each of them represents a trust relationship among user x and
user y.

The measure REP (see Formula 1) for each agent is
calculated using the code shown in Algorithm 1.

Listing 2. Algorithm 1: computeREP
Input r e v : t h e r ev i e w m a t r i x g e n e r a t e d by t h e a g e n t s
Input numAg : t h e number o f a g e n t s i n t h e community
Variable j : a r e a l number
Variable x : a r e a l number
Variable c o n t S c o r e : a r e a l number
Variable sum : a r e a l number
Variable r e p V a l u e : a v e c t o r
1 : sum :=0
2 : c o n t S c o r e :=0
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3 : for x :=1 to numAg do
4 : for j :=0 to length of r e v do
5 : if x = r e v [ j ] [ 1 ] then
6 : c o n t S c o r e := c o n t S c o r e + 1
7 : sum := sum + r e v [ j ] [ 4 ] ;
8 : end if
9 : end for
1 0 : if ( sum 6= 0) AND ( c o n t S c o r e 6= 0) then
1 1 : r e p V a l u e [ x ] : = ( sum / c o n t S c o r e ) / 6 ;
1 1 : sum =0;
1 2 : c o n t S c o r e =0;
1 3 : end if
1 4 : else
1 5 : r e p V a l u e [ x ] = 0 ;
1 6 : end else
1 7 : end for

First, for each agent x of the community (Line 3), if the
index x corresponds to the one contained in the review matrix
(Line 3), the algorithm saves all the helpfulness related to its
reviews within the variable sum (Line 7) and increases the
variable contScore to keep track of the number of reviews
affected by x (Line 6). At this point, if x has issued at least
one review (Line 10), the algorithm saves to the x position of
the vector repV alue the value of REP (Line 11). Otherwise,
the rep value is set to zero (Line 15).

The measure TRUST (see Formula 2) for each agent is
calculated using the code shown in Algorithm 2.

Listing 3. Algorithm 2: computeTRUST
Input a l p h a : a r e a l number
Input d e l t a : a r e a l number
Input i : a r e a l number
Input m: a r e a l number
Input c l i q u e s : an a r r a y L i s t o f a r r a y L i s t
Input r e p V a l u e : a v e c t o r
Input a d j a c e n c y m a t r i x : a S p a r s e M a t r i x
Input t r u s t o u t f i l e : a f i l e
Variable i n t e r : a HashSet
Variable v e r i f y : a r e a l number
Variable d e l t a : a r e a l number
1 : i n t e r := INTESECT ( c l i q u e s ( i ) , c l i q u e s (m) )
2 : if ( a d j a c e n c y m a t r i x .CONTROL( i , m) = t r u e ) AND ( lenght
of i n t e r = 0) then
3 : t r u s t ( i , m) := a l p h a + (1− a l p h a ) ∗ r e p V a l u e [m]
4 : end if
5 : else if ( a d j a c e n c y m a t r i x .CONTROL( i , m) = f a l s e ) AND ( lenght
of i n t e r = 0) then
6 : t r u s t ( i , m) := (1− a l p h a ) ∗ r e p V a l u e [m]
7 : end else if
8 : else if ( a d j a c e n c y m a t r i x .CONTROL( i , m) = t r u e ) AND ( length
of i n t e r 6= 0) then
9 : v e r i f y := a l p h a + ((1− a l p h a )∗ r e p V a l u e [m] ) + d e l t a
1 0 : if ( v e r i f y <= 1) then
1 1 : t r u s t ( i ,m) : = v e r i f y
1 2 : end if
1 3 : else
1 4 : t r u s t ( i ,m) : = 1
1 5 : end else
1 6 : end else if
1 7 : else if ( a d j a c e n c y m a t r i x .CONTROL( i , m) = f a l s e ) AND ( length
of i n t e r 6= 0) then
1 8 : v e r i f y := ((1− a l p h a )∗ r e p V a l u e [m] ) + d e l t a ;
1 9 : if v e r i f y <= 1 then
2 0 : t r u s t ( i ,m) : = v e r i f y
2 1 : end if
2 2 : else
2 3 : t r u s t ( i ,m) : = 1
2 4 : end else
2 5 : end else if
2 6 : if ( t r u s t ( i ,m)>0) AND ( t r u s t o u t f i l e 6= NULL) then
2 7 : i n s e r t t r u s t ( i ,m) i n t r u s t o u t f i l e
2 8 : end if

First, the algorithm verifies if the agents i and m have
cliques in common and stores them in inter (Line 1). The
algorithm performs some checks to determine how to calculate
the trust. If there is a direct link between i and m but they do
not have cliques in common (Line 2), the algorithm calculates

TRUSTi,m = α + (1 − α) · repV alue[m] (Line 3). If there
is no interaction between i and m (Line 5), the algorithm
calculates TRUSTi,m = (1 − α) · repV alue[m] (Line 6).
If there is a direct link between i and m but they have at
least a clique in common (Line 8), the algorithm calculates
TRUSTi,m = α + (1 − α) · repV alue[m] + delta and store
it in the variable verify (Line 9). The algorithm checks the
trust to verify if it takes a value equal to or less than 1 (Lines
10-14). Finally, if there is no direct link between i and m but
they have at least a clique in common (Line 17), the algorithm
calculates TRUSTi,m = (1− α) · repV alue[m] + delta and
verify if its value is equal to or less than 1 (Lines 18-23).
Whenever TRUSTi,m 6= 0, its value is inserted into an output
file (Lines 26-27).

Finally, the measure RECpx (see Formula 3) for each agent
x is calculated using the code shown in Algorithm 3.

Listing 4. Algorithm 3: computeREC
Input r e v : t h e r ev i e w m a t r i x g e n e r a t e d by t h e a g e n t s
Input t r u s t : t h e t r u s t m a t r i x o f t h e a g e n t s
Input numProd : t h e number o f p r o d u c t s i n t h e community
Variable r e c P r o d : t h e m a t r i x o f recommended p r o d u c t s
Variable recAg : a r e a l number
Variable s : a r e a l number
Variable sumRec : a r e a l number
Variable y : a r e a l number
1 : recAg :=1
2 : s :=0
3 : sumRec :=0
4 : for y :=1 to numProd do
5 : for n :=0 to length of r e v do
6 : if ( y = r e v [ n ] [ 1 ] ) AND ( recAg 6= r e v [ n ] [ 0 ] )
AND ( t r u s t .CONTROL( recAg , r e v [ n ] [ 0 ] ) = t r u e ) then
7 : s := s + r e v [ n ] [ 3 ] ∗ t r u s t ( recAg , r e v [ n ] [ 0 ] )
8 : sumRep := sumRep + t r u s t ( recAg , r e v [ n ] [ 0 ] )
9 : end if
1 0 : end for
1 1 : if ( s 6= 0) AND ( sumRec 6= 0) then
1 2 : r e c P r o d ( recAg , y ) : = s / sumRec
1 3 : end if
1 4 : else
1 5 : r e c P r o d ( recAg , y ) : = 0
1 6 : end else
1 7 : s := 0
1 8 : sumRec := 0
1 9 : recAg := recAg + 1
1 7 : end for

First of all, the algorithm initialises the variables recAg, s
and sumRec (Lines 1-3). recAg stores the agent’s index to
which we want to recommend the product. It is incremented at
the end of each for loop (Line 19). For each product y of the
community and for each row of rev (Lines 4-5), if there is a
revision for the product y that has not been inserted by recAg
and there is a direct link between the reviser (i.e., rev[n][0]
) and recAg, the algorithm calculates the numerator and the
denominator of the Formula 3 (Lines 6-8). Then, the algorithm
verifies that these values are different from zero and stores this
value in a matrix in row recAg and column y (Lines 11-15).
When the for loop on the revision matrix ends, s and sumRec
are reset and recAg is increased by 1 (Lines 17-19).

VII. CONCLUSION

In this paper, we introduce a trust model that integrates
reliability and reputation in an OSN organised by cliques.
In particular, we considered two important parameters: the
relevance given to the reliability with respect to the reputation
and the threshold of recommendation under which a product
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can be considered as not interesting. Furthermore, we present
a realistic example and the results show that, combining the
opinion of the whole community (reputation) with that of the
agents who had direct interactions with her/him (reliability),
the algorithm produces good recommendations. In addition,
the algorithm is more accurate when the cliques are introduced
in the OSN. Finally, we apply our approach to the social
network CIAO. Our ongoing research is focused on better
analysing the behaviour of this algorithm. In particular, we are
theoretically studying the efficiency and the effectiveness of
the approach from a statistical viewpoint, and we are perform-
ing some experimental campaigns for practically evaluating
the advantages introduced by our approach.
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trust-aware approach to improve the qos in dynamic grid federations,”
Concurrency and Computation: Practice and Experience, vol. 27, no. 17,
pp. 5411–5435, 2015.

[17] W. Sherchan, S. Nepal, and C. Paris, “A survey of trust in social
networks,” ACM Computing Surveys (CSUR), vol. 45, no. 4, p. 47, 2013.

[13] ——, “Improving grid nodes coalitions by using reputation,” in Intelli-
gent Distributed Computing VIII. Springer, Cham, 2015, pp. 137–146.

[14] F. Messina, G. Pappalardo, D. Rosaci, C. Santoro, and G. M. Sarné,
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Finding trust-based group structures in social communities,” in Interna-
tional Symposium on Intelligent and Distributed Computing. Springer,
2016, pp. 143–152.

[28] L. R. Hoffman and N. R. Maier, “Quality and acceptance of problem
solutions by members of homogeneous and heterogeneous groups.” The
Journal of Abnormal and Social Psychology, vol. 62, no. 2, p. 401, 1961.

[29] A. Comi, L. Fotia, F. Messina, G. Pappalardo, D. Rosaci, and G. M.
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