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Abstract

Because
and logic of

of the discrete nature of the memory
a digital computer, a digital com-
puter "sees" pictures in cellular form, each cell
containing a number that represents the

density of the viewed object at that cell. In
particular, when the picture is binary, each cell
holds a 1 or 0, depending on whether or not the
viewed object is projected onto that cell. The

convexity of cellular blobs - i.e., binary singly
connected cellular figures - is discussed and
defined in terms of the continuous blobs of which

the cellular blobs are images.

A theory of convex cellular blobs is sketched,
and the use of the "minimum-perimeter polygon" in
an algorithm for testing the convexity of cellular

blobs is described.
Introduction

In designing or
to recognize two-dimensional
one is often concerned with
ties of the presented objects.
properties are convexity, elongatedness,
lobedness, etc.

programming digital machines
connected objects,
the geometric proper-
Examples of such
three-

The properties
are well defined and understood’.

of continuous convex figures
But a computer

"sees" these objects in the form of cellular
rather than continuous images, each cell holding
a number that represents the object's projection
into that cell.

Hence it is important a)
the geometric properties of cellular blobs in
terms of the continuous objects of which the
cellular blobs are images, and b) to develop al-
gorithms that test cellular blobs for these
properties.

to define rigorously

In this paper we restrict our attention to
two-dimensional binary objects or "blobs", i.e.,
black figures on a white background, and to
binary cellular "images" of these objects, i.e.,
I's on a background of 0's. A cell holding a 1
represents a nonempty projection of the object
into the cell. Two examples of continuous binary
objects are shown in Figure 1. Figure 2 shows
how these objects are usually seen by a digital
computer. In this figure the cellular images are
arranged on a rectangular mosaic. Other mosaics,
such as hexagonal or irregular mosaics, are also
possible.

We describe the problem of defining and test-
ing convexity of bounded cellular blobs, and we
present a solution. In presenting our solution,
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we develop the elements of a theory of convex
blobs. In the Interest of brevity, the presenta-
tion of the theory is partly nonrigorous and
intuitive. For rigorous proofs, see Reference 4.

Statement of the Problem

A figure is defined to be convex if it con-
tains the line segment that joins any two points
of the figure. Otherwise the figure is concave.

Consider the cellular blobs illustrated in
Figure 2. Intuition tells us that Blob A is a
cellular image of a convex object, and that Blob B
is a cellular image of a concave object. Blob A,
considered as a continuous figure, is clearly
concave, as shown by the dotted line. Hence we
need to find a reasonable, intuitively satisfying
definition of "convex cellular blob." The proper-
ties we believe such a definition must have are
discussed in the next two paragraphs.

We think of "convexity" as a form of "smooth-
ness." l.e., the more convex an object is, the
smoother it is. When we ask whether a cellular
image J is convex or concave, we are therefore ask-
ing whether the smoothest object q, such that
[(q) m J, is convex or concave, where 1({g)A ¢ellu-

lar image of gq. Thus if we can find any plane
figure, say r, such that I(r) - J and such that r
is convex, then all objects smoother than r, say

qi, such that I(qi) = J, will also be convex.

This leads us to the following preliminary
definition of cellular convexity: A cellular blob
is convex if and only if there exists at least one
convex figure r of which the given cellular blob

is an image.

Searching for such an r is not a practical
test for convexity, however, because even after an
indefinitely long unsuccessful search such an r may
still exist. What we need is an algorithm for
constructing an object p, such that I(p) = J, and
such that if p is concave then every other object
whose image is J will necessarily be concave, too.
We show in Theorems 1 to 3 that the "minimum-
perimeter polygon" answers this need.

Unger's algorithms for detecting "vertical con-
cavity" and "horizontal concavity" are the closest
known earlier approaches to the detection of convex
cellular blobs. It is easy, however, to draw a
concave blob that is vertically convex and hori-
zontally convex. Such a blob is shown in Fig. 3.
The dotted line shows that this blob is concave.

-107-



Elementary Concepts of Plane Figures

A simple curve is defined intuitively as the

curve obtained from the continuous motion of a
point on a plane, such that the path of the point

never crosses or becomes tangent to itself, except
possibly when the path reenters itself. A simple

closed curve is a simple curve which reenters it-
self. A simple curve may be bounded or unbounded
at either of its "ends." (For rigorous defini-
tions of these entities, see Alexandrov'.) If
the distance of precisely one of a simple curve's
ends from the plane's origin is infinite, the
curve is singly unbounded; if both of a simple
curve's ends are infinitely distant from the
origin, the curve is doubly unbounded.

A plane figure, or simply a figure, is defin-
ed here as a set of points f having the following
properties.

1. f lies in a plane

2. f =, where is the empty set

3. f contains a simple curve c¢ which is
either closed or doubly unbounded

4. f contains the interior of c

5. f contains no point of the exterior

of ¢
Curve c is the boundary of f.

We usually represent a figure by a lower case
character, such as p, q, r.

A figure is bounded if it lies entirely with-
in some circle of finite diameter. Thus quadri-
laterals and ellipses are bounded figures. A
blob is any bounded figure. Note that if a
figure is bounded, its boundary must be closed.

A set of points s is connected if it is non-
empty and if every pair of points in s is contain-
ed in a simple curve belonging entirely to s. A
set of points is simply connected if it is connect-
ed and if there exists no figure f whose boundary
lies in s, but some point in f does not lie in s.
Note that every figure, as we have defined it, is
simply connected,

A polygon is a figure whose boundary contains
only straight line segments. Thus, in this paper,
a rectangle is a polygon, but a quadrilaterial
with a pair of intersecting opposite sides is not.

The vertex angle of a polygon is the interior
angle between two adjacent edges of the polygon.
Note that a vertex angle lies in one of the open
intervals (0,TT), (TT, 2TT).

As a consequence of the definition of con-
vexity, a polygon is convex if and only if each
of its vertex angles is less than TT radians.
Hence every triangle is convex. The above obser-
vations lead to the following definitions. A
vertex of a polygon is a convex vertex if its ver-
tex angle is less than IT radians; it is a concave
vertex if its vertex angle exceeds TT radians.

Elements of the Theory of Cellular Blobs

A cellular mosaic* is a set of bounded convex
figures (c }, called cells, such that eq Mecy =
either or part of the boundary of ¢ for all i,
j, and such that the union of all the cells covers
the entire plane.

A cellular mosaic is illustrated in Figure 4.
An array of cells which is somewhat like a cellu-
lar mosaic, but which violates the convexity re-
quirement, is shown in Figure 5.

Let p, q denote cells in a cellular mosaic,
q is a neighbor of p if p Mgq is a curve of non-
zero length. It can be shown that this curve must
be a straight line segment. Hence every cell of a
cellular mosaic is a convex polygon.

A cellular map is a nonempty subset of cells
of a cellular mosaic. A cellular map may consist
of just one cell. Note that a cellular map need
not be connected, bounded or convex.

A chain is a sequence of cells each of which
is a neighbor of its predecessor, its successor,
or both. A cellular map J is chained if it is non-
empty, and if for every pair of cells (a,b) in J
there exists a chain belonging entirely to J and
containing cells a and b. Note that if the boun-
dary of the union of the elements of a cellular
map J is a simple closed curve, then J is chained.

A cellular map J is the cellular image, or
briefly the image, of a figure p if and only if
a) the union of the members of J contains p, and
b) every member of J containing an exterior point
of p also contains a boundary point of p. We use
the notation I(p) to denote the cellular image of

P.
The degree of a polygon is the number of
sides it has. A minimum-degree polygon of a cellu-

lar image J is any polygon p such that I(p) = J,
and such that there exists no polygon g whose
degree is less than that of p and such that iCq”*J.

A minimum perimeter polygon of J is any poly-
on p such that I(p) = J, and such that there exists
no polygon q whose _perimeter is less than that of
p and such that I(g) = J.

The cellular exterior of a cellular figure J
is the set consisting of all cells not in J. J
denotes the cell exterior of J.

kJé- boundary of the union of all cells of J.
Clearly LJ is the boundary of a polygon, since
every cell of J is a polygon. At each vertex of
fedJ draw a circle of radius e, with e sufficiently
small so that the circle intersects only the sides
forming the vertex. Replace every corner of hJ

is similar, but not identical

nl

*A cellular mosaic
to, a "topological complex.
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by the portion of the correaponding circle in the
interior of LhJ. Thie replacement results in a
new c¢losed figure h.J in which every vertex of pJ
is replaced by a clrcular corner.

BJ A iy [I(QEJ)] 4 cellular boundary of J.

Note that BBJ = BJ

Let BJ denote the cell exterior of BJ. The cellu-
lar interior of J, denoted by GJ (G for "gues'),
conaiste of all cells in I that are not in BJ.
Thus GJ & J N BRJ.

A cellular map is strongly chained if its
cellular interior is chained, A cellular bleb 1is
a bounded strongly chained cellular map.

Theorem 1.

A cellular blob has precisely one minimun-
perimeter polygon.

Sketch of proof:

Suppose p; and p; are minimum-perimeter poly-
gons of a cellular blob J, and suppose py ¥ pz.
Let s denote those pertions of p; not in the
interior of p;, and let t denote those portions of
pz not in the interior of p;. Let p Aa Nt,

Note that the boundary of p, namely bp, must lie
whelly in BJ.

At least one vertex V of p ie convex with
respect to p and 13 a vertex of p: or pi. Suppose
V 1s a vertex of p;. (If it is a vertex of p3,
interchange the subscripta of p; and pz.) Con-
struct a straight line segment AB joining the
sides of p that have V in commen, close enough to
V so that AB lies whelly in p. Let g denote the
polygon formed by AB and the complement of AVB
with respect to bpi. Since bq lies in p, hg lies
in BJ. Hence I{q) = J. But the perimeter of q is
clearly shorter than that of p;, contradicting the
hypetheais that p; 4is a minimum-perimeter polygon

of J. Q.E.D.

We now arrive at the majn theorem of this
papet, for which we give a plausibility argument.

Theorem 2.

1f the minimum-perimeter polygon q of a
cellular hlob E{q) is concave, and if p is any
bounded figure such that I{p} = I{q), then p i=s
concave,

Plausibility argument:

The unshaded portion of Figure 5 represente
the cell boundary BI(p) of the cellular image of
p. Since g is concave, there must exlst at least
one concave vertex touching the boundary of I(p}.
Since q is the minimal permeter polygom of I(p),
the two vertices of q adjacent to ¥V lie on the
boundary of GI(p) as shown in Figure 5 by vertices
A, B. The dashed lines AV, VB denote two segments
of the boundary of q.

Since the cellular images of p and q are
identical, p must lie inside BI{(q). Note that
both AV, VB obstruct passage through BI(p).

Hence p must intersect both AV gnd VB, In Figure
6, p 18 indicated by dash-dotted 1ines, and the
intersections of p with AV, VB are indicated by
R, 5. Clearly line RS must lie outside I(g), a=m
does every line joining the edges of vertex V,
Hente line RS lies outside p. Hence p is concave,
and the theorem is demonstrated.

Basing our argument partly on the above
theorem, we can show that if &) p is a minimum-
degree or minimum-perimeter polygon of J, b) g
is & minimum-degree or minimum-perimeter polygon
of J, and ¢) J is strongly chained, then p a&nd q
are elther both concave or both convex.

Convex Cellular Blobs

As a result of the above theory, we may speak
of any bounded strongly chained cellular map aa
“"convex" or "concave." Hence we construct the
following definiticns.

A cellular blob J is concave 1f and only if
J has a concave minimum-perimeter polygon. If J
has no such polygon, J is convex. This leads us
to the following revised definition of cellular
convexity.

A cellular blob is convex if and only if 1its
minimum-perimeter polygon is convex.

Theorems 1 and 2 and the above definition
suggest the following approach to the automatic
recognition of convex cellular bleobs. Let a
"spider’ epin a taut elastic thread around GI(p).
As the splder moves along, the thread provides an
eatimate of a portion of the minimum-perimeter
path around GI{p)}. If during the spinning procemss,
the thread 1s forced to touch hI{p) and thereby
generate a concave vertex in the stretched thread,
the image is proved concave, provided the initial
point of the thread lies on LGI(p). If the
thread does not touch hI{p) after a stable path
af the thread iz establighed, the blob is proved
convex,

The following theorem 1s an interesting
consequence of our definition of convex cellular
maps .

Theorem 3,

1f & bounded figure p 13 convex and has a
strongly chained cellular image I{p), then I{p) is
canvex .,

Proof:

Suppose p Ls convex and I(p) is concave. Let
q be the minimum-perimeter polygon of I(p). Since
I(p) is concave, so 1s q. But since I{p) = I(q)
it is impospaible that p 15 convex and q is concave,
by Theorem 2. Hence, if p 1s convex, I(p) must
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be convex. Thus the theorem is proved.

It follows that if a convex figure p 1s con~
vex, its image I(p} remains convex under all ro-
tations and translations of p, provided I{p) is
strongly chained, Thus 1f a cellular bleb I(p}
is convex and p is a minimum-degree or minimum-
perimeter polygon of I(p), 1t follows that a) p is
convex, and b) any strongly chained image of a
rotation or translation of p 1s alsc convex.

Concluding Remarks

The relationships among convex figuresa, con-
cave figures, the cellular images of these figurems,
and the minimum-degree and minirum-perimeter poly-~
gona of cellular blobs are described by the table
in Figure 7. In this figure the set of cellular
images of any entry in the table is the same as
the sst of cellular imagea of any entry directly
above or below the first entry. For example the
set of cellular images of all concave minimom-
degree polygons is the same as that of all concave
minimum—perimeter polygons, On the other hand,
Figure 7 indicates that the set of cellular images
of all convex figures ia a proper subeet of the
get of cellular images of all concave figurea.

An algoerithm for finding the minimum-peri-
meter polygon of any cellular blob in a rectan-
gular cellular moaaic has been written and success—
fully executed on a large variety of blobs. This
algorithm will be described and discussed else-
where,
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Fig. 3. A concave blob that Is both vertically
convex and horizontally convex
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Fig. 5. An array of cells which violates the
convexity requirement of a cellular
mosaic
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Fig. 6. The minimum perimeter polygon in a



Convex figures

Convex cellular figures Concave cellular figures

odcellular images of convex
figures

Convex minimum-degree Concave minimum-degree
polygons polygons

Convex minimum-perimeter Concave minimum-perimeter
polygons polygons

Concave figures

Fig. 7. Relationships among various classes of
figures and their cellular images




