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A b s t r a c t 

An object recognition system is presented that it designed to handle 
the computational complexity posed by a large model base, an uncon­
strained viewpoint and the structural complexity and detail inherent 
in a single view. The design is based on two ideas. The first is to com­
pute descriptions of what the objects should look like in the image, 
called predictions, before the recognition task begins. This reduces ac­
tual recognition to a 2D matching process, substantially speeding up 
recognition time for 3D objects (with manageable storage overhead). 
The second is to represent all the predictions by a single, combined IS-
A and PART-OF hierarchy called a prediction hierarchy. The nodes in 
this hierarchy are partial descriptions that are common to views and 
hence constitute shared processing subgoals during matching. Many of 
the problems encountered with large model bases and complex models 
are reduced by subgoal sharing: projections with similarities explicitly 
share the representation and recognition of their common aspects. The 
original contribution of this paper is the automatic compilation, from a 
3D model base, of a prediction hierarchy that can be used to recognise 
objects. A prototype system based on these ideas is demonstrated us­
ing a set of polyhedral objects and projections from an unconstrained 
range of viewpoints. 

1 . I n t r o d u c t i o n 

Object recognition is a central aspect of the process of un­
derstanding visual information, helping us to relate what we are 
seeing to what we have experienced in the past. In spite of much 
progress in this area, there are crucial problems that have not 
received adequate attent ion. One problem is that of represent­
ing information about 3D objects in a way that makes match­
ing them to 2D image data efficient and reliable. That is, the 
geometric analysis required to relate an arrangement of 2D im­
age features to the structure and pose of 3D objects should be 
sufficient for recognition and yet not involve massive amounts 
of computat ion during the t ime-crit ical recognition task. An­
other problem is ensuring that the storage and t ime complexity 
grows only slowly w i th respect to the size of the model base 
and the complexity of the models. We emphasize efficiency for 
model-based vision because of the remarkable abil i ty of humans 
to rapidly recognize a large number objects from a range of view­
points [Biederman85]. Also, while there are other sources of 
information that seem to be important , specifically scene con­
text [Biederman85, Weymouth86] and model-independent un­
derstanding of 3D structure [Marr 82], these useful cues may quite 
often be unavailable, unreliable, or merely a first step towards a 
ful l interpretat ion. 

Techniques for relating 3D model information to 2D image 
data can be part i t ioned into two basic approaches: prediction 
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cycling and pre-recognition view analysis. In the former, rep­
resented by [Brooks81], the system iteratively cycles through a 
process of prediction!, deciding which projected model structure 
to search for in the image and what it looks like; observation, 
searching for image data that match the prediction; and back 
constraining, using addit ional properties of the matched data 
to further constrain the possible 3D poses and structural vari­
ations in the object. This approach could be computationally 
inefficient for large model bases since the prediction step would 
involve computing what is common about the projections of a 
large and possibly complex class of objects from a range of view­
points. Similarly, manipulat ion of part ial ly constrained poses 
during the back-constraining step can be involved [Lowe85]. 

In the alternative approach, pre-recognition view analysis, all 
expectations of what to look for in the image are generated be­
fore the actual recognition task. Recognition then becomes a 2D 
matching problem followed by object pose analysis and verifica­
t ion. The characteristic-view based schemes of Chakravarty [82], 
the property spheres of Fekete [84], the SCERPO system of Lowe 
[85], the principal views of Cooper [87] and the image-based de­
scriptions of the VISIONS system developed in [Weymouth86] 
al l roughly follow this method. Addit ional ly, this approach has 
similarities w i th the photometric stereo interpretation system of 
Ikeuchi [87]. 

Another basic idea incorporated into our design is the use 

of IS-A and PART-OF hierarchical representations ([Marr82], 
[Brooks8l] , [Mulder85] and [Weymouth86]). We developed a sin­
gle, combined IS-A and PART-OF hierarchy called a prediction 
hierarchy. The nodes in this hierarchy are part ial descriptions 
that are common to views and hence constitute shared process­
ing subgoals during matching. Many of the problems encoun­
tered w i th large model bases and complex models are reduced 
by subgoal sharing: projections w i th similarities explicit ly share 
the representation and recognition of their common aspects. 

The original contr ibution of this paper is the automatic com­
pi lat ion, f rom a 3D model base, of a prediction hierarchy that 
can be used to recognize objects. A prototype system based on 
these ideas is demonstrated using a set of polyhedral objects and 
projections from an unconstrained range of viewpoints. A fuller 
treatment can be found in [Burns87]. 

2 . O v e r v i e w 

The problem currently being studied is the compilation and 
use of a prediction hierarchy to recognize polyhedral objects us­
ing straight-l ine segments detected in the image. The actual 
objects used to demonstrate the design are shown in Figure 1. 
The objects have differences and similarities in various dimen­
sions and part of the problem is to take advantage of both. The 
similarities in their visual structure, such as occurrences of paral­
lelograms or of certain types of line junct ions, must be utilized by 
the recognizer to make the search for a match efficient. The dif­
ferences in visual structure, such as height-to-width proportions, 
must be uti l ized to discriminate between the objects. Addit ion-
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Fig. 1. 3D Objects uued to demonstrate prediction 
hierarchy compiler and matcher {tall box, cube, triangular 
prum, house, tetrahedron). 

ally, the variations in visual appearance caused by variations in 
the camera must be taken into account while doing the structural 
analysis. 

The camera geometry used is as follows. The viewpoint of 
the camera is taken to be the position of the image origin in 
the object coordinate system. Currently, the projection is taken 
to be normal perspective [Brooks8l] , i.e. orthographic projection 
w i th scaling. Also, since the objects are expected in any pose, all 
predictions generated are invariant to re-scaling, translation and 
rotat ion in the image plane. This means that there are only two 
degrees of camera variation that have a significant effect on the 
projections being described by the predictions, the two angular 
components of the viewpoint that sweep out a viewing sphere 
about the object. 

A top-level view of the algori thm is as follows-
• Compile the prediction hierarchy from the set of 3D models 

given, before the recognition task begins. The hierarchy is 
compiled by start ing w i th a small set of simple and very 
general structural predictions and then iteratively search­
ing for commonly occurring combinations or specializations 
of these predictions across all objects and views, eventu­
ally isolating predictions that characterize the projections 
of fair ly specific objects from a range of views 

• Match predictions to input image. During the recognition 
phase, look for matches between segment descriptions and 
actual sets of image segments by a combined search of the 
prediction hierarchy and image data base. The hierarchy 
is used as an organized network of recognition subgoals. 

• Refine the pose estimate. For each promising match, calcu­
late the pose more precisely given the image-model map­
ping and an in i t ia l estimate of the pose implied by the 
prediction matched (i.e., some typical viewpoint from the 
set of those that could satisfy the prediction matched). For 
pose estimation refinement, the iterative method described 
in [Lowe85| is used 

The integration of these three processes could be more so­
phisticated. However, the pressing issue at this point concerns 
the basic design of these steps; investigating further how they 
might fit together is outside the scope of this paper 

Following a description of the nature of the predictions and 
their representation (Section 3), the processes that compile them 
and use them for matching are discussed (Sections 4 and 5). 

3 . P r e d i c t i o n s a n d T h e i r R e p r e s e n t a t i o n 

A prediction is a statement concerning some structural aspect 
of the image of an object. For example, this may be as simple 
and general as an assertion that there exists a pair of parallel 
segments in the projection; or as complex as a description of an 
image unique to some object. A prediction is represented here 
as a relational graph; the elements in the graph are projected 
straight-l ine segments. The relations associated w i th arcs in the 
graph mutual ly constrain the orientations, positions and sizes of 
pairs of segments. 

A relation between a pair of projected segments used in the 
predictions is represented by ranges of four relational measures, 
u, v, a and s. Call one segment s\ and the other 82 The vector 

(u ,v ) is the position of segment 82 relative to s i : it is the dis­
placement of an endpoint of 82 f rom an endpoint of s-\ measured 
along s\ and normal to s1 divided by the length of s\. The 
angle between them, a, is measured counterclockwise from S1 to 
82; and s is the relative scale or length ratio of 82 over 81 A 
relation is defined as an extent box, i.e. a set of ranges in u, v, a 
and 8, in order to capture the variation over ranges in viewpoint. 
For instance, projecting a pair of parallel object segments over 
all possible viewpoints wi l l generate a set of measurements that 
have a single value (zero) in the a dimension but some extent in 
the others. Similarly, the family of projections of a pair of object 
segments that share an endpoint can be represented by a relation 
that has the value zero in both position components (u,v). A 
relation between projected segments is considered useful if it is 
valid over a wide range in viewpoints and its extent box is small 
in volume (for example, consider the two view-invariant relations 
just mentioned) The latter property is important if the relation 
is to help characterize an object's projection wi th a specificity 
sufficient to discriminate the object from a large number of other 
objects and f rom chance arrangements of image segments. A l ­
though invariant relations are clearly useful [Lowe85], they alone 
are in general not enough to fully characterize projections For 
instance, proportions are often strong characterizations of ob­
ject structure, but the length measurement ratios that represent 
them are often not str ict ly view invariant For example, the tal l 
box in Figure 1 has a height to width ratio that is significantly 
different from the cube over a large range in views, no other 
property can be used to differentiate them 

It should be clear from the above discussion that a prediction 
may be valid only over a restricted set of views for a given object 
A prediction instance is a set of model segments, a mapping from 
the model segments to the segments of the prediction's relational 
graph and the range of viewpoints from which the prediction is 
valid for these segment bindings For a given model base, each 
prediction has a set of such instances and a cumulative visibility, 
the total area of all their visibil i ty regions on the viewing sphere, 
across all objects. 

Any given prediction in the prediction hierarchy is implici t ly 
some relational graph, but explicit ly it is almost always described 
as some combination or specialization of other predictions (see 
Figure 2). In such cases, it is a derivative of the other predictions 
A prediction is a specialization of another if it can be described 
by adding new relations or narrowing the extent boxes of exist­
ing ones. For example, the square can be described by adding 
a relation between the bot tom and side segments of the more 
general parallelogram prediction that constrains their ratio of 
length to one. A prediction is a combination of other predictions 
if it can be described as a conjunction of these other predic­
tions. Predictions may be combined in various ways, depending 
on the segment mappings between the whole prediction and its 
parts. See, for example, the triangular prism prediction of Fig­
ure 2. The mappings are collectively called the arrangement of 
the combination. 

4. Prediction Hierarchy Compiler 
The compiler attempts to build a prediction hierarchy that is 

composed of predictions that are commonly occurring combina­
tions or specializations of other predictions. An added prediction 
should occur commonly enough that its satisfaction tends to di­
chotomize the instances of the prediction it is derivative of; and 
thus allow the recognizer to efficiently search for matches to ob­
jects and views. A useful way to bui ld such a structure is by 
start ing w i th a small set of simple and very general structural 
predictions and then iteratively searching for the commonly oc­
curr ing combinations or specializations, eventually isolating pre­
dictions that characterize the projections of specific objects. By 
using this iterative construction approach we l im i t the combina­
tor ia l complexity, and hence processing t ime, to a manageable 
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Fig. 2. Predictions 
of other predictions. 

level. This is because the system is never performing subgraph 
isomorphism analysis over large graphs it is always comparing 
combinations of small numbers of parts 

For the experiments reported here, parallelism and endpoint 
coincidence are used as the ini t ial set of simple and general pre­
dictions; and the iterative process is stopped when all of the 
predictions wi thout derivatives (the ones at the top of the hi­
erarchy) are either associated wi th single objects or, if they are 
satisfied by projections of more than one object, there are no de-
Bcribable differences between their projections The prediction 
hierarchy compiler implemented iteratively combines predictions 
and then follows this up wi th specialization of the prediction to 
discriminate between objects that cannot be distinguished by 
parallel and end-point coincidence relations alone. 

For each iteration of the combination process, the system iso­
lates frequent combinations by (1) finding predictions that often 
appear together in the same projections and then (2) character­
izing and representing the arrangement of the combination. The 
co-occurrences are found in the following fashion. A l l instances 
of all predictions are stored in data structures called visibility 
maps. There is a visibi l i ty map for each object; the maps are ar­
rays of cells indexed by the two viewpoint parameters, making a 
discrete sampling of the view sphere about the object. Each cell 
lists prediction instances visible from the associated viewpoint 
and object; and w i th each prediction is a list of cells that contain 
i t . To find frequent co-occurrences between some prediction P 
and other predictions, the system looks for predictions that ap­
pear in the same cells as P and accumulates the total number of 
cells for each that do. To keep the number of combinations anal­
ysed down to a manageable size, we consider only co-occurring 
pairs in whose arrangements the part-to-whole mappings overlap 
for at least one whole segment. 

The combinations selected during a given iteration are those 
that are frequently occurring. Addit ional ly, a heuristic is used 
to throw out predictions whose satisfaction during recognition 
creates dead ends in the matching process. The details of this 
heuristic can be found in [Bums87]. Very briefly, it dictates that 
the compiler adds a given prediction P only if, when P is satisfied 
by the projection of some object, that satisfaction almost always 
leads to a match of a derivative of P that is unique to that object. 

The prediction hierarchy compiler design was tested on the 
models in Figure 1. The resulting hierarchy is shown in Figure 3. 

as specialisations or combinations 

There are six levels of the hierarchy; the average path length be­
tween the in i t ia l nodes and goal nodes (object matches) is 3.9. 
The tota l number of nodes (predictions represented) is fifteen. 
Considering that the hierarchy is capable of being used to dis­
tinguish five objects from almost all viewpoints (wi th an average 
of 8 segments per view) — and the predictions are represented 
efficiently as combinations of simpler ones, this appears to be a 
reasonable result. 

The iterative combination left the tal l box and cube objects 
indistinguishable. This was corrected by the specialization pro­
cess by adding segment length-ratio relations between two pairs 
of segments. This conjunction of two proportional relations was 
satisfied by the tal l box projections over most of the view sphere, 
and satisfied by none of the projections of the cube. 

5 . R e c o g n i t i o n 

The object recognizer finds correspondences between seg­
ments detected in a given image and the segments of some model 
in the model base by an organized search of the prediction hierar­
chy and image data base. Like parsing and other interpretation 
problems, there are many ways to perform such a search (e.g., 

top-down, bottom-up or some combination of both). A fairly 
straight-forward method of search was implemented for the pur­
pose of demonstrating the usefulness of the prediction hierarchy. 
The search proceeds in a bottom-up fashion by iteratively select­
ing a previously satisfied prediction (an image-prediction match), 
at tempting to find additional evidence in the image to satisfy its 
derivative predictions (i.e., testing new constraints on already 
matched image segments for specializations and searching for 
parts for combinations), and storing any new image-prediction 
matches for further expansion. Figure 4 shows the results of this 
matching process using the hierarchy in Figure 3 and a synthet­
ically generated set of image segments. 

6 . C o n c l u s i o n 

An object recognition system is presented that is designed 
to handle the computational complexity posed by a large model 
base, an unconstrained viewpoint and the structural detail in­
herent in a single view by extensive view analysis and the organi­
zation of predicted data into a PART-OF/ IS-A structure called 
a prediction hierarchy. The original contribution of this paper is 
the automatic compilat ion, f rom a 3D model base, of a prediction 
hierarchy that can be used to recognize polyhedral objects. This 
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t a l l box cube 
house 

Fig. 3 The resulting prediction hierarchy compiled 
from views of the objects in figure 2. The node* represent 
predictions and arrows indicate combination and special­
isation links. The predictions are represented graphically 
by segments and dashed lines for parallel relations. 

research has been done in conjunction w i th studies of the visual 
properties of continuous surfaces |Callahan85] for the purpose of 
recognizing objects w i th curved parts and convexities. Further 
experiments w i l l involve larger model bases, more complex mod­
els, and image noise. Current design refinements are centered 
on the cost/benefit analysis of adding a prediction to the hier­
archy and the matching control strategies ([Weymouth86] and 
[Draper87]), including the use of image context for match selec­
t ion. 
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