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ABSTRACT

The objective of the present paper is twofold: first, to
establish explicit conditions for the elicitation of
consistent a priori and conditional probabilities for a
set of events representing pieces of evidence and
hypotheses. Furthermore, an algorithm is proposed
which uses these consistent input probabilities to
compute lower and upper bounds for higher order joint
probabilities. Secondly, problems concerning the
aggregation and propagation of probabilistic estimates
are considered. It is shown how these could be solved
by using the higher order joint probabilities obtained
for the elements of the so-called complete set of
mutually exclusive atomic events.

I INTRODUCTION

A representation of uncertainty in terma of
clamsical Dayesian probabilities requires three baaic
inputs, namely: (i) a aet of n events {E. }, ench event
designating either an evidence, if it is in the premise of
en IF - THEN rule, or a Aypothests, if it appears as a
conclusion in such a rule; (ii) & priori probabilities
P(E. ), 1<i<n for the evenis under consideration; (iif)

coudmonal probabilities P(E, /E ) and P(E; /E ).

A number of problems are associated with this type
of representation of uncertainty. First, the above input
probabilitien elicited from the expert may not be
connistent with respect to the following twe conditiona
(1) and (2) respectively:

P(E )= P(Ej ).P(E, /Ej )+ (1- P(E; ))P(E, / ﬁj )
P(E; ;) = P(E; /E; }P(E; ) = P(E; /E; ). P(E;)

Becond (1) mdﬂs 2 are not fulfilled for arbitrary
conditional probabilit requirments for
conaistency are neaded reﬂar.t the relationship
betwsen the P(E; )'s and the P(E, Ej }'s. Third, if the
input probabilitiss are not consistent, then the problem
proragatwn of unc.ertainty can not be led by

the following classical rul
P(E /E“ )-P(E /E )P(E /E‘ )+P{E /E
lP{E /B ) (3)

So, what are the consistency conditions under
which we can apply (3) ? Finsally, consider quqtlom
like: How to determine a consistent P(E, /E, E ).

representing a rule as “IF Ei and Ej THEN Ek i How

to determine a consistent higher order joint probability
such as P[Ei Ej E, ) etc. These are usually answered

under the very much restrictive assumption that all E.
's represent independent evidence. Also it is often
forgotten that although the input probabilities might
have been elicited in a consistent way, the resulting
higher order joint probabilities might not be consistent
at all.

I1 Obtaining consistent input probabilities

Once a set of n cvents {E. } is specified together
with thea prion probabllltm{li(E )} . one is asked to
assess the conditional probabilities P(E /E ) and P(E;
/ Ej ), thus obtaining the following two mntr:r.eu (i} the
dependent oceurence matriz DO = [ a. |, 1<i<n,
1<j<n, oy = 1, with Y = P(E. /E; )

(ii) the dependent non-occurence matnz DNO = | b L
1<i<n, 1<j<n, by = 1, whhb = P(E /E ).

Now if E. and E. are two independent evidences
thm"'ﬁ=P{Ej/i)=P(Ej ); if they are two
meutually exclusive hypotheses, then ,:P = P(E; [E;) =

e

0. Thus, knowledge about iudepe nt evidence and
mutuclly exelusive hypotheses is explicitly encoded in
the DO-matrix. The problem in that two subjective
assemsments, say, E'(Ej /E; ) and P(E; /E. ) might be

inconnistent with respect 'r.o (2) while P(l% [E ) and
P(E, /E. ) might be inconsistent with rupect to (1).

An l.d ional troubls, con implementation, is
reflected in the huge number of subjective assesaments:
in the case of the DO-matrix their number is n.(p-1);
n.{n-1) in the case of the DNO-matrix, plus of course
the n P(E; )'s. However, what seems to have been

completely ignored is that all P(E JE. Vs fori »jin
the DO-matrix, can be computed from the P(E, /E )'s
for i<} by rewriting (2) aa:

P(E, /E;) = (P(E; /E; ).P(E, ))/P(E ) (%)

Unfortunately, applying (4) produces consistent
P(E, /E Y= only if i mtrodm:ins( ) further
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restrictiona on P(E; /E; ) ie. P(E; /E; ) € [LB;; , UBy,
| where

LB; = max (0, (P(E; ) + P(E; ) - 1))/ P(E; ))
UB;; = min (1, P(E; )/P(E, ))

The question now is: If P(E; /E, ) € [LBji . UBji ]
will P(E; /E; ) be also wit{lin the range of its
admissible values ? The answer is, yes, iff P(E, /E, ) €
[ LB;; UB.. | and P(E, /Ej ) is obtained by (4). Thus,
given the P(E; )'s and the P(E, /E; )'s for ij, the
Iatter within the range of their admussible values, all
remaining P(Ei /EJ )5 for i>j can be obtained
antomatically from (4) and vice versa. Also, the

number of the subjectively assessed conditional
probabilities ix reduced to n.(n-1}/2 . As to the
DNO-matrix, rewriting (1) as,

P(Ei fﬁj )= (P(Ei )- P(Ej )-P(Ei /Ej N/ P(ﬁj ) (3

we can compute consistent entries using the P{E. }’s

and the consistent entries of the DO-matrix, {hus
further n.(n-1) subjective assessments being dropped
aside.

To conclude we will finally show that the
consistent values obtained for P(Ei ) P(Ej ), P(Ei /Ej
) and P(E, /E. ) satisfy the condition under which {(3)

i)
is fullfilled.

Proposition . Let P(E, /Ej ) defines the point {1,
P{Ei /E: )} in the positive quadrant of a coordinate
system, while P(E; } a~.nd P(Ej ) define the point (l:'(l‘i:.i
) P(Ei )} and P(E}i /Ej } defines a point (0, P(E, /Ej
). Th, if P(E, /Ej ) is obtained by ($) the point (0,
P(E, /E. )) belongs to the straight line that passes
through the points (P(Ej ). P(E; }) and (1, P(E, /E.i N

II Constructing joint probabllities

The entries of the DO and the DNO matrices can
not be used for representing rules of the form, IF Ei

and Ej THEN E, . Thus, there is & need for

determuning a consistent higher order conditional
probability such as P(Ek /Ei E. } which is not directly

assessed by the expert, but ca.n'Le computed as,
P(Ek /Ei Ej }= P(]!:i Ej Ek )/P(Ei Ej } (6)

Here, we have to determine a consistent P(Ei E.

E, ), given the already consistent a priore md
conditional probabilities related to E, ,E; and E, . This

in turn, can be used to obtain bounds for P(Ek /Ei Ej
) by use of (6).
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In (E. Kounias 1968) it has been proved that the
best upper (UB) and lower (LB} bounds for a union of
events ie. P(E, UE, U ... UE ) are given as:

UB = min {El.-lm p(Ei )- m.xj-hu (Eisﬁj.l-n- P(Ei
E; )1
LB =max (L PE)}-I_ L PEE

)

However, we are interested in bounds on higher
order joint probabilities while the above result is valid
for bounds on unson of cvents. However, this ia not a
serious obstacle since one has that:

P(E, &, .. E )=1-P(E,UE,U..UE_ ) (11)

Hence, we wish to obtain bounds on P(D, D, ..
D, ) where, each D; can be either E; or E, . To.be able
to .u:hieve this, we require bounds on P[Dl UD, U ..
uD, ) using as input the following already consistent
probabilities: (i) the P(E; )’s; (ii) the P(E, /Ej )'s, and
(iii) the P(E, /Ej )’s. Then the algorithm proposed is
as follows:

Step 1. Compute a matrix C as follows:

If D, = E; and Dj = Ej: & = P(E; Ej) = P(E;

/E; )-P(E;)

D, = E and D, = Ej : ;= P(E ﬁj) = P(E,
/E;).P(E;)

¥D; = Eand D= E: o =P(E E) = P(§,
/E;).P(E; )

Ifl:)i=f,‘ifndﬁj=E.: e. =P(E. E ) =(1-
P(E; /5 ). P(E;)
Step 3. The quantities P(Ci ) are computed as: P(Ci
) = P(D,)
Step 3 . The upper bound UB is to be obtained aa:

a) Compute E i=1,2..n

C..
FELj=a 1)
b} Compute E“m P(C. )
c) Compute the upper bound UB according to:

UB=minfl_ P(C;)-mex(L, < ).1)

Step 4 .

a) Compute a aet of lower bounds SLB as follows:
SLB(1,)) = P(C; )

SLB(2,i,j) = P(Ci ) + P(C.i ) - %
1.2..n

i=12...,n

i j»i =



SLB(3,i,jk) = P(C; )+P(C }+ Py ) - ¢5-
ey hidhk>]= 12,.

SLB(nijk,..)=L P(C)-L

i=1im j=it+ln cii
Compute the best lower bound LB as the maximum
all SLB's

Finally, once we have obtained both LB and its
corresponding UB we can use (11) and thus cbtain:

1-UB<P(D, D,..D ) <1-LB

It is to be stressed here that the bounds on the
higher order joint probabilities might be consistent for
some of them and inconsistent for others. To resolve
this problem will require to determine explicit
conditions for the input probabilities so, that the
bounds on all higher order joint probabilities be
consistent. This in turn will produce consistent higher
order  conditional probabilities. The  consistency
condition for each _particular higher order joint
probability is that, LBL UB ie. an inequality which
two parts are linear functions of certain particular a
priori probabilities and certain entri €. of C.

’
Furthermore, each an be represented as a linear

function of particular input a priori and conditional
probabilities. Thus, if we want all higher order joint
probabilities to have consistent bounds, we have to
find such values for certain of the input probabilities,
which are solutions to a system of simultaneous
inequalities - each inequality representing the
consistency condition for the bounds of each particular
higher order joint probability.

(A% Reasoning with consistent probabilities

The possibility to obtain consistent bounds for an
arbitrary set of higher order joint probabilities helps in
determining the probability of conjunctions of any
number of E. 's; the probability of disjunctions of any
number of E. 's, and also higher order conditional
probabilities For IF - THEN rules which premises
and/or conclusions are conjunctions of an arbitrary
number of E; s,

However, when determining the probability of an
arbitrary compound logical proposition or a conditional
probability consisting of such propositions, an arbitrary
set of higher order joint probabilities is simply not
enough. In this special case one needs higher order
joint probabilities for the following set of N = 2
mutually exclusive events:

E,E, By ..E, 5 E  E

1 11 .11 1

P
P

1
2111...17.(]

PNOOO...OOO

Here, 1 expresses that an event occurs and 0 that it
does not occur. The rows represent a complete set of
mutually exclusive atomic events where P. is the

probability of the i-th of those events and ) S P, =
1. Now applying the technique proposed in the
previous section we can obtain consistent bounds for
each atomic event P. that confine its actual value.

Obtaining consistent probabilities for 2 complete and
mutually exclusive events, guarantees that we can
always find a concrete single value for each of the P. 's,
so that they sum up to 1 though, one can as well use
the intervals confining it. Then, having assigned such a
single value (or an interval) to each atomic event we
can, as shown in (Konolige 1982), express any logical
formula as a disjunction of some subset of (13).
Furthermore, the probability of the proposition of
interest can be determined by simply summing the
probabilities of the corresponding mutually exclusive
atomic events, members of the disjunction. One
advantage that comes from this representation in terms
of higher order joint probabilities is that loops in the
inference net does not matter - the algorithm through
which these joint probabilities are obtained does not
make any use of the concept of directionality.

\% Conclusion

The paper presents a new method for computing
consistent probabilities for arbitrary logical
propositions the main advantages being that: (i) it
allows the expert to assess in a consistent way a
minimal amount of input-data in terms of a priori and
conditional  probabilities; (i) the amount of
computational effort for determining higher order joint
probabilities is much less when compared to methods
based on the minimum-information assumption
(Konolige 1982) and (Cheeseman 1983), since in our
case only systems of linear inequalities are considered,
and (iii) inconsistencies in the intermediate and/or
final results, are traced back to the input data and,
thus can be resolved by introducing direct changes in
some of the input probabilities.
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