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Abstract
Many classification algorithms were originally designed for fixed-size vectors. Recent applications
in text and speech processing and computational biology require however the analysis of variable-
length sequences and more generally weighted automata. An approach widely used in statistical
learning techniques such as Support Vector Machines (SVMs) is that of kernel methods, due to
their computational efficiency in high-dimensional feature spaces. We introduce a general family
of kernels based on weighted transducers or rational relations, rational kernels, that extend kernel
methods to the analysis of variable-length sequences or more generally weighted automata. We
show that rational kernels can be computed efficiently using a general algorithm of composition of
weighted transducers and a general single-source shortest-distance algorithm.

Not all rational kernels are positive definite and symmetric (PDS), or equivalently verify the
Mercer condition, a condition that guarantees the convergence of training for discriminant classi-
fication algorithms such as SVMs. We present several theoretical results related to PDS rational
kernels. We show that under some general conditions these kernels are closed under sum, prod-
uct, or Kleene-closure and give a general method for constructing a PDS rational kernel from an
arbitrary transducer defined on some non-idempotent semirings. We give the proof of several char-
acterization results that can be used to guide the design of PDS rational kernels. We also show
that some commonly used string kernels or similarity measures such as the edit-distance, the con-
volution kernels of Haussler, and some string kernels used in the context of computational biology
are specific instances of rational kernels. Our results include the proof that the edit-distance over a
non-trivial alphabet is not negative definite, which, to the best of our knowledge, was never stated
or proved before.

Rational kernels can be combined with SVMs to form efficient and powerful techniques for a
variety of classification tasks in text and speech processing, or computational biology. We describe
examples of general families of PDS rational kernels that are useful in many of these applications
and report the result of our experiments illustrating the use of rational kernels in several difficult
large-vocabulary spoken-dialog classification tasks based on deployed spoken-dialog systems. Our
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results show that rational kernels are easy to design and implement and lead to substantial improve-
ments of the classification accuracy.

1. Introduction

Many classification algorithms were originally designed for fixed-length vectors. Recent appli-
cations in text and speech processing and computational biology require however the analysis of
variable-length sequences and more generally weighted automata. Indeed, the output of a large-
vocabulary speech recognizer for a particular input speech utterance, or that of a complex informa-
tion extraction system combining several knowledge sources for a specific input query, is typically
a weighted automaton compactly representing a large set of alternative sequences. The weights as-
signed by the system to each sequence are used to rank different alternatives according to the models
the system is based on. The error rate of such complex systems is still too high in many tasks to rely
only on their one-best output, thus it is preferable instead to use the full weighted automata which
contain the correct result in most cases.

An approach widely used in statistical learning techniques such as Support Vector Machines
(SVMs) (Boser et al., 1992; Cortes and Vapnik, 1995; Vapnik, 1998) is that of kernel methods, due
to their computational efficiency in high-dimensional feature spaces. We introduce a general family
of kernels based on weighted transducers or rational relations, rational kernels, that extend kernel
methods to the analysis of variable-length sequences or more generally weighted automata.1 We
show that rational kernels can be computed efficiently using a general algorithm of composition of
weighted transducers and a general single-source shortest-distance algorithm.

Not all rational kernels are positive definite and symmetric (PDS), or equivalently verify the
Mercer condition (Berg et al., 1984), a condition that guarantees the convergence of training for
discriminant classification algorithms such as SVMs. We present several theoretical results related
to PDS rational kernels. We show that under some general conditions these kernels are closed
under sum, product, or Kleene-closure and give a general method for constructing a PDS rational
kernel from an arbitrary transducer defined on some non-idempotent semirings. We give the proof
of several characterization results that can be used to guide the design of PDS rational kernels.

We also study the relationship between rational kernels and some commonly used string kernels
or similarity measures such as the edit-distance, the convolution kernels of Haussler (Haussler,
1999), and some string kernels used in the context of computational biology (Leslie et al., 2003).
We show that these kernels are all specific instances of rational kernels. In each case, we explicitly
describe the corresponding weighted transducer. These transducers are often simple and efficient
for computing kernels. Their diagram provides more insight into the definition of kernels and can
guide the design of new kernels. Our results also include the proof of the fact that the edit-distance
over a non-trivial alphabet is not negative definite, which, to the best of our knowledge, was never
stated or proved before.

Rational kernels can be combined with SVMs to form efficient and powerful techniques for a
variety of applications to text and speech processing, or to computational biology. We describe ex-
amples of general families of PDS rational kernels that are useful in many of these applications. We
report the result of our experiments illustrating the use of rational kernels in several difficult large-
vocabulary spoken-dialog classification tasks based on deployed spoken-dialog systems. Our results

1. We have described in shorter publications part of the material presented here (Cortes et al., 2003a,b,c,d).
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SEMIRING SET ⊕ ⊗ 0 1

Boolean {0,1} ∨ ∧ 0 1
Probability R+ + × 0 1
Log R∪{−∞,+∞} ⊕log + +∞ 0
Tropical R∪{−∞,+∞} min + +∞ 0

Table 1: Semiring examples. ⊕log is defined by x⊕log y = − log(e−x + e−y).

show that rational kernels are easy to design and implement and lead to substantial improvements
of the classification accuracy.

The paper is organized as follows. In the following section, we introduce the notation and some
preliminary algebraic and automata-theoretic definitions used in the remaining sections. Section 3
introduces the definition of rational kernels. In Section 4, we present general algorithms that can be
used to compute rational kernels efficiently. Section 5 introduces the classical definitions of positive
definite and negative definite kernels and gives a number of novel theoretical results, including the
proof of some general closure properties of PDS rational kernels, a general construction of PDS
rational kernels starting from an arbitrary weighted transducer, a characterization of acyclic PDS
rational kernels, and the proof of the closure properties of a very general class of PDS rational ker-
nels. Section 6 studies the relationship between some commonly used kernels and rational kernels.
Finally, the results of our experiments in several spoken-dialog classification tasks are reported in
Section 7.

2. Preliminaries

In this section, we present the algebraic definitions and notation needed to introduce rational kernels.
A system (K,�,e) is a monoid if it is closed under �: a�b∈K for all a,b∈K; � is associative:

(a� b)� c = a� (b� c) for all a,b,c ∈ K; and e is an identity for �: a� e = e� a = a, for all
a ∈ K. When additionally � is commutative: a�b = b�a for all a,b ∈ K, then (K,�,e) is said to
be a commutative monoid.

Definition 1 (Kuich and Salomaa (1986)) A system (K,⊕,⊗,0,1) is a semiring if: (K,⊕,0) is
a commutative monoid with identity element 0; (K,⊗,1) is a monoid with identity element 1; ⊗
distributes over ⊕; and 0 is an annihilator for ⊗: for all a ∈ K,a⊗0 = 0⊗a = 0.

Thus, a semiring is a ring that may lack negation. Table 1 lists some familiar semirings. In addition
to the Boolean semiring and the probability semiring, two semirings often used in applications
are the log semiring which is isomorphic to the probability semiring via a log morphism, and the
tropical semiring which is derived from the log semiring using the Viterbi approximation.

Definition 2 A weighted finite-state transducer T over a semiring K is an 8-tuple T = (Σ,∆,Q, I,F,E,λ,ρ)
where Σ is the finite input alphabet of the transducer; ∆ is the finite output alphabet; Q is a finite
set of states; I ⊆ Q the set of initial states; F ⊆ Q the set of final states; E ⊆ Q× (Σ∪{ε})× (∆∪
{ε})×K×Q a finite set of transitions; λ : I → K the initial weight function; and ρ : F → K the
final weight function mapping F to K.
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Weighted automata can be formally defined in a similar way by simply omitting the input or output
labels.

Given a transition e ∈ E, we denote by p[e] its origin or previous state and n[e] its destination
state or next state, and w[e] its weight. A path π = e1 · · ·ek is an element of E∗ with consecutive
transitions: n[ei−1] = p[ei], i = 2, . . . ,k. We extend n and p to paths by setting n[π] = n[ek] and
p[π] = p[e1]. A cycle π is a path whose origin and destination coincide: p[π] = n[π]. A weighted
automaton or transducer is said to be acyclic if it admits no cycle. A successful path in a weighted
automaton or transducer M is a path from an initial state to a final state. The weight function w can
also be extended to paths by defining the weight of a path as the ⊗-product of the weights of its
constituent transitions: w[π] = w[e1]⊗·· ·⊗w[ek]. We denote by P(q,q′) the set of paths from q to
q′ and by P(q,x,y,q′) the set of paths from q to q′ with input label x ∈ Σ∗ and output label y ∈ ∆∗.
These definitions can be extended to subsets R,R′ ⊆Q, by P(R,x,y,R′) =∪q∈R,q′∈R′P(q,x,y,q′). We
denote by w[M] the ⊕-sum of the weights of all the successful paths of the automaton or transducer
M, when that sum is well-defined and in K. A transducer T is regulated if the output weight
associated by T to any pair of input-output string (x,y) by

[[T ]](x,y) =
⊕

π∈P(I,x,y,F)

λ(p[π])⊗w[π]⊗ρ[n[π]]

is well-defined and in K. [[T ]](x,y) = 0 when P(I,x,y,F) = /0. If for all q∈Q, the sum
⊕

π∈P(q,ε,ε,q) w[π]
is in K, then T is regulated. In particular, when T does not have any ε-cycle, that is a cycle labeled
with ε (both input and output labels), it is regulated. In the following, we will assume that all the
transducers considered are regulated. Regulated weighted transducers are closed under the rational
operations: ⊕-sum, ⊗-product and Kleene-closure which are defined as follows for all transducers
T1 and T2 and (x,y) ∈ Σ∗×∆∗:

[[T1 ⊕T2]](x,y) = [[T1]](x,y)⊕ [[T2]](x,y),

[[T1 ⊗T2]](x,y) =
⊕

x=x1x2,y=y1y2

[[T1]](x1,y1)⊗ [[T2]](x2,y2),

[[T ∗]](x,y) =
∞
⊕

n=0

T n(x,y),

where T n stands for the (n−1)-⊗-product of T with itself.
For any transducer T , we denote by T−1 its inverse, that is the transducer obtained from T by

transposing the input and output labels of each transition and the input and output alphabets.
Composition is a fundamental operation on weighted transducers that can be used in many appli-

cations to create complex weighted transducers from simpler ones. Let T1 = (Σ,∆,Q1, I1,F1,E1,λ1,ρ1)
and T2 = (∆,Ω,Q2, I2,F2,E2,λ2,ρ2) be two weighted transducers defined over a commutative semir-
ing K such that ∆, the output alphabet of T1, coincides with the input alphabet of T2. Then, the result
of the composition of T1 and T2 is a weighted transducer T1 ◦T2 which, when it is regulated, is de-
fined for all x,y by (Berstel, 1979; Eilenberg, 1974; Salomaa and Soittola, 1978; Kuich and Salomaa,
1986)2

[[T1 ◦T2]](x,y) =
⊕

z∈∆∗

[[T1]](x,z)⊗ [[T2]](z,y).

2. We use a matrix notation for the definition of composition as opposed to a functional notation.
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Note that a transducer can be viewed as a matrix over a countable set Σ∗×∆∗ and composition as
the corresponding matrix-multiplication.

The definition of composition extends naturally to weighted automata since a weighted automa-
ton can be viewed as a weighted transducer with identical input and output labels for each transi-
tion. The corresponding transducer associates [[A]](x) to a pair (x,x), and 0 to all other pairs. Thus,
the composition of a weighted automaton A1 = (∆,Q1, I1,F1,E1,λ1,ρ1) and a weighted transducer
T2 = (∆,Ω,Q2, I2,F2,E2,λ2,ρ2) is simply defined for all x,y in ∆∗×Ω∗ by

[[A1 ◦T2]](x,y) =
⊕

x∈∆∗

[[A1]](x)⊗ [[T2]](x,y)

when these sums are well-defined and in K. Intersection of two weighted automata is the special
case of composition where both operands are weighted automata, or equivalently weighted trans-
ducers with identical input and output labels for each transition.

3. Definitions

Let X and Y be non-empty sets. A function K : X ×Y → R is said to be a kernel over X ×Y .
This section introduces rational kernels, which are kernels defined over sets of strings or weighted
automata.

Definition 3 A kernel K over Σ∗ ×∆∗ is said to be rational if there exist a weighted transducer
T = (Σ,∆,Q, I,F,E,λ,ρ) over the semiring K and a function ψ : K → R such that for all x ∈ Σ∗ and
y ∈ ∆∗:3

K(x,y) = ψ([[T ]](x,y)).

K is then said to be defined by the pair (ψ,T ).

This definition and many of the results presented in this paper can be generalized by replacing the
free monoids Σ∗ and ∆∗ with arbitrary monoids M1 and M2. Also, note that we are not making any
particular assumption about the function ψ in this definition. In general, it is an arbitrary function
mapping K to R.

Figure 1 shows an example of a weighted transducer over the probability semiring correspond-
ing to the gappy n-gram kernel with decay factor λ as defined by (Lodhi et al., 2001). Such gappy
n-gram kernels are rational kernels (Cortes et al., 2003c).

Rational kernels can be naturally extended to kernels over weighted automata. Let A be a
weighted automaton defined over the semiring K and the alphabet Σ and B a weighted automaton
defined over the semiring K and the alphabet ∆, K(A,B) is defined by

K(A,B) = ψ





⊕

(x,y)∈Σ∗×∆∗

[[A]](x)⊗ [[T ]](x,y)⊗ [[B]](y)



 (1)

3. We chose to call these kernels “rational” because their definition is based on rational relations or rational transduc-
tions (Salomaa and Soittola, 1978; Kuich and Salomaa, 1986) represented by a weighted transducer. The mathemat-
ical counterpart of weighted automata and transducers are also called rational power series Berstel and Reutenauer
(1988) which further justifies our terminology.
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a:ε/1
b:ε/1 1ε:a/1

ε:b/1

2a:a/0.01
b:b/0.01

ε:a/1
ε:b/1

a:a/0.01

b:b/0.01
a:ε/0.1
b:ε/0.1 3

ε:a/0.1

ε:b/0.1

4/1a:a/0.01
b:b/0.01

ε:a/0.1
ε:b/0.1

a:a/0.01

b:b/0.01
a: ε/1
b:ε/1

5/1ε:a/1
ε:b/1

ε:a/1
ε:b/1

Figure 1: Gappy bigram rational kernel with decay factor λ = .1. Bold face circles represent initial
states and double circles indicate final states. Inside each circle, the first number indicates
the state number, the second, at final states only, the value of the final weight function ρ
at that state. Arrows represent transitions. They are labeled with an input and an output
symbol separated by a colon and followed by their corresponding weight after the slash
symbol.

for all weighted automata A and B such that the ⊕-sum

⊕

(x,y)∈Σ∗×∆∗

[[A]](x)⊗ [[T ]](x,y)⊗ [[B]](y)

is well-defined and in K. This sum is always defined and in K when A and B are acyclic weighted
automata since the sum then runs over a finite set. It is defined for all weighted automata in all closed
semirings (Kuich and Salomaa, 1986) such as the tropical semiring. In the probability semiring, the
sum is well-defined for all A, B, and T representing probability distributions. When K(A,B) is
defined, Equation 1 can be equivalently written as

K(A,B) = ψ





⊕

(x,y)∈Σ∗×∆∗

[[A◦T ◦B]](x,y)



= ψ(w[A◦T ◦B]). (2)

The next section presents a general algorithm for computing rational kernels.

4. Algorithms

The algorithm for computing K(x,y), or K(A,B), for any two acyclic weighted automata, or for any
two weighted automata such that the sum above is well-defined, is based on two general algorithms
that we briefly present: composition of weighted transducers to combine A, T , and B, and a general
shortest-distance algorithm in a semiring K to compute the ⊕-sum of the weights of all successful
paths of the composed transducer.

4.1 Composition of weighted transducers

There exists a general and efficient composition algorithm for weighted transducers which takes
advantage of the sparseness of the input transducers (Pereira and Riley, 1997; Mohri et al., 1996).
States in the composition T1 ◦T2 of two weighted transducers T1 and T2 are identified with pairs of
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0

1a:a/1.61

2b:b/0.22

a:b/0
b:a/0.69

3/0b:a/0.69 0

a:a/1.2

1a:b/2.3
b:a/0.51

b:b/0.92

2/0a:a/0.51

(a) (b)

0

1a:a/2.81

4a:b/3.91 2

b:a/0.73

a:a/0.51

a:b/0.92 3/0b:a/1.2

(c)

Figure 2: (a) Weighted transducer T1 over the log semiring. (b) Weighted transducer T2 over the log
semiring. (c) T1 ◦T2, result of the composition of T1 and T2.

a state of T1 and a state of T2. Leaving aside transitions with ε inputs or outputs, the following rule
specifies how to compute a transition of T1 ◦T2 from appropriate transitions of T1 and T2:4

(q1,a,b,w1,q2) and (q′1,b,c,w2,q
′
2) =⇒ ((q1,q

′
1),a,c,w1 ⊗w2,(q2,q

′
2)).

In the worst case, all transitions of T1 leaving a state q1 match all those of T2 leaving state q′1, thus
the space and time complexity of composition is quadratic: O((|Q1|+ |E1|)(|Q2|+ |E2|)). Figure
2 illustrates the algorithm when applied to the transducers of Figure 2 (a)-(b) defined over the log
semiring.

4.2 Single-source shortest distance algorithm over a semiring

Given a weighted automaton or transducer M, the shortest-distance from state q to the set of final
states F is defined as the ⊕-sum of all the paths from q to F ,

d[q] =
⊕

π∈P(q,F)

w[π]⊗ρ[n[π]], (3)

when this sum is well-defined and in K. This is always the case when the semiring is k-closed
or when M is acyclic (Mohri, 2002), the case of interest in our experiments. There exists a gen-
eral algorithm for computing the shortest-distance d[q] (Mohri, 2002). The algorithm is based on
a generalization to k-closed semirings of the relaxation technique used in classical single-source
shortest-paths algorithms. When M is acyclic, the complexity of the algorithm is linear: O(|Q|+
(T⊕ + T⊗)|E|), where T⊕ denotes the maximum time to compute ⊕ and T⊗ the time to compute
⊗ (Mohri, 2002). The algorithm can then be viewed as a generalization of Lawler’s algorithm
(Lawler, 1976) to the case of an arbitrary semiring K. It is then based on a generalized relaxation
of the outgoing transitions of each state of M visited in reverse topological order (Mohri, 2002).

4. See Pereira and Riley (1997) and Mohri et al. (1996) for a detailed presentation of the algorithm including the use of
a transducer filter for dealing with ε-multiplicity in the case of non-idempotent semirings.
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Let K be a rational kernel and let T be the associated weighted transducer. Let A and B be
two acyclic weighted automata or, more generally, two weighted automata such that the sum in
Equation 2 is well-defined and in K. A and B may represent just two strings x,y ∈ Σ∗ or may be any
complex weighted automata. By definition of rational kernels (Equation 2) and the shortest-distance
(Equation 3), K(A,B) can be computed by:

1. Constructing the composed transducer N = A◦T ◦B.

2. Computing w[N], by determining the shortest-distance from the initial states of N to its final
states using the shortest-distance algorithm just described.

3. Computing ψ(w[N]).

When A and B are acyclic, the shortest-distance algorithm is linear and the total complexity of
the algorithm is O(|T ||A||B|+Φ), where |T |, |A|, and |B| denote respectively the size of T , A and B
and Φ the worst case complexity of computing ψ(x), x ∈ K. If we assume that Φ can be computed
in constant time as in many applications, then the complexity of the computation of K(A,B) is
quadratic with respect to A and B: O(|T ||A||B|).

5. Theory of PDS and NDS Rational Kernels

In learning techniques such as those based on SVMs, we are particularly interested in kernels that
are positive definite symmetric (PDS), or, equivalently, kernels verifying Mercer’s condition, which
guarantee the existence of a Hilbert space and a dot product associated to the kernel considered.
This ensures the convergence of the training algorithm to a unique optimum. Thus, in what follows,
we will focus on theoretical results related to the construction of rational kernels that are PDS. Due
to the symmetry condition, the input and output alphabets Σ and ∆ will coincide for the underlying
transducers associated to the kernels.

This section reviews a number of results related to general PDS kernels, that is the class of all
kernels that have the Mercer property (Berg et al., 1984). It also gives novel proofs and results in the
specific case of PDS rational kernels. These results can be used to combine PDS rational kernels
to design new PDS rational kernels or to construct a PDS rational kernel. Our proofs and results
are original and are not just straightforward extensions of those existing in the case of general PDS
kernels. This is because, for example, a closure property for PDS rational kernels must guarantee
not just that the PDS property is preserved but also that the rational property is retained. Our original
results include a general construction of PDS rational kernels from arbitrary weighted transducers, a
number of theorems related to the converse, and a study of the negative definiteness of some rational
kernels.

Definition 4 Let X be a non-empty set. A function K : X ×X → R is said to be a PDS kernel if it is
symmetric (K(x,y) = K(y,x) for all x,y ∈ X) and

n

∑
i, j=1

cic jK(xi,x j) ≥ 0

for all n ≥ 1, {x1, . . . ,xn} ⊆ X and {c1, . . . ,cn} ⊆ R.
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It is clear from classical results of linear algebra that K is a PDS kernel iff the matrix K(xi,x j)i, j≤n

for all n ≥ 1 and all {x1, . . . ,xn} ⊆ X is symmetric and all its eigenvalues are non-negative.
PDS kernels can be used to construct other families of kernels that also meet these conditions

(Schölkopf and Smola, 2002). Polynomial kernels of degree p are formed from the expression
(K +a)p, and Gaussian kernels can be formed as exp(−d2/σ2) with d2(x,y) = K(x,x)+K(y,y)−
2K(x,y). The following sections will provide other ways of constructing PDS rational kernels.

5.1 General Closure Properties of PDS Kernels

The following theorem summarizes general closure properties of PDS kernels (Berg et al., 1984).

Theorem 5 Let X and Y be two non-empty sets.

1. Closure under sum: Let K1,K2 : X ×X → R be PDS kernels, then K1 + K2 : X ×X → R is a
PDS kernel.

2. Closure under product: Let K1,K2 : X ×X → R be PDS kernels, then K1 ·K2 : X ×X → R is
a PDS kernel.

3. Closure under tensor product: Let K1 : X ×X → R and K2 : Y ×Y → R be PDS kernels, then
their tensor product K1 �K2 : (X ×Y )× (X ×Y ) → R, where K1 �K2((x1,y1),(x2,y2)) =
K1(x1,x2) ·K2(y1,y2) is a PDS kernel.

4. Closure under pointwise limit: Let Kn : X ×X → R be a PDS kernel for all n ∈ N and assume
that limn→∞ Kn(x,y) exists for all x,y ∈ X, then K defined by K(x,y) = limn→∞ Kn(x,y) is a
PDS kernel.

5. Closure under composition with a power series: Let K : X ×X → R be a PDS kernel such
that |K(x,y)| < ρ for all (x,y) ∈ X ×X. Then if the radius of convergence of the power series
S = ∑∞

n=0 anxn is ρ and an ≥ 0 for all n ≥ 0, the composed kernel S ◦K is a PDS kernel. In
particular, if K : X ×X → R is a PDS kernel, then so is exp(K).

In particular, these closure properties all apply to PDS kernels that are rational, e.g., the sum or
product of two PDS rational kernels is a PDS kernel. However, Theorem 5 does not guarantee the
result to be a rational kernel. In the next section, we examine precisely the question of the closure
properties of PDS rational kernels (under rational operations).

5.2 Closure Properties of PDS Rational Kernels

In this section, we assume that a fixed function ψ is used in the definition of all the rational kernels
mentioned. We denote by KT the rational kernel corresponding to the transducer T and defined for
all x,y ∈ Σ∗ by KT (x,y) = ψ([[T ]](x,y)).

Theorem 6 Let Σ be a non-empty alphabet. The following closure properties hold for PDS rational
kernels.
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1. Closure under ⊕-sum: Assume that ψ : (K,⊕,0) → (R,+,0) is a monoid morphism.5 Let
KT1 ,KT2 : Σ∗×Σ∗ → R be PDS rational kernels, then KT1⊕T2 : Σ∗×Σ∗ → R is a PDS rational
kernel and KT1⊕T2 = KT1 +KT2 .

2. Closure under ⊗-product: Assume that ψ : (K,⊕,⊗,0,1)→ (R,+,×,0,1) is a semiring mor-
phism. Let KT1 ,KT2 : Σ∗×Σ∗ → R be PDS rational kernels, then KT1⊗T2 : Σ∗×Σ∗ → R is a
PDS rational kernel.

3. Closure under Kleene-closure: Assume that ψ : (K,⊕,⊗,0,1) → (R,+,×,0,1) is a continu-
ous semiring morphism. Let KT : Σ∗×Σ∗ →R be a PDS rational kernel, then KT ∗ : Σ∗×Σ∗ →
R is a PDS rational kernel.

Proof The closure under ⊕-sum follows directly from Theorem 5 and the fact that for all x,y ∈ Σ∗:

ψ([[T1]](x,y)⊕ [[T2]](x,y)) = ψ([[T1]](x,y))+ψ([[T2]](x,y))

when ψ : (K,⊕,0) → (R,+,0) is a monoid morphism. For the closure under ⊗-product, when ψ is
a semiring morphism, for all x,y ∈ Σ∗:

ψ([[T1 ⊗T2]](x,y)) = ∑
x1x2=x,y1y2=y

ψ([[T1]](x1,y1)) ·ψ([[T2]](x2,y2))

= ∑
x1x2=x,y1y2=y

KT1 �KT2((x1,x2),(y1,y2)).

By Theorem 5, since KT1 and KT2 are PDS kernels, their tensor product KT1 �KT2 is a PDS kernel
and there exists a Hilbert space H ⊆ R

Σ∗
and a mapping u → φu such that KT1 �KT2(u,v) = 〈φu,φv〉

(Berg et al., 1984). Thus

ψ([[T1 ⊗T2]](x,y)) = ∑
x1x2=x,y1y2=y

〈φ(x1,x2),φ(y1,y2)〉

=

〈

∑
x1x2=x

φ(x1,x2), ∑
y1y2=y

φ(y1,y2)

〉

.

Since a dot product is positive definite, this equality implies that KT1⊗T2 is a PDS kernel. A similar
proof is given by Haussler (1999). The closure under Kleene-closure is a direct consequence of the
closure under ⊕-sum and ⊗-product of PDS rational kernels and the closure under pointwise limit
of PDS kernels (Theorem 5).

Theorem 6 provides a general method for constructing complex PDS rational kernels from simpler
ones. PDS rational kernels defined to model specific prior knowledge sources can be combined
using rational operations to create a more general PDS kernel.

In contrast to Theorem 6, PDS rational kernels are not closed under composition. This is clear
since the ordinary matrix multiplication does not preserve positive definiteness in general.

The next section studies a general construction of PDS rational kernels using composition.

5. A monoid morphism ψ : (K,⊕,0) → (R,+,0) is a function verifying ψ(x⊕ y) = ψ(x)+ ψ(y) for all x,y ∈ K, and
ψ(0) = 0. A semiring morphism ψ is a function ψ : (K,⊕,⊗,0,1) → (R,+,×,0,1) further verifying ψ(x⊗ y) =
ψ(x) ·ψ(y) for all x,y ∈ K, and ψ(1) = 1.
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5.3 A General Construction of PDS Rational Kernels

In this section, we assume that ψ : (K,⊕,⊗,0,1) → (R,+,×,0,1) is a continuous semiring mor-
phism. This limits the choice of the semiring associated to the weighted transducer defining a
rational kernel, since it needs in particular to be commutative and non-idempotent.6 Our study of
PDS rational kernels in this section is thereby limited to such semirings. This should not leave the
reader with the incorrect perception that all PDS rational kernels are defined over non-idempotent
semirings though. As already mentioned before, in general, the function ψ can be chosen arbitrarily
and needs not impose any algebraic property on the semiring used.

We show that there exists a general way of constructing a PDS rational kernel from any weighted
transducer T . The construction is based on composing T with its inverse T −1.

Proposition 7 Let T = (Σ,∆,Q, I,F,E,λ,ρ) be a weighted finite-state transducer defined over the
semiring (K,⊕,⊗,0,1). Assume that the weighted transducer T ◦ T −1 is regulated, then (ψ,T ◦
T−1) defines a PDS rational kernel over Σ∗×Σ∗.

Proof Denote by S the composed transducer T ◦T −1. Let K be the rational kernel defined by S. By
definition of composition,

K(x,y) = ψ([[S]](x,y)) = ψ

(

⊕

z∈∆∗

[[T ]](x,z)⊗ [[T ]](y,z)

)

,

for all x,y ∈ Σ∗. Since ψ is a continuous semiring morphism, for all x,y ∈ Σ∗,

K(x,y) = ψ([[S]](x,y)) = ∑
z∈∆∗

ψ([[T ]](x,z)) ·ψ([[T ]](y,z)).

For all n ∈ N and x,y ∈ Σ∗, define Kn(x,y) by

Kn(x,y) = ∑
|z|≤n

ψ([[T ]](x,z)) ·ψ([[T ]](y,z)),

where the sum runs over all strings z∈∆∗ of length less than or equal to n. Clearly, Kn defines a sym-
metric kernel. For any l ≥ 1 and any x1, . . . ,xl ∈ Σ∗, define the matrix Mn by Mn = (Kn(xi,x j))i≤l, j≤l .
Let z1,z2, . . . ,zm be an arbitrary ordering of the strings of length less than or equal to n. Define the
matrix A by

A = (ψ([[T ]](xi,z j)))i≤l; j≤m.

By definition of Kn, Mn = AAt . The eigenvalues of AAt are non-negative for any rectangular matrix
A, thus Kn is a PDS kernel. Since K is a pointwise limit of Kn, K(x,y) = limn→∞ Kn(x,y), by
Theorem 5, K is a PDS kernel. This ends the proof of the proposition.

The next propositions provide results related to the converse of Proposition 7. We denote by IdR the
identity function over R.

Proposition 8 Let S = (Σ,Σ,Q, I,F,E,λ,ρ) be an acyclic weighted finite-state transducer over
(K,⊕,⊗,0,1) such that (ψ,S) defines a PDS rational kernel on Σ∗×Σ∗, then there exists a weighted
transducer T over the probability semiring such that (IdR,T ◦T−1) defines the same rational kernel.

6. If K is idempotent, for any x ∈ K, ψ(x) = ψ(x⊕ x) = ψ(x)+ψ(x) = 2ψ(x), which implies that ψ(x) = 0 for all x.
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Proof Let S be an acyclic weighted transducer verifying the hypotheses of the proposition. Let
X ⊂ Σ∗ be the finite set of strings accepted by S. Since S is symmetric, X ×X is the set of pairs
of strings (x,y) defining the rational relation associated with S. Let x1,x2, . . . ,xn be an arbitrary
numbering of the elements of X . Define the matrix M by

M = (ψ([[S]](xi,x j)))1≤i≤n,1≤ j≤n.

Since S defines a PDS rational kernel, M is a symmetric matrix with non-negative eigenvalues, i.e.,
M is symmetric positive semi-definite. The Cholesky decomposition extends to the case of semi-
definite matrices (Dongarra et al., 1979): there exists an upper triangular matrix R = (Ri j) with
non-negative diagonal elements such that M = RRt . Let Y = {y1, . . . ,yn} be an arbitrary subset of n
distinct strings of Σ∗. Define the weighted transducer T over the X ×Y by

[[T ]](xi,y j) = Ri j

for all i, j, 1 ≤ i, j ≤ n. By definition of composition, [[T ◦T−1]](xi,x j) = ψ([[S]](xi,x j)) for all i, j,
1 ≤ i, j ≤ n. Thus, T ◦T−1 = ψ(S), which proves the claim of the proposition.

Note that when the matrix M introduced in the proof is positive definite, that is when the eigenvalues
of the matrix associated with S are all positive, then Cholesky’s decomposition and thus the weights
associated to the input strings of T are unique.

Assume that the same continuous semiring morphism ψ is used in the definition of all the ratio-
nal kernels.

Proposition 9 Let Θ be the subset of the weighted transducers over (K,⊕,⊗,0,1) such that for any
S∈Θ, (ψ,S) defines a PDS rational kernel and there exists a weighted transducer T = (Σ,∆,Q, I,F,E,λ,ρ)
over the probability semiring such that (IdR,T ◦ T−1) defines the same rational kernel as (ψ,S).
Then Θ is closed under ⊕-sum, ⊗-product, and Kleene-closure.

Proof Let S1,S2 ∈ Θ, we will show that S1 ⊕S2 ∈ Θ, S1 ⊗S2 ∈ Θ, and S∗1 ∈ Θ. By definition, there
exist T1 = (Σ,∆1,Q1, I1,F1,E1,λ1,ρ1) and T2 = (Σ,∆2,Q2, I2,F2,E2,λ2,ρ2) such that

K1 = T1 ◦T−1
1 and K2 = T2 ◦T−1

2 ,

where K1 (K2) is the PDS rational kernel defined by (ψ,S1) (resp. (ψ,S2)). Let u be an alphabetic
morphism mapping ∆2 to a new alphabet ∆′

2 such that ∆1∩∆′
2 = /0. u is clearly a rational transduction

(Berstel, 1979) and can be represented by a finite-state transducer U . Thus, we can define a new
weighted transducer T ′

2 by T ′
2 = T2 ◦U = (Σ,∆′

2,Q2, I2,F2,E ′
2,λ2,ρ2), which only differs from T2

by some renaming of its output labels. This does not affect the result of the composition with the
inverse transducer since U ◦U−1 is the identity mapping over ∆∗

2:

T ′
2 ◦T ′−1

2 = T2 ◦U ◦ (U−1 ◦T−1
2 ) = T2 ◦T−1

2 = K2. (4)

Since, T1 and T2 have distinct output alphabets, their output labels cannot match; thus

T1 ◦T ′−1
2 = /0 and T ′

2 ◦T−1
1 = /0. (5)

Let T = T1 +T ′
2 , in view of Equation 4 and Equation 5:

T ◦T−1 = (T1 +T ′
2)◦ (T1 +T ′

2)
−1 = (T1 ◦T−1

1 )+(T ′
2 ◦T ′−1

2 ) = K1 +K2.
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Since the same continuous semiring morphism ψ is used for the definition of all the rational kernels
in Θ, by Theorem 6, K1 + K2 is a PDS rational kernel defined by (ψ,S1 ⊕ S2) and S1 ⊕ S2 is in Θ.
Similarly, define T ′ as T ′ = T1 ·T ′

2:

T ′ ◦T ′−1 = (T1 ·T
′

2)◦ (T1 ·T
′

2)
−1 = (T1 ◦T−1

1 ) · (T2 ◦T ′−1
2 ).

Thus, S1 ⊗ S2 is in Θ. Let x be a symbol not in ∆1 and let ∆′
1 = ∆1 ∪{x}. Let V be the finite-state

transducer accepting as input only ε and mapping ε to x and define T ′
1 by T ′

1 = V ·T1. Since x does
not match any of the output labels of T1, T ′

1 ◦T ′
1
−1 = T1 ◦T1

−1 and (T ′
1 ◦T ′

1
−1)∗ = T ′

1
∗ ◦ (T ′

1
−1)∗:

(T1 ◦T1
−1)∗ = (T ′

1 ◦T ′
1
−1

)∗ = T ′
1
∗
◦ (T ′

1
−1

)∗.

Thus, by Theorem 6, S∗
1 is a PDS rational kernel that is in Θ.

Proposition 9 raises the following question: under the same assumptions, are all PDS rational ker-
nels defined by a pair of the form (ψ,T ◦T−1)? A natural conjecture is that this is the case and that
this property provides a characterization of the weighted transducers defining PDS rational kernels.
Propositions 8 and 9 both favor that conjecture. Proposition 8 shows that this holds in the acyclic
case. Proposition 9 might be useful to extend this to the general case.

In the case of PDS rational kernels defined by (IdR,S) with S a weighted transducer over the
probability semiring, the conjecture could be reformulated as: is S of the form S = T ◦T −1? If true,
this could be viewed as a generalization of Cholesky’s decomposition theorem to the case of infinite
matrices given by weighted transducers over the probability semiring.

This ends our discussion of PDS rational kernels. In the next section, we will examine negative
definite kernels and their relationship with PDS rational kernels.

5.4 Negative Definite Kernels

As mentioned before, given a set X and a distance or dissimilarity measure d : X ×X → R+, a
common method used to define a kernel K is the following. For all x,y ∈ X ,

K(x,y) = exp(−td2(x,y)),

where t > 0 is some constant typically used for normalization. Gaussian kernels are defined in this
way. However, such kernels K are not necessarily positive definite, e.g., for X = R, d(x,y) = |x−y|p,
p > 1 and t = 1, K is not positive definite. The positive definiteness of K depends on t and the
properties of the function d. The classical results presented in this section exactly address such
questions (Berg et al., 1984). They include a characterization of PDS kernels based on negative
definite kernels which may be viewed as distances with some specific properties.7

The results we are presenting are general, but we are particularly interested in the case where d
can be represented by a rational kernel. We will use these results later when dealing with the case
of the edit-distance.

7. Many of the results given by Berg et al. (1984) are re-presented in (Schölkopf, 2001) with the terminology of condi-
tionally positive definite instead of negative definite kernels. We adopt the original terminology used by Berg et al.
(1984).
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Definition 10 Let X be a non-empty set. A function K : X ×X → R is said to be a negative definite
symmetric kernel (NDS kernel) if it is symmetric (K(x,y) = K(y,x) for all x,y ∈ X) and

n

∑
i, j=1

cic jK(xi,x j) ≤ 0

for all n ≥ 1, {x1, . . . ,xn} ⊆ X and {c1, . . . ,cn} ⊆ R with ∑n
i=1 ci = 0.

Clearly, if K is a PDS kernel then −K is a NDS kernel, however the converse does not hold in
general. Negative definite kernels often correspond to distances, e.g., K(x,y) = (x− y)α, x,y ∈ R,
with 0 < α ≤ 2 is a negative definite kernel.

The next theorem summarizes general closure properties of NDS kernels (Berg et al., 1984).

Theorem 11 Let X be a non-empty set.

1. Closure under sum: Let K1,K2 : X ×X → R be NDS kernels, then K1 + K2 : X ×X → R is a
NDS kernel.

2. Closure under log and exponentiation: Let K : X ×X → R be a NDS kernel with K ≥ 0, and
α a real number with 0 < α < 1, then log(1+K),Kα : X ×X → R are NDS kernels.

3. Closure under pointwise limit: Let Kn : X ×X → R be a NDS kernel for all n ∈ N, then K
defined by K(x,y) = limn→∞ Kn(x,y) is a NDS kernel.

The following theorem clarifies the relation between NDS and PDS kernels and provides in partic-
ular a way of constructing PDS kernels from NDS ones (Berg et al., 1984).

Theorem 12 Let X be a non-empty set, xo ∈ X, and let K : X ×X → R be a symmetric kernel.

1. K is negative definite iff exp(−tK) is positive definite for all t > 0.

2. Let K′ be the function defined by

K′(x,y) = K(x,x0)+K(y,x0)−K(x,y)−K(x0,x0).

Then K is negative definite iff K ′ is positive definite.

The theorem gives two ways of constructing a positive definite kernel using a negative definite
kernel. The first construction is similar to the way Gaussian kernels are defined. The second con-
struction has been put forward by (Schölkopf, 2001).

6. Relationship with some commonly used kernels or similarity measures

This section studies the relationships between several families of kernels or similarities measures
and rational kernels.
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Figure 3: (a) Weighted transducer over the tropical semiring representing the edit-distance over the
alphabet Σ = {a,b}. (b) Weighted transducer over the probability semiring computing
the cost of alignments over the alphabet Σ = {a,b}.

6.1 Edit-Distance

A common similarity measure in many applications is that of the edit-distance, that is the minimal
cost of a series of edit operations (symbol insertions, deletions, or substitutions) transforming one
string into the other (Levenshtein, 1966). We denote by de(x,y) the edit-distance between two
strings x and y over the alphabet Σ with cost 1 assigned to all edit operations.

Proposition 13 Let Σ be a non-empty finite alphabet and let de be the edit-distance over Σ, then
de is a symmetric rational kernel. Furthermore, (1): de is not a PDS kernel, and (2): de is a NDS
kernel iff |Σ| = 1.

Proof The edit-distance between two strings, or weighted automata, can be represented by a simple
weighted transducer over the tropical semiring (Mohri, 2003). Since the edit-distance is symmetric,
de is a symmetric rational kernel. Figure 3(a) shows the corresponding transducer when the alphabet
is Σ = {a,b}. The cost of the alignment between two sequences can also be computed by a weighted
transducer over the probability semiring (Mohri, 2003), see Figure 3(b).

Let a ∈ Σ, then the matrix (de(xi,x j))1≤i, j≤2 with x1 = ε and x2 = a has a negative eigenvalue
(−1), thus de is not a PDS kernel.

When |Σ| = 1, the edit-distance simply measures the absolute value of the difference of length
between two strings. A string x ∈ Σ∗ can then be viewed as a vector of the Hilbert space R

∞. Denote
by ‖ · ‖ the corresponding norm. For all x,y ∈ Σ∗,

de(x,y) = ‖x− y‖.
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Figure 4: (a) Smallest eigenvalue of the matrix Mn = (exp(−de(xi,x j)))1≤i, j,≤2n as a function of n.
(b) Example demonstrating that the edit-distance is not negative definite.

The square distance ‖ · ‖2 is negative definite, thus by Theorem 11, de = (‖ · ‖2)1/2 is also negative
definite.

Assume now that |Σ|> 1. We show that exp(−de) is not PDS. By Theorem 12, this implies that
de is not negative definite. Let x1, · · · ,x2n be any ordering of the strings of length n over the alphabet
{a,b}. Define the matrix Mn by

Mn = (exp(−de(xi,x j)))1≤i, j,≤2n .

Figure 4(a) shows the smallest eigenvalue αn of Mn as a function of n. Clearly, there are values
of n for which αn < 0, thus the edit-distance is not negative definite. Table 4(b) provides a simple
example with five strings of length 3 over the alphabet Σ = {a,b,c,d} showing directly that the edit-
distance is not negative definite. Indeed, it is easy to verify that ∑5

i=1 ∑5
j=1 cic jK(xi,x j) = 2

3 > 0.

To our knowledge, this is the first statement and proof of the fact that de is not NDS for |Σ| >
1. This result has a direct consequence on the design of kernels in computational biology, often
based on the edit-distance or other related similarity measures. The edit-distance and other related
similarity measures are often used in computational biology. When |Σ| > 1, Proposition 13 shows
that de is not NDS. Thus, there exists t > 0 for which exp(−tde) is not PDS. Similarly, d2

e is not
NDS since otherwise by Theorem 11, de = (d2

e )1/2 would be NDS.

6.2 Haussler’s Convolution Kernels for Strings

D. Haussler describes a class of kernels for strings built by applying iteratively convolution kernels
(Haussler, 1999). We show that these convolution kernels for strings are specific instances of ra-
tional kernels. Haussler (1999) defines the convolution of two string kernels K1 and K2 over the
alphabet Σ as the kernel denoted by K1 ?K2 and defined for all x,y ∈ Σ∗ by

K1 ?K2(x,y) = ∑
x1x2=x,y1y2=y

K1(x1,y1) ·K2(x2,y2).

Clearly, when K1 and K2 are given by weighted transducers over the probability semiring, this
definition coincides with that of the product (or concatenation) of transducers (Equation 1). Haussler
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(1999) also introduces for 0 ≤ γ < 1 the γ-infinite iteration of a mapping H : Σ∗×Σ∗ → R by

H∗
γ = (1− γ)

∞

∑
n=1

γn−1H(n),

where H(n) = H ? H(n−1) is the result of the convolution of H with itself n− 1 times. Note that
H∗

γ = 0 for γ = 0.

Lemma 14 For 0 < γ < 1, the γ-infinite iteration of a rational transduction H : Σ∗×Σ∗ → R can
be defined in the following way with respect to the Kleene †-operator:

H∗
γ =

1− γ
γ

(γH)†.

Proof Haussler’s convolution simply corresponds to the product (or concatenation) in the case of
rational transductions. Thus, for 0 < γ < 1, by definition of the †-operator,

(γH)† =
∞

∑
n=1

(γH)n =
∞

∑
n=1

γnHn =
γ

1− γ

∞

∑
n=1

(1− γ)γn−1Hn =
γ

1− γ
H∗

γ .

Given a probability distribution p over all symbols of Σ, Haussler’s convolution kernels for strings
are defined by

KH(x,y) = γK2 ? (K1 ?K2)
?
γ +(1− γ)K2,

where K1 is the specific polynomial PDS rational transduction over the probability semiring defined
by K1(x,y) = ∑a∈Σ p(x|a)p(y|a)p(a) and models substitutions, and K2 another specific PDS rational
transduction over the probability semiring modeling insertions.

Proposition 15 For any 0 ≤ γ < 1, Haussler’s convolution kernels KH coincide with the following
special cases of rational kernels:

KH = (1− γ)[K2(γK1K2)
∗].

Proof As mentioned above, Haussler’s convolution simply corresponds to concatenation in this
context. When γ = 0, by definition, KH is reduced to K2 which is a rational transducer and the
proposition’s formula above is satisfied. Assume now that γ 6= 0. By lemma 14, KH can be re-
written as

KH = γK2(K1K2)
?
γ +(1− γ)K2 = γK2

1− γ
γ

(γK1K2)
† +(1− γ)K2

= (1− γ)[K2(γK1K2)
† +K2] = (1− γ)[K2(γK1K2)

∗].

Since rational transductions are closed under rational operations, KH also defines a rational trans-
duction. Since K1 and K2 are PDS kernels, by Theorem 6, KH defines a PDS kernel.

The transducer of Figure 5 illustrates the convolution kernels for strings proposed by Haussler.
They correspond to special cases of rational kernels whose mechanism is clarified by the figure:
the kernel corresponds to an insertion with weight (1− γ) modeled by K2 followed by any number
of sequences of substitutions modeled by K1 and insertions modeled by K2 with weight γ. Clearly,
there are many other ways of defining kernels based on weighted transducers with more complex
definitions and perhaps more data-driven definitions.
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0 1
K2(1 − γ)

2
K1γ

K2

Figure 5: Haussler’s convolution kernels KH for strings: specific instances of rational kernels. K1,
(K2), corresponds to a specific weighted transducer over the probability semiring and
modeling substitutions (resp. insertions).

6.3 Other Kernels Used in Computational Biology

In this section we show the relationship between rational kernels and another class of kernels used
in computational biology.

A family of kernels, mismatch string kernels, was introduced by (Leslie et al., 2003) for protein
classification using SVMs. Let Σ be a finite alphabet, typically that of amino acids for protein
sequences. For any two sequences z1,z2 ∈ Σ∗ of same length (|z1| = |z2|), we denote by d(z1,z2)
the total number of mismatching symbols between these sequences. For all m ∈ N, we define the
bounded distance dm between two sequences of same length by

dm(z1,z2) =

{

1 if (d(z1,z2) ≤ m)
0 otherwise.

and for all k ∈ N, we denote by Fk(x) the set of all factors of x of length k:

Fk(x) = {z : x ∈ Σ∗zΣ∗, |z| = k} .

For any k,m ∈ N with m ≤ k, a (k,m)-mismatch kernel K(k,m) : Σ∗×Σ∗ → R is the kernel defined
over protein sequences x,y ∈ Σ∗ by

K(k,m)(x,y) = ∑
z1∈Fk(x),z2∈Fk(y),z∈Σk

dm(z1,z) dm(z,z2).

Proposition 16 For any k,m ∈ N with m ≤ k, the (k,m)-mismatch kernel K(k,m) : Σ∗×Σ∗ → R is a
PDS rational kernel.

Proof Let M, S, and D be the weighted transducers over the probability semiring defined by

M = ∑
a∈Σ

(a,a) S = ∑
a6=b

(a,b) D = ∑
a∈Σ

(a,ε).

M associates weight 1 to each pair of identical symbols of the alphabet Σ, S associates 1 to each pair
of distinct or mismatching symbols, and D associates 1 to all pairs with second element ε.

For i,k ∈ N with 0 ≤ i ≤ k, Define the shuffle of Si and Mk−i, denoted by Si ttMk−i, as the the
sum over all products made of factors S and M with exactly i factors S and k− i factors M. As a finite
sum of products of S and M, Si ttMk−i is rational. Since weighted transducers are closed under
rational operations the following defines a weighted transducer T over the probability semiring for
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Figure 6: Mismatch kernel K(k,m) = Tk,m ◦T−1
k,m (Leslie et al., 2003) with k = 3 and m = 2 and with

Σ = {a,b}. The transducer T3,2 defined over the probability semiring is shown. All
transition weights and final weights are equal to one. Note that states 3, 6, and 8 of the
transducer are equivalent and thus can be merged and similarly that states 2 and 5 can
then be merged as well.

any k,m ∈ N with m ≤ k: Tk,m = D∗RD∗ with R = ∑m
i=0 Si ttMk−i. Consider two sequences z1,z2

such that |z1|= |z2|= k. By definition of M and S and the shuffle product, for any i, with 0 ≤ i ≤ m,

[[Si ttMk−i]](z1,z2) =

{

1 if (d(z1,z2) = i)
0 otherwise.

Thus, [[R]](z1,z2) =
m

∑
i=0

Si ttMk−i(z1,z2) =

{

1 if (d(z1,z2) ≤ m)
0 otherwise

= dm(z1,z2).

By definition of the product of weighted transducers, for any x ∈ Σ∗ and z ∈ Σk,

Tk,m(x,z) = ∑
x=uvw,z=u′v′w′

[[D∗]](u,u′) [[R]](v,v′) [[D∗]](w,w′)

= ∑
v∈Fk(x),z=v′

[[R]](v,v′) = ∑
v∈Fk(x)

dm(v,z).

It is clear from the definition of Tk,m that Tk,m(x,z) = 0 for all x,z ∈ Σ∗ with |z| > k. Thus, by
definition of the composition of weighted transducer, for all x,y ∈ Σ∗

[[Tk,m ◦Tk,m
−1]](x,y) = ∑

z1∈Fk(x),z2∈Fk(y),z∈Σ∗

dm(z1,z) dm(z,z2)

= ∑
z1∈Fk(x),z2∈Fk(y),z∈Σk

dm(z1,z) dm(z,z2) = K(k,m)(x,y).

By proposition 7, this proves that K(k,m) is a PDS rational kernel.
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Figure 6 shows T3,2, a simple weighted transducer over the probability semiring that can be
used to compute the mismatch kernel K(3,2) = T3,2 ◦ T3,2

−1. Such transducers provide a compact
representation of the kernel and are very efficient to use with the composition algorithm already
described in (Cortes et al., 2003c). The transitions of these transducers can be defined implicitly
and expanded on-demand as needed for the particular input strings or weighted automata. This
substantially reduces the space needed for their representation, e.g., a single transition with labels
x : y, x 6= y can be used to represent all transitions with similar labels ((a : b), a,b ∈ Σ, with a 6= b).
Similarly, composition can also be performed on-the-fly. Furthermore, the transducer of Figure 6
can be made more compact since it admits several states that are equivalent.

7. Applications and Experiments

Rational kernels can be used in a variety of applications ranging from computational biology to
optical character recognition. We have applied them successfully to a number of speech process-
ing tasks including the identification from speech of traits, or voice signatures, such as emotion
(Shafran et al., 2003). This section describes some of our most recent applications to spoken-dialog
classification.

We first introduce a general family of PDS rational kernels relevant to spoken-dialog classifi-
cation tasks that we used in our experiments, then discuss the spoken-dialog classification problem
and report our experimental results.

7.1 A General Family of PDS Kernels: n-gram Kernels

A rational kernel can be viewed as a similarity measure between two sequences or weighted au-
tomata. One may for example consider two utterances to be similar when they share many common
n-gram subsequences. The exact transcriptions of the utterances are not available but we can use
the word lattices output by the recognizer instead.

A word lattice is a weighted automaton over the log semiring that compactly represents the most
likely transcriptions of a speech utterance. Each path of the automaton is labeled with a sequence
of words whose weight is obtained by adding the weights of the constituent transitions. The weight
assigned by the lattice to a sequence of words can often be interpreted as the log-likelihood of
that transcription based on the models used by the recognizer. More generally, the weights are
used to rank possible transcriptions, the sequence with the lowest weight being the most favored
transcription.

A word lattice A can be viewed as a probability distribution PA over all strings s ∈ Σ∗. Modulo
a normalization constant, the weight assigned by A to a string x is [[A]](x) = − logPA(x). Denote
by |s|x the number of occurrences of a sequence x in the string s. The expected count or number of
occurrences of an n-gram sequence x in s for the probability distribution PA is

c(A,x) = ∑
s

PA(s)|s|x.

Two lattices output by a speech recognizer can be viewed as similar when the sum of the product of
the expected counts they assign to their common n-gram sequences is sufficiently high. Thus, we
define an n-gram kernel kn for two lattices A1 and A2 by

kn(A1,A2) = ∑
|x|=n

c(A1,x)c(A2,x).

1054



RATIONAL KERNELS: THEORY AND ALGORITHMS

0

a:ε/1
b:ε/1

1a:a/1
b:b/1

2/1a:a/1
b:b/1

a:ε/1
b:ε/1

Figure 7: Weighted transducer T computing expected counts of bigram sequences of a word lattice
with Σ = {a,b}.

The kernel kn is a PDS rational kernel of type T ◦T−1 and it can be computed efficiently.
Indeed, there exists a simple weighted transducer T that can be used to computed c(A1,x) for all

n-gram sequences x ∈ Σ∗. Figure 7 shows that transducer in the case of bigram sequences (n = 2)
and for the alphabet Σ = {a,b}. The general definition of T is

T = (Σ×{ε})∗ (∑
x∈Σ

{x}×{x})n (Σ×{ε})∗.

kn can be written in terms of the weighted transducer T as

kn(A1,A2) = w[(A1 ◦T )◦ (T−1 ◦A2)]

= w[(A1 ◦ (T ◦T−1)◦A2)],

which shows that it is a rational kernel whose associated weighted transducer is T ◦T −1. In view
of Proposition 7, kn is a PDS rational kernel. Furthermore, the general composition algorithm and
shortest-distance algorithm described in Section 4 can be used to compute kn efficiently. The size
of the transducer T is O(n|Σ|) but in practice, a lazy implementation can be used to simulate the
presence of the transitions of T labeled with all elements of Σ. This reduces the size of the machine
used to O(n). Thus, since the complexity of composition is quadratic (Mohri et al., 1996; Pereira and
Riley, 1997) and since the general shortest distance algorithm just mentioned is linear for acyclic
graphs such as the lattices output by speech recognizers (Mohri, 2002), the worst case complexity
of the algorithm is O(n2 |A1| |A2|).

By Theorem 6, the sum of two kernels kn and km is also a PDS rational kernel. We define an
n-gram rational kernel Kn as the PDS rational kernel obtained by taking the sum of all km, with
1 ≤ m ≤ n:

Kn =
n

∑
m=1

km.

Thus, the feature space associated with Kn is the set of all m-gram sequences with m ≤ n. n-gram
kernels are used in our experiments in spoken-dialog classification.

7.2 Spoken-Dialog Classification

7.2.1 DEFINITION

One of the key tasks of spoken-dialog systems is classification. This consists of assigning, out of a
finite set, a specific category to each speech utterance based on the transcription of that utterance by

1055



CORTES, HAFFNER, AND MOHRI

Dataset Number of Training Testing Number of ASR word
classes size size n-grams accuracy

HMIHY 0300 64 35551 5000 24177 72.5%
VoiceTone1 97 29561 5537 22007 70.5%
VoiceTone2 82 9093 5172 8689 68.8%

Table 2: Key characteristics of the three datasets used in the experiments. The fifth column displays
the total number of unigrams, bigrams, and trigrams found in the one-best output of the
ASR for the utterances of the training set, that is the number of features used by BoosTexter
or SVMs used with the one-best outputs.

a speech recognizer. The choice of possible categories depends on the dialog context considered. A
category may correspond to the type of billing problem in the context of a dialog related to billing, or
to the type of problem raised by the speaker in the context of a hot-line service. Categories are used
to direct the dialog manager in formulating a response to the speaker’s utterance. Classification is
typically based on features such as relevant key words or key sequences used by a machine learning
algorithm.

The word error rate of conversational speech recognition systems is still too high in many tasks
to rely only on the one-best output of the recognizer (the word error rate in the deployed services we
have experimented with is about 70%, as we will see later). However, the word lattices output by
speech recognition systems may contain the correct transcription in most cases. Thus, it is preferable
to use instead the full word lattices for classification.

The application of classification algorithms to word lattices raises several issues. Even small
word lattices may contain billions of paths, thus the algorithms cannot be generalized by simply
applying them to each path of the lattice. Additionally, the paths are weighted and these weights
must be used to guide appropriately the classification task. The use of rational kernels solves both
of these problems since they define kernels between weighted automata and since they can be com-
puted efficiently (Section 4).

7.2.2 DESCRIPTION OF TASKS AND DATASETS

We did a series of experiments in several large-vocabulary spoken-dialog tasks using rational kernels
with a twofold objective: to improve classification accuracy in those tasks, and to evaluate the
impact on classification accuracy of the use a word lattice rather than the one-best output of the
automatic speech recognition (ASR) system.

The first task we considered is that of a deployed customer-care application (HMIHY 0300).
In this task, users interact with a spoken-dialog system via the telephone, speaking naturally, to
ask about their bills, their calling plans, or other similar topics. Their responses to the open-ended
prompts of the system are not constrained by the system, they may be any natural language se-
quence. The objective of the spoken-dialog classification is to assign one or several categories or
call-types, e.g., Billing Credit, or Calling Plans, to the users’ speech utterances. The set of cate-
gories is finite and is limited to 64 classes. The calls are classified based on the user’s response to
the first greeting prompt: “Hello, this is AT&T. How may I help you?”.
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Figure 8: Classification error rate as a function of rejection rate in HMIHY 0300.

Table 7.2.2 indicates the size of the HMIHY 0300 datasets we used for training and testing.
The training set is relatively large with more than 35,000 utterances, this is an extension of the one
we used in our previous classification experiments with HMIHY 0300 (Cortes et al., 2003c). In our
experiments, we used the n-gram rational kernels described in the previous section with n = 3. Thus,
the feature set we used was that of all n-grams with n ≤ 3. Table 7.2.2 indicates the total number
of distinct features of this type found in the datasets. The word accuracy of the system based on
the best hypothesis of the speech recognizer is 72.5%. This motivated our use of the word lattices,
which may contain the correct transcription in most cases. The average number of transitions of a
word lattice in this task was about 260.

Table 7.2.2 reports similar information for two other datasets, VoiceTone1, and VoiceTone2.
These are more recently deployed spoken-dialog systems in different areas, e.g., VoiceTone1 is a
task where users interact with a system related to health-care with a larger set of categories (97).
The size of the VoiceTone1 datasets we used and the word accuracy of the recognizer (70.5%) make
this task otherwise similar to HMIHY 0300. The datasets provided for VoiceTone2 are significantly
smaller with a higher word error rate. The word error rate is indicative of the difficulty of classifi-
cation task since a higher error rate implies a more noisy input. The average number of transitions
of a word lattice in VoiceTone1 was about 210 and in VoiceTone2 about 360.

Each utterance of the dataset may be labeled with several classes. The evaluation is based on
the following criterion: it is considered an error if the highest scoring class given by the classifier is
none of these labels.

7.2.3 IMPLEMENTATION AND RESULTS

We used the AT&T FSM Library (Mohri et al., 2000) and the GRM Library (Allauzen et al., 2004)
for the implementation of the n-gram rational kernels Kn used. We used these kernels with SVMs,
using a general learning library for large-margin classification (LLAMA), which offers an optimized
multi-class recombination of binary SVMs (Haffner et al., 2003). Training time took a few hours
on a single processor of a 2.4GHz Intel Pentium processor Linux cluster with 2GB of memory and
512 KB cache.
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Figure 9: Classification error rate as a function of rejection rate in (a) VoiceTone1 and (b) Voice-
Tone2 .

In our experiments, we used the trigram kernel K3 with a second-degree polynomial. Prelimi-
nary experiments showed that the top performance was reached for trigram kernels and that 4-gram
kernels, K4, did not significantly improve the performance. We also found that the combination of a
second-degree polynomial kernel with the trigram kernel significantly improves performance over a
linear classifier, but that no further improvement could be obtained with a third-degree polynomial.

We used the same kernels in the three datasets previously described and applied them to both the
speech recognizer’s single best hypothesis (one-best results), and to the full word lattices output by
the speech recognizer. We also ran, for the sake of comparison, the BoosTexter algorithm (Schapire
and Singer, 2000) on the same datasets by applying it to the one-best hypothesis. This served as a
baseline for our experiments.

Figure 7.2.3 shows the result of our experiments in the HMIHY 0300 task. It gives classification
error rate as a function of rejection rate (utterances for which the top score is lower than a given
threshold are rejected) in HMIHY 0300 for: BoosTexter, SVM combined with our kernels when
applied to the one-best hypothesis, and SVM combined with kernels applied to the full lattices.

SVM with trigram kernels applied to the one-best hypothesis leads to better classification than
BoosTexter everywhere in the range of 0-40% rejection rate. The accuracy is about 2-3% absolute
value better than that of BoosTexter in the range of interest for this task, which is roughly between
20% and 40% rejection rate. The results also show that the classification accuracy of SVMs com-
bined with trigram kernels applied to word lattices is consistently better than that of SVMs applied
to the one-best alone by about 1% absolute value.

Figure 7.2.3 shows the results of our experiments in the VoiceTone1 and VoiceTone2 tasks
using the same techniques and comparisons. As observed previously, in many regards, VoiceTone1
is similar to the HMIHY 0300 task, and our results for VoiceTone1 are comparable to those for
HMIHY 0300. The results show that the classification accuracy of SVMs combined with trigram
kernels applied to word lattices is consistently better than that of BoosTexter, by more than 4%
absolute value at about 20% rejection rate. They also demonstrate more clearly the benefits of the
use of the word lattices for classification in this task. This advantage is even more manifest for the
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VoiceTone2 task for which the speech recognition accuracy is lower. VoiceTone2 is also a harder
classification task as can be seen by the comparison of the plots of Figure 7.2.3. The classification
accuracy of SVMs with kernels applied to lattices is more than 6% absolute value better than that
of BoosTexter near 40% rejection rate, and about 3% better than SVMs applied to the one-best
hypothesis.

Thus, our experiments in spoken-dialog classification in three distinct large-vocabulary tasks
demonstrates that using rational kernels with SVMs consistently leads to very competitive clas-
sifiers. They also show that their application to the full word lattices instead of the single best
hypothesis output by the recognizer systematically improves classification accuracy.

8. Conclusion

We presented a general framework based on weighted transducers, rational kernels, to extend kernel
methods to the analysis of variable-length sequences or more generally weighted automata. The
transducer representation provides a very compact representation benefiting from existing and well-
studied optimizations. It further avoids the design of special-purpose algorithms for the computation
of the kernels covered by the framework of rational kernels. A single general and efficient algorithm
was presented to compute effectively all rational kernels. Thus, it is sufficient to implement that
algorithm and let different instances of rational kernels be given by the weighted transducers that
define them. A general framework is also likely to help understand better kernels over strings or
automata and their relation.

We gave the proof of several characterization results and closure properties for PDS rational
kernels. These results can be used to design a complex PDS rational kernel from simpler ones
or from an arbitrary weighted transducer over an appropriate semiring, or from negative definite
kernels.

We also gave a study of the relation between rational kernels and several kernels or similarity
measures introduced by others. Rational kernels provide a unified framework for the design of
computationally efficient kernels for strings or weighted automata. The framework includes in
particular pair-HMM string kernels (Durbin et al., 1998; Watkins, 1999), Haussler’s convolution
kernels for strings, the path kernels of Takimoto and Warmuth (2003), and other classes of string
kernels introduced for computational biology. We also showed that the classical edit-distance does
not define a negative definite kernel when the alphabet contains more than one symbol, a result that
to our knowledge had never been stated or proved and that can guide the study of kernels for strings
in computational biology and other similar applications.

Our experiments in several different large-vocabulary spoken-dialog tasks show that rational
kernels can be combined with SVMs to form powerful classifiers and demonstrate the benefits of the
use of kernels applied to weighted automata. There are many other rational kernels such as complex
gappy n-gram kernels that could be explored and that perhaps could further improve classification
accuracy in such experiments. We present elsewhere new rational kernels exploiting higher-order
moments of the distribution of the counts of sequences, moment kernels, and report the results of
our experiments on the same tasks which demonstrate a consistent gain in classification accuracy
(Cortes and Mohri, 2004). Rational kernels can be used in a similar way in many other natural
language processing, speech processing, and bioinformatics tasks.
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