Question-Answering via Enhanced Understanding of Questions

Dan Roth
Chad Cumby, Xin Li, Paul Morie, Ramya Nagarajan,
Nick Rizzolo, Kevin Small, Wen-tau Yih
Department of Computer Science
University of Illinois at Urbana-Champaign

Abstract

We describe a machine learning centered approach
to developing an open domain question answering
system. The system was developed in the sum-
mer of 2002, building upon several existing machine
learning based NLP modules developed within a
unified framework.

Both queries and data were pre-processed and aug-
mented with pos tagging, shallow parsing informa-
tion, and some level of semantic categorization (be-
yond named entities) using a SNoW based machine
learning approach. Given these as input, the sys-
tem proceeds as an incremental constraint satisfac-
tion process. A machine learning based question
analysis module extracts structural and semantic
constraints on the answer, including a fine classi-
fication of the desired answer type. The system
continues in several steps to identify candidate pas-
sages and then extracts an answer that best satis-
fies the constraints.

With the available machine learning technologies,
the system was developed in six weeks with the goal
of identifying some of the key research issues of QA
and challenges to it.

1 Introduction

The question answering track in TREC 2002 requires
participants to construct a system that can answer open-
domain natural language questions automatically given
a large collection of news articles with the possible help
of external knowledge sources. The questions are all fac-
tual and fairly restricted in the syntactic structure and
the given answer should be a single phrase, without any
additional information. Contrary to previous years, def-
inition questions do not occur in this year’s test set.

The open domain question answering (QA) system de-
scribed in this paper has been implemented as a platform
for studying and experimenting with a unified approach
to learning, knowledge representation and inference that,
we believe, is required to perform knowledge intensive
natural language based inferences.

The fundamental assumption that underlies the sys-
tem described here is that deep analysis of questions
plays an important role in the question answering task.

An information retrieval(IR) module, an answer selec-
tion and verification(AS) module and other supporting
components of a QA system all rely on the information
extracted from questions which we view here as con-
straints on possible answers. Our approach views the
selection of the answer and its justification as an in-
cremental constraint satisfaction process — information
extracted from the question constrains the syntactical
and semantical structures that can appear in correspond-
ing answers. This process applies restrictions extracted
by analyzing the questions using machine learning based
classifiers and operates on data annotated also by ma-
chine learning based classifiers.

Specifically, the system analyzes the question to ex-
tract structural and semantic constraints on the answer
and then proceeds in several steps, including a passage
retrieval and an answer selection stage, to narrow down
the list of candidate answers and rank them based on
how well they satisfy the known constraints on the de-
sired answer.

The system is centered around a unified machine learn-
ing and inference approach. Classifiers learned accord-
ing to the SNoW learning architecture [2; 14] are used
along with a SNoW based CSCL approach [12] to aug-
ment the questions and text documents with additional
information including pos tagging information, shallow
parsing and some level of semantic categorization (be-
yond named entities) - information that all the modules
of our system exploit, including passage retrieval and
answer selection. The same learning architecture is also
used to train a question analysis module that provides
an accurate and fine-grained semantic classification of
the desired answer as well as deeper analysis, including
identifying the required relation (if relevant) and some
other syntactic and semantic constraints on the answer.

Consider the question [5]:
What is the fastest car in the world?
The candidate answers are:

1. Jaguar. With the justification: ...the Jaguar
XJ220 is the dearest (415,000 pounds),
fastest (217mph) and most sought after car
in the world.

2. Volkswagen. With the justification: ...will
stretch Volkswagen’s lead in the world’s

fastest growing vehicle market. Demand
for cars is expected to soar.
If we only consider a set of search terms — proba-

bly fastest, car and world — and assume that one
knows that the search is for a proper name, then both
sentences equally qualify as justifications. However, a
slightly deeper analysis reveals that “fastest” needs to
modify “car”, while in one of the candidate sentences it
modifies “market”. In many cases, especially given the
current definition of the TREC QA task, ad hoc prox-
imity constraints can do the job. That is, key terms
that are close together are more likely than not to be in-
dicative of the correct answer. However, we believe that
in order to make big progress in this task, this level of
deeper analysis is still necessary.

The constraints may consist of various syntactic and
semantic conditions that an answer has to, or is very
likely to satisfy. For example, the answer may be known
to be a noun phrase, a phrase that describes a loca-
tion, a date or a city. If the answer is a person’s name,
an additional constraint may specify an action that this
person is taking; It may specify a plurality or a gender
constraint, etc.

Information extracted from the question analysis not
only constrains possible answers, but also guides the
downstream processing in choosing the most suitable
techniques to deal with different types of questions. For
example, given the question “Who was the first woman
killed in the Vietnam War?’, we want to avoid testing
every noun phrase as an answer candidate. At the very
least, we would like to be able to tell that the target of
this question is a person, thereby reducing the space of
possible answers significantly by only searching person
names.

To achieve this goal, the QA system described here was
constructed with an enhanced question analysis module.
In the stage of question analysis, a fine-grained and fairly
accurate question classification is performed to identify
some of 50 predefined classes as the semantic classes of
the desired answer. This is done using a machine learn-
ing technique that builds on an augmented representa-
tion of the question that includes pos tagging, shallow
parsing information, and some semantic categorization
information. A set of typical semantic relations is ex-
tracted from the questions, along with one of their argu-
ments, and we also identify whether the desired answer
is the first or the second argument of a binary relation.
Eventually, the goal of question analysis is to generate
an abstract representation of the question, based on syn-
tactic and semantic analysis.

A passage retrieval module attempts first to apply the
information extracted by the question analysis module to
determining an ordered set of key terms (along with their
properties, e.g., named entities) and construct a search
policy to locate a passage that contains the answer. The
passage retrieval module is based on the concept of struc-
tured text queries which are extended by searching over

non-textual concepts such as named entities and part
of speech types. Targeted strategies to generate queries
for specific question types are formed according to the
question analysis results with the help of additional in-
formation hinging, of course, on massive document pre-
processing and indexing. Several interesting techniques
have been developed for that purpose which allow, for
example, this module to index different writings of a
named entity with a single key.

Once a set of candidate passages are chosen, their loca-
tion information is passed to the answer selection module
to determine the most appropriate answer. The answer
selection stage becomes more challenging due to the new
requirements enforced in this year’s TREC competition:
the answers provided by the QA system should be the
exact phrase of the answer; and, only a single answer
can be output.

Our answer selection is thus an optimization proce-
dure that is constructed, at this point, in an ad hoc
way, with an attempt to increase precision. For this pur-
pose, we focused only on answers that can be supported
within a single sentence and otherwise we just returned
“no answer” (NIL). The performance of our system on
questions that have no answer is 48% and on questions
whose answer is believed to be supported by the system,
24%. This is achieved by several methods. First, the IR
module enforces key terms to be within a small window
in the returned passages. The AS module itself imple-
ments strict constraint-satisfaction criteria in locating
answers. In addition, by utilizing the relation informa-
tion extracted by the question analyzer, it is possible to
capture the right answers for specific types of questions
and even rely on a knowledge base in some cases. Fi-
nally, a procedure for ranking answers is adopted to pick
the most suitable answer from the candidates.

This project, with the exception of the IR module,
started as a summer project in early June, 2002 and was
completed before the end of July. The reliance on mature
learning methods allowed us to put together a system for
this task in such a short time. Needless to say, there are
several important components that are still missing and
many of our design goals have not been fully achieved.

Another working assumption is that a robust and ac-
curate question answering system will depend on a large
number of predictors. These will be used at many levels
of the process and will support a variety of functions,
from knowledge acquisition to decision making and inte-
gration of information sources. Along with these, there
needs to be knowledge representation support that al-
lows, for example, to keep track of predictions as in-
put to higher level decisions and to maintain a coherent
representation of a question or a story; and, there also
needs to be an ability to make inferences by combining
the outcomes of lower level predictions along with some
constraints, e.g., those that are implied by the questions.
Some of our modules already make use of this view by in-
tegrating different levels of classifications and inferences

[12; 15]. However, at the system level, the system de-
veloped here only makes some preliminary steps in these
directions by putting forward a suggestion for a few of
the learning components and a few of the higher level
inferences required within a question answering system.

The rest of the paper is organized as follows: Sec. 2
describes the overall system architecture and highlights
some of the methods applied. Sec. 3 summarizes the
preprocessing of the queries and text. Sec. 4 describes
the question analysis module. Sec. 5 and 6 present our
information retrieval technique and answer selection and
verification module. In Sec. 7, we provide preliminary
evaluation on some of the system modules.

2 System Description

The three major modules of our QA system are the ques-
tion analysis, information retrieval and answer selection
modules. FEach of them is a combination of multiple
submodules and tools. The question analysis module ex-
tracts constraints from a question and stores them in a
question analysis record. The IR module uses this infor-
mation to extract relevant passages from the correspond-
ing documents that are indexed at the word, sometimes
the phrase and the named entity level. The answer selec-
tion module analyzes the candidate passages or searches
a small knowledge base to extract the exact answer for
the question. We highlight below a few important pro-
cessing steps in our system.

1. An improved question analysis module provides an
accurate question classification (answer semantic
classes) and a detailed analysis of the question. The
IR and the AS module utilize the analyzed questions
and the answer semantic class to select query terms
and locate a candidate answer, respectively.

2. A new indexing mechanism based on named entities
and pos tags is applied to the document set and a
passage retrieval module is employed, that makes
use of the concept of structured text queries; it is
also capable of searching over non-textual concepts
such as named entities and part of speech types.

3. Question-specific strategies are applied both in the
question analysis and in answer selection. In the
question analysis they enable, for example, recog-
nizing some binary semantic relations along with a
missing argument, which is the target of the ques-
tion. In answer selection, the semantic classes of
the answer, as predicted by the question classifier,
guide the application of class—specific answer selec-
tion rules.

4. A small knowledge base has been acquired and in-
corporated into the system. It contains a collection
of binary relations along with their arguments and
can be accessed using the name of the relation and
one of the arguments, to extract the second argu-
ment. For example, the relation that A is the capi-
tal of B will be stored in our knowledge base for all

countries and U.S. states. When the answer ana-
lyzer identifies that a question is concerned with this
relation, the knowledge base will be searched, but
after that, the normal AS process will still search
for a justification for this answer.

Figure 1 presents the basic structure of our QA sys-
tem. The following sections will give a detailed intro-
duction of the internal modules.

3 Preprocessing of Questions and Text

All the questions and documents were preprocessed using
a part—of-speech tagger, a named entity tagger and a
shallow parser which perform a basic-level syntactic and
semantic analysis.

The pos tagger is a SNoW based one [4] that makes
use of a sequential model of classification to restrict the
number of competing classes (pos tags) while maintain-
ing, with high probability, the presence of the true out-
come in the candidate set. The same method is used to
give pos tags to both known and unknown words. Over-
all, as shown in [4], it achieves state—of-the-art results
on this task and is significantly more efficient than other
part-of-speech taggers. Note that we use the pos tagger
both for the questions and the documents. Although pos
taggers are typically evaluated on declarative sentences,
we have evaluated our pos tagger also on questions and
found its performance to be satisfactory.

Shallow parsing (text chunking) is the task of identi-
fying phrases, possibly of several types, in natural lan-
guage sentences. The shallow parser employed here
is the SNoW based CSCL parser described in [13;
7). Primitive classifiers are trained to identify the be-
ginning and the end of each (type of) phrase. The final
decision is made using a constraint satisfaction based
inference, which takes into account constraints such as
“Phrases do not overlap”.

In question analysis, we apply this tool to identifying
three types of phrases: noun-phrases, verb-phrases and
prepositional-phrases. The definitions of these phrases
follow those in the text chunking shared task in CoNLL-
2000 [6]. When analyzing the documents, in order
to save processing time, only noun-phrases and verb-
phrases are identified. Below is an example to the type
of information provided by this module.

Question: Who was the first woman killed in the
Vietnam War ?

Chunking: [NP Who] [VP was] [NP the first woman]
[VP killed] [PP in] [NP the Vietnam War] ?

Both the pos tagger and the shallow parser are available
at http://L2R.cs.uiuc.edu/ " cogcomp.

Our named entity recognizer categorizes noun phrases
into one of 34 different categories of varying specificity.
The scope of these categories is broader than usual for
an average named entity recognizer. With additional
categories such as title, profession, event, holiday,
festival, animal, plant, sport, and medical, we rede-
fine our task in the direction of semantic categorization.
For the above example, the named entity tagger will get:

Question: 1559 Where did Dr. King give his

speech in Washington?

I =

Document
POS Tagger / Set
NE Tagger
Question Preprocessing Shallow Parser Document
Record Preprocessing Files
Quesion
Classification Question Analysis ﬂ Indexed
Relation Extraction Record Documents
Abstract \ Term Selection and Query
Representation Formulation
Construction Passage Retrieval

Question Analysis
Record

—‘ Retrieved Passages

Extracting

Knowledge
Answersfrom KB

Base

Constraint
Satisfaction
Answer Selection

Rule-Based RIE
Selection

Answer Ranking

the answer phrase
with the top score

{ Answer: 1559 NYT19990902. 0264 Lincol n Menori al J

Figure 1: System Architecture

NE: Who was the [Num first] woman killed in the
[Event Vietnam War] ?

Like the shallow parser, the named entity recognition
process centers around the SNoW based CSCL [13], with
the addition of some predefined lists for some of the se-
mantic categories. One major setback in developing this
tool was a lack of sufficient training data. Since our de-
cision process crucially depends on this categorization
process, both in question classification and answer selec-
tion, we are planning to work on improving the accuracy
of this tool.

4 Question Analysis

The goal of the question analysis is two-folded. First, we
attempt to recognize the semantic type of the sought af-
ter answer, so that we can apply more specific and more
accurate strategies when locating the answers. Second,
we try to extract informative syntactic and semantic con-
straints over the possible answers.

To achieve these, question analysis consists of three
subtasks. First, a machine learning approach is applied
to performing a fine-grained question classification and
identifying the semantic classes of the answer [8].

Second, given that the questions in TREC actually
concentrate on a limited range of topics, it is possible to
define a fairly small number of semantic relations that
are the target of a large number of questions. Specif-
ically, for a binary relation, the question identifies one
of it’s arguments, and looks for the other as the answer.
In addition to the answer types, we therefore attempt to
extract the target semantic relation in the question. For
example, in the question “When was Davy Crockett born

27, the goal is to infer that the question is looking for
the first argument in the relation Birthdate_of (¢, Davy
Crockett). The information that the first argument is
likely to be a date is also utilized.

Third, we fully parse the question and construct an ab-
stract representation based on this parse result. The rep-
resentation consists of some general syntactic and seman-
tic relations such as subject—verb, verb—object, modifier—
entity pairs, etc.

4.1 Fine Grained Question Classification

The purpose of question classification [8] is to identify
the semantic classes of the desired answer. People work-
ing in QA seem to agree that this task is an essential
and crucial step in the QA process. For example, [10]
claims that 36.4% of the total errors of the QA system
can be attributed to mistakes at this early stage. More-
over, it seems that the more specific the classification
is, the greater the benefit to downstream processes. For
example, in the next two questions, knowing that the
targets are a “city” or a “country” will be more useful
than just knowing that they are locations.

Q: What Canadian city has the largest population?

Q: Which country gave New York the Statue of Lib-
erty?

Therefore, our taxonomy of question classification in-
clude 6 coarse classes(]ABBREVIATION, ENTITY, DE-
SCRIPTION, HUMAN, LOCATION and NUMERIC
VALUE) and 50 fine classes (animal, color, event, food,
language, plant, city, mountain, code, individual, title,
speed, money, equivalent term, etc.). By using learning
with multiple syntactic and semantic features, we can

improve the classification accuracy to a level that can
be relied upon in downstream processes. The question
classifier developed is a two-layered hierarchical learned
classifier based on the SNoW architecture. See [8] for
details.

One difficulty in the question classification task is that
there is no clear boundary between classes. Here are
some examples of the internal ambiguity of this task.

Consider

1. What do bats eat?
2. What is the fear of lightning called ?
3. Who defeated the Spanish armada?

The answer of Question 1 could be food, plant or an-
imal; The answer of Question 2 could be an equivalent
term or a disease. And Question 3 could ask for a person
or a country. Due to this ambiguity, it is hard to catego-
rize these questions into one single class; it is likely that
mistakes will propagate into any downstream processes.
To avoid this problem, we allow the classifier to assign
multiple class labels for a single question. This method
is better than only allowing one label because we can
apply all the classes in the downstream processing steps
without loss of accuracy. In those steps, inaccurate an-
swer candidates will be filtered out by applying further
constraints over the answers. To implement this model,
we choose to output k (k < 5) classes for a question. k
here is decided by a decision module over the activation
of each class. For example, for Question 2, all of food,
animal and plant are returned as the possible answer
types.

An important change in this year’s TREC competi-
tion is that all definition questions are removed from the
test set. This change increases the pressure on our ques-
tion classifier because definition questions are relatively
simpler to classify.

4.2 Relation Extraction

According to our statistics, about 30% of TREC 10 ques-
tions contained a specific and simple semantic relation
which can be described as a binary relation. In TREC
2002, there are also a lot of relational questions. By
extracting the semantic relations, the questions can be
easily converted into a logical form. For example,

1. When was Davy Crockett born ?
— Birthdate_of(?, Davy Crockett).

2. What is the capital city of Algeria ?
— Capital_of(?, Algeria).

3. Who invented the fishing reel ¢
— Inventor_of(?, fishing reel).

The same relation should also be satisfied by the an-
swer. Specifically, in these cases, the question specifies
a binary relation along with one of its arguments, and
the answer is the other argument. Several systems [1;
16] have previously shown that sometimes, even simple
pattern matching methods can achieve high precision in
answering those relational questions. While our goal is
to develop a more general relation identifier [15], at this

point, we define a set of over 30 specific binary semantic
relations (such as Birthdate_of, President_of, State-
flower _of, Inventor_of, Speed_of, Capital_of, etc.)
and apply heuristic rules to determining whether the
questions satisfy typical patterns for those relations. For
example, typical patterns to extract relations are like:

1. Who invented/developed A ¢ — Inventor_of(?, A)
2. What’s the capital [city] of A 2 — Capital_of(?,A)
3. What’s the [flying/...] speed of A ¢ — Speed_of(?, A)
4. How fast is A ? / does A fly ¢ —> Speed_of(?, A)

4.3 Abstract Representation

We represent questions using a simple abstract repre-
sentation that reflects the basic dependencies between
constituents in the question. The representation is ex-
tracted from a full parse tree of a question and contains
the fields: Action, Action Subject, Direct Object, Indi-
rect Object, Target Description, Target Modifier, Action
Modifier, Location, Time, Extreme Case, and Unit.

5 DPassage Retrieval using Structured
Information Queries

In contrast to the more general method of passage ex-
traction from a set of retrieved documents, our system
directly retrieves candidate passages from the corpus for
analysis by the answer selection module. We search for
candidate passages along two primary dimensions: text
structure and text classification. Along the structure
dimension, our approach uses many of the concepts de-
scribed within the frameworks of overlapped lists [3] and
prozimal nodes [11].

Constraining our search with structure, we are able
to specify concept orderings and restrict the size of the
text space that must contain the specified concepts. By
searching over multiple text classifications, the simplest
being the text itself, we are able to make more expres-
sive restrictions over the corpus being searched. For ex-
ample, in the question How tall is the John Han-
cock Building? searching for a document containing
the terms {john, hancock, building} is not precisely
searching for the desired information, but instead the
most available information. When looking for the answer
to this question, we only want occurrences of passages
that explicitly or implicitly describe the John Hancock
Building. A more appropriate description may be “a lo-
cation near or containing the word hancock”. This is
due to the facts that the John Hancock Building is of-
ficially the John Hancock Center, people often simply
refer to it as “the Hancock” in many contexts, and the
words {john, building} are relatively common words,
thereby providing limited information. However, we still
want to eliminate references to John Hancock the person
or John Hancock the company. While there are specific
strategies to eliminate each of these problems in general
information retrieval approaches, our system captures
these ideas naturally and succinctly.

In this section, first we will briefly describe the in-
dexing representation and searching mechanisms. Sec-
ond, the query language will be provided including some
examples of more common usages. Finally, we will de-
scribe the heuristics used to dynamically determine the
retrieval query and determine when to return the list of
feasible candidate passages.

5.1 Indexing and Searching Mechanisms

Indexing is performed via a set of document informa-
tion files and a set of index term files. Each of these
sets is comprised of dictionary files that are fixed size
record files for hash lookup purposes and reverse index
files which are of variable length per entry. Examples of
files are stated below:

o file.dict contains a record for each document.
Namely the fields of the entry are the document
number, the document title, the starting position
pointer of the document in the file.struct file, and
the ending position pointer in the file.struct file.

o file.struct contains a list of sentence lengths for each
document along with the length of the list (the num-
ber of sentences in the document). This can natu-
rally be abstracted to other structural properties,
but was not done in this case.

e text.dict, NE.dict, ... contains a record for each in-
dex term comprised of the index term, the starting
position pointer in the text.index file and the corre-
sponding ending position pointer.

o tert.inder, NE.index, ... contains a list of docu-
ments containing the index term that points to a
list of sentence,word tuples representing all of the
locations of that specific term.

Searches are performed in document number space
and the results are translated into a <document, sen-
tence range> pair for processing by the answer selection
module. The fundamental search strategy is as follows.
First, all documents containing the required search terms
are extracted, much like in a Boolean retrieval model.
The allowable range surrounding the first term in this
set is calculated for each instance using the information
contained in the file.struct file. Then each instance of
the other terms is checked against the range calculated
within the same document to see if it satisfies this con-
straint. In those cases that it does, the minimum window
that contains all constraints is returned as a positive in-
stance.

5.2 Query Language

When forming queries, the basic idea is that the first
term serves as the initial set node and we search for
a passage containing the subsequent terms within the
proximity constraints in each direction. If only one prox-
imity constraint is given, it is assumed to be symmetric.
The union operator provides a method to induce a dis-
junction of structural and conceptual constraints. Ta-
ble 1 shows this language in Backus-Naur form. One

query — term
| (operator query query {query})
term — concept . keyword
concept — text | NE | POS |---
operator — [prozimity | | [prozimity prozimity |
| [union]
prozimity — (integer , structure)
structure — document | sentence | word |- - -
keyword — baseball | holyfield | nobel |- --
integer — -« | —1]|0[1]2] -

Table 1: Query Language BNF

additional note is that the absense of a concept identifier
when describing a term implies text, which is only syn-
tactic sugar. This can be seen in the following examples:

1. Find the words george and bush in the same document.
(standard boolean retrieval)
— ([(0,document)] george bush)

2. Find the word hancock as part of a location.
— ([(0,word)(1,word)] hancock NE.location)
Note that this example also accounts for hancock being
tagged incorrectly and building (or an equivalent word)
being tagged correctly by the named entity recognizer.

3. Find the name Snoop Dogg.
— ([(1,word)(2,word)] snoop dogg)
Note that this will match Snoop Dogg, Snoop Doggy
Dogg, and Dogg, Snoop.

4. Find passages describing the murder of John F.
Kennedy.
— ([(0,sentence)] ([(2,word)(3,word)] john kennedy)
([union] murder assasinate kill murdered assasinated
killed))

While manual query generation seems somewhat cum-
bersone, queries are formulated using the information
provided during question analysis which is the only in-
terface to the human user. Therefore, this language cap-
tures the elements necessary for our constraint satisfac-
tion approach in a succinct and easily usable form.

5.3 Term Selection and Query Formulation

While the query language and retrieval engine provide
an expressive and efficient retrieval mechanism, the ef-
fectiveness is strictly limited by the queries generated.
Our basic query formulation strategy is to iteratively
select keywords and refine the query until a threshold
quantity of passages is reached or refinement by addi-
tional terms would not return any documents that satis-
fies the required constraints. Since the answer selection
mechanism was limited to a single sentence, the proxim-
ity constraint was always restricted to the value of (0,
sentence). Depending of the expected utility of the next
keyword selected, additional operations such as term ex-
pansion or union operations are also performed. This
process can be viewed as a greedy search over the space
of document passages.

The first stage of the passage retrieval algorithm is to
determine the strategy to follow based on results from

question analysis. For each question analysis classifica-
tion, an instance of the query formulation agent is in-
stantiated. Each of these instances run independently
and their results are accumulated and returned to the
answer selector. Simple examples of basing the retrieval
strategy on the question analysis module are if a pro-
posed solution is found in the knowledge base or if a
quotation is present in the question. In these cases, pas-
sages containing these concepts are first retrieved and
additional keywords are used primarily to find support
for the answer in the corpus.

In the general case, the aforementioned information
is not available and we follow the basic search strategy
by first extracting the two highest ranking keywords as
scored according to Table 2. If two valid keywords can-
not be extracted, we return to searching on a single key-
word, but this is extremely rare and did not occur on
any questions from the TREC contest. These keywords
generate our initial search of the form:

([(0,sentence)] text.keyword! text.keyword2)

Description Beginning Defaul
Chunk Score Score

Proper Nouns that are | 0 1

Named Entities

Nouns that are Named | 2 3

Entities

Remaining Named Enti- | 4 5

ties except Adjectives or

Adverbs

Remaining Named Enti- | 6 7

ties

Extreme Adjectives 8 9

Nouns 10 11

Verbs 12 13

Any Remaining Keyword | 14 14

Table 2: Ranking Keywords

Once the initial search is constructed, this set of pas-
sages is iteratively constrained by selecting the next
highest ranking keyword until the termination condition
is satisfied or until there are no usable keywords. The
termination condition was tuned according to the equa-

tion (2 a“Ziii’:‘:c‘”o;:’_’lj:ﬁge‘f’""")last_score + passagesmin,
where last_score is the score of the last keyword selected
according to Table 2. In our case, passagesmq: = 150
and passagespyin = 25 as determined experimentally.
Once the number of candidate passages is less than this
value, the results are passed to the answer selection mod-
ule. The basic idea behind the termination condition
is to continue refining the set of candidate passages if
higher quality information is still available, but to stop
this process once further refinement seems arbitrary. An
example of this process follows.

When did Mike Tyson bite Holyfield’s ear?
([(0,sentence)] tyson holyfield)

Result: 637 passages

([(0,sentence)] tyson holyfield ear)

Result: 99 passages

([(0,sentence)] tyson holyfield ear ([union] bite bit bites
biting bitten burn burns burned prick pricked sting
stings stung))

Result: 81 passages

Note that we did not search on the term Mike as it
is a first name, which generally provides limited utility,
and 81 passages seems a reasonable amount. Even
though the approach of refining by desired named entity
type was abandoned for the contest since it was not
fully developed, the earliest experiment was to exploit
the fact that we were searching for a date as an answer.
Consider the case of the query,

([(0,sentence)] previous result NE.B-Date)
Result: 49 passages

which could be viewed as a evidence of a possibly promis-
ing approach. However, since the major effort was put
into improving the general case, these approaches were
not fully developed. Yet, similar strategies were devel-
oped to specifically look for words corresponding to ab-
breviations and abbreviations corresponding to words,
but they are not discussed here since they were not used
in the actual contest and are a subject of future study.

6 Answer Selection and Verification

Given question analysis records, the answer selection
module locate and select the correct answer from ex-
tracted passages, taking the following three steps: Sen-
tences in these passages are first analyzed syntactically
and semantically by the pos tagger, the shallow parser,
and the name entity recognizer. Candidate answers are
then located in preprocessed passages. Because only the
exact answer is judged as correct this year, we only con-
sider specific types of named entities that the question
asks for, or some basic noun phrases, as candidates. Fi-
nally, each candidate answer is evaluated and ranked.
The top one is output as the final answer along with the
document ID.

In the second step, different strategies are adopted to
handle two different types of questions. If the question
asks for an argument of a semantic relation identified,
the answer selector first checks if our knowledge base
has the answer. If exists, any occurrence of the answer
string in the passages is simply picked. Otherwise, the
module searches and identifies the relation in the pas-
sages and locate the sentences containing it. For the
questions without a relation, the named entities or base
noun phrases that satisfy other constraints identified by
question analysis are chosen as candidates. Finally, these
answers will be scored according to some heuristic rules.

6.1 Deriving Answers from the Knowledge
Base

A part of the questions in TREC are asking for some
simple facts, which can easily be answered with the help
of a dictionary or an almanac. In addition, this type of

information is usually available on the web. Examples
of this type of question are What is the capital city of
Algeria? or Where is Lake Louise? For the first one, our
knowledge base stores the name of the capital city of each
country. Once the capital_of relation is extracted from
the question, we know the correct answer instantly. For
the second one, our knowledge base stores the locations
of many famous places in advance. Therefore, finding an
answer in the document is just a simple string matching
process.

Since in the TREC contest, we are required to not only
find the answer but also return the document ID as the
justification, randomly picking a document that has the
answer string is not enough. If more than one document
have the answer string, we (Section 6.4) will attempt to
pick the document that has the best support.

6.2 Rule-based Relation/Entity Selection

In the rule-based portion of the answer selection mod-
ule, we seek to apply pattern-based matching criteria
to possible answer passages in order to identify relation
pairs that correspond to the semantic relations observed
in the question analysis. To match a potential candidate
answer with a relation obtained from question analysis,
we first determine which argument of the relation must
be filled in by the candidate. That is, if we have iden-
tified a relation Location_of in the question and know
Y corresponds to “the Statue of Liberty”, which is lo-
cated in X, then X is the argument which our candidate
answer ought to match.

Therefore the next step in the matching process is to
determine whether the Y argument obtained from ques-
tion analysis is present in the sentence containing the
candidate answer (candidate sentence). For each noun—
phrase in the candidate sentence, we test whether it
matches the known Y argument exactly or can be re-
solved to the same concept(meaning). If so we will pro-
ceed as outlined below. Otherwise we will test whether
any noun-phrase in the candidate sentence matches the
first noun-phrase of the Y argument. This partial match-
ing is useful in cases where the argument identified tends
to be very long, such as in the question What is the name
of the canopy ot o Jewish wedding? where the known ar-
gument of the identified Name_Of relation is canopy at
o Jewish wedding.

Once the presence of Y is known in the candidate
sentence, pattern matching rules based on relation types
will be applied. We examine the words surrounding
the positions of Y and the candidate answer. If they
fit any pattern of the specified relation type, we add
a predefined score to the total score of that candidate
answer. Examples of the patterns for some common
relations are listed below:

Location_Of:
1. Y is (in,at) ...X

2. X (has,contains,includes) ...Y

Capital _Of:

1. X (is,became,was)

2. the capital of Y
X

For patterns partially matching the candidate sen-

tence, the score awarded to the corresponding candidate
answer is reduced compared to the score of full matching.

...the capital of Y

...(%,?”,is,contains,includes)

6.3 Constraint Satisfaction Answer
Selection

Since the question analyzer provides detailed analysis
of a question, the answer selection module only treats
the named entities or base noun phrases that satisfy the
constraints as candidate answers.

For example, if a question asks for a person name,
then only the phrases that are tagged as PERSON will
be considered. Note that there can be multiple answer
semantic types for a question. Therefore, our refined
constraint matchings are actually a mixture of decisions
with the help of WordNet [9]. For instance, suppose a
question asks for the name of the highest mountain in
the US. Those phrases annotated as LOCATION are
first picked by the named entity tagger as candidates.
Then, we use WordNet to filter out those phrases that
are not mountains.

WordNet can also help reduce the number of candidate
answers when additional properties of the answer are
given in the question. For questions like What is a female
rabbit called?, WordNet can check if a string is-a rabbit.

Another example of constraint checking is the unit of a
numeric answer. For instance, questions asking for How
long is Mississippi river? cannot have an answer like
“100 gallons”.

6.4 Ranking Answers

To rank all the candidate answers, we evaluate the con-
fidence with them based on heuristic rules. These rules
generally test how closely the abstract representations
of the candidate answers match the representation of
the question. For instance, a candidate answer will get
higher confidence if many of the nearby phrases con-
tain or overlap Target Modifier, Extreme Case, or other
semantic fields in the abstract representation identified
from the question.

Note that, ideally, all answer candidates picked in the
previous submodules should already be correct answers
and ranked high by this submodule. However, since our
relation extraction module is not 100 percent accurate
and not every constraint derived from question analysis
is fully checked, we just hope in this ranking process,
the correct answer achieves a higher score than incorrect
answers.

7 Evaluation and Error Analysis

Via an enhanced understanding of questions and other
new techniques we incorporated with the QA system like
the IR engine and new answer selection mechanisms, the
total number of correct answers of our system has in-
creased from last year’s 54 out of 500(in rank 1) to 109

even with the stricter requirement over the answers(only
the exact answer is counted as correct), which is an in-
dication of the effectiveness of the recent work. What’s
more, the confidence-weighted score of the 500 answers
reaches 0.299. Limited by the difficulty of creating rea-
sonable and feasible evaluation standards for some mod-
ules of the question answering system, we could only per-
form evaluation results on part of our QA system. For
the question classification and the information retrieval,
we obtain evaluation results as follows:

7.1 Question Classification

The learning classifier for questions is built using a train-
ing set of 5,500 questions. Because of our specific deci-
sion model of allowing multiple labels for a question, in
this paper, we count the number of correctly classified
questions according to two different precision standards
P; and P<5. Suppose k; labels are output for the ith
question after the decision model and are ordered de-
creasingly according to their density values computed
by the learning algorithm in the classifier.
We define

1, if the correct label of the ith
Ii; ={ question is output in rank j; (1)
0, otherwise.
Then, P, = Y7, In/m and P<s = 37, 304, Iij/m
where m is the total number of test examples. P; is the
usual definition of precision which allows only one label
for each question, while in P<5 we allow multiple labels.
We have a thorough evaluation of the question classi-
fier on the 500 questions of TREC 10.

No. | Train | Test P Po—5
1 1000 500 71.00 | 83.80
2 2000 500 77.80 | 88.20
3 3000 500 79.80 | 90.60
4 4000 500 80.00 | 91.20
5 5500 500 84.20 | 95.00

Table 3: Classification precision for fine classes on different

training[‘and test sets. Results are evaluated in P; and P<s.
For TREC 2002 question, our question classification

accuracies reach 81% and 88.6% for the 50 fine classes
in P; and P<s separately. The average number of fine
classes output for each question is only 2.15, which shows
the decision model is accurate as well as efficient.

7.2 Information Retrieval

Tables 4 and 5 summarizes an evaluation of the passage
retrieval module for the TREC 2002 contest questions,
disregarding questions which are believed to have no an-
swer contained in the corpus. Let P; represent the per-
centage of questions that the passage retrieval module
returns at least one passage containing justification for
the correct answer. Let N, be the number of passages
returned for questions which generated at least one jus-
tified passage and N; represent the number of passages
returned for questions that did not generate any justi-
fied passages. These calculations were performed both

on the singular sentences returned and on passages com-
prised of the singular sentence and a “window” of one
sentence on each side. Table 4 shows the results when
passagesmaq; = 150 as done with our submission and ta-
ble 5 shows the results when passages;q.e = 300 to show
that constraining the number of allowable documents to
a smaller threshold increases recall, but also increases
the average number of passages returned.

single sentence | one sentence window
P; 59.7% 66.3%
Nc 54.2 51.9
N; 26.0 25.1

Table 4: Passage Retrieval Evaluation: passagesmas = 150

single sentence | one sentence window
P; 61.0% 68.7%
Nc 68.4 65.3
N; 28.2 26.9

Table 5: Passage Retrieval Evaluation: passsagesmqez = 300

It should be noted that there were 7 questions that
generated more than 500 passages and 8 questions that
generated no passages, which were not considered in
the above calculations. We also have evidence to sup-
port that recall percentages would further improve if the
query strategy spanned multiple sentences, but as this
approach was not used during TREC, we do not report
these statistics here. Finally, it should be noted that the
fact that the number of passages returned for questions
that generate a justified passage is more than twice that
of those that generate no such passage may point to a ne-
cessity for a more sophisticated search strategy beyond
the greedy algorithm employed thus far.

8 Conclusion

TREC-like question answering requires generating some
abstract representation of the question, extracting (for
efficiency reasons) a small portion of relevant text and
analyzing it to a level that allows matching it with the
constraint imposed by the question. This process neces-
sitates, we believe, learning a large number of classifiers,
at several levels, that need to interact in various ways
and be used as part of a reasoning process to yield the
desired answer. Along with these, there needs to be a
knowledge representation support that allows, for exam-
ple, to keep track of predictions as input to higher level
decisions and maintain a coherent representation of a
question or a story; and, there needs to be an ability to
use the outcomes of lower level predictions to make infer-
ences that use several of these predictors along with some
constraints, e.g., those that are implied by the questions.

This paper summarizes some preliminary steps we
took in this direction by putting forward a suggestion

for a few of the learning components and a few of the
higher level inferences required within a question answer-
ing system. Some of our components work pretty well
independently; however, at the system level, the system
developed here hasn’t achieved very satisfactory results,

This project, with the exception of the IR module,
started as a summer project in early June, 2002 and was
completed before the end of July. The reliance on mature
learning methods allowed us to put together a system for
this task in such a short time. Needless to say, there are
several important components that are still missing and
many of our design goals have not been fully developed.
Some of our future research directions include developing
our unified approach further in several directions. We
plan to incorporate a level of semantic categorization
that, hopefully, can impact all modules in the system;
we are working on learning better representations for
questions, incorporating inference across sentences in the
answer selection process and a principled approach to
answer selection.

References

[1] E. Brill, J. Lin, M. Banko, S. Dumais, and A. Ng.
Data-intensive question answering. In Proceedings
of Text REtrieval Conference (TREC-10), pages
393-400, 2001.

[2] A. Carlson, C. Cumby, J. Rosen, and D. Roth.
The SNoW learning architecture. Technical Report
UIUCDCS-R-99-2101, UIUC Computer Science De-
partment, May 1999.

[3] C.L.Clarke, G. V. Cormack, , and F. J. Burkowski.
An algebra for structured text search and a frame-
work for its implementation. The Computer Jour-
nal, 38(1):43-56, 1995.

[4] Y.Even-Zohar and D. Roth. A sequential model for
multi class classification. In EMNLP-2001, the SIG-
DAT Conference on Empirical Methods in Natural
Language Processing, pages 10-19, 2001.

[5] Sanda Harabagiu and Dan Moldovan. Open-domain
textual question answering. In Tuturial of the Sec-
ond Meeting of the North American Chapter of the
Association for Computational Linguistics, 2001.

6] E.F.T.Kim-Sang and S. Buchholz. Introduction
to the CoNLL-2000 shared task: Chunking. In Pro-
ceedings of CoNLL-2000 and LLL-2000, pages 127—
132, 2000.

[7] X. Li and D. Roth. Exploring evidence for shal-
low parsing. In Proc. of the Annual Conference on
Computational Natural Language Learning, 2001.

[8] X.Liand D. Roth. Learning question classifiers. In
COLING 2002, The 19th International Conference
on Computational Linguistics, pages 556—562, 2002.
[9] G. Miller, R. Beckwith, C. Fellbaum, D. Gross, and
K.J. Miller. Wordnet: An on-line lexical database.

International Journal of Lezicography, 3(4):235—
312, 1990.

[10] D. Moldovan, M. Pasca, S. Harabagiu, and M. Sur-
deanu. Performance issues and error analysis in an
open-domain question answering system. In Pro-
ceedings of the 40th Annual Meeting of ACL, pages
33-40, 2002.

[11] G. Navarro and R. Baeza-Yates. Proximal nodes:
A model to query document databases by content
and structure. ACM Transactions on Information
Systems, 15(4):400-435, 1997.

[12] V. Punyakanok and D. Roth. Shallow parsing by
inferencing with classifiers. In CoNLL, pages 107—
110, Lisbon, Protugal, 2000.

[13] V.Punyakanok and D. Roth. The use of classifiers in
sequential inference. In NIPS-18; The 2000 Confer-
ence on Advances in Neural Information Processing
Systems, pages 995-1001. MIT Press, 2001.

[14] D. Roth. Learning to resolve natural language ambi-
guities: A unified approach. In Proc. of the Ameri-
can Association of Artificial Intelligence, pages 806—
813, 1998.

[15] D. Roth and W. Yih. Probabilistic reasoning for
entity & relation recognition. In COLING 2002,
The 19th International Conference on Computa-
tional Linguistics, pages 835-841, 2002.

[16] M.M. Soubbotin. Patterns of potential answer ex-
pressions as clues to the right. In Proceedings of
Text REtrieval Conference (TREC-10), pages 293
302, 2001.

