
Querying Distributed Data through Distributed Ontologies: a Simple but Scalable
Approach

François Goasdoué and Marie-Christine Rousset
CNRS - University of Paris Sud (LRI) & INRIA (Futurs)

LRI, Building 490, 91405, Orsay Cedex, France�
fg,mcr � @lri.fr

Abstract

In this paper, we define a simple but scalable
framework for peer-to-peer data sharing systems,
in which the problem of answering queries over a
network of semantically related peers is always de-
cidable. Our approach is characterized by a simple
class-based language for defining peer schemas as
hierarchies of atomic classes, and mappings as in-
clusions of logical combinations of atomic classes.
We provide an anytime and incremental method for
computing all the certain answers to a query posed
to a given peer such that the answers are ordered
from the ones involving peers close to the queried
peer to the ones involving more distant peers.

1 Introduction
The Semantic Web [4] envisions a world-wide distributed ar-
chitecture where data and computational resources will easily
inter-operate to coordinate complex tasks such as answering
queries or global computing. Semantic marking up of web
resources using ontologies is expected to provide the neces-
sary glue for making this vision work. The de-centralized
nature of the Web makes inevitable that communities of users
or software developers will use their own ontologies to de-
scribe their data or services. In this vision of the Semantic
Web based on distributed ontologies, the key point is the me-
diation between data, services and users, using mappings be-
tween ontologies. The problem of schema mediation in a peer
data management system (PDMS) has been investigated very
recently in [8], where mappings between relational schemas
are expressed using a powerful relational formalism. It is
shown that in this setting, query answering is undecidable ex-
cept if some restrictions are imposed on the mappings and on
the resulting topology of the PDMS.

In this paper, we define a simpler framework, in which the
problem of answering queries over a network of semantically
related peers is always decidable. Our approach is charac-
terized by a simple class-based language for defining peer
schemas as hierarchies of atomic classes, and mappings as in-
clusions of logical combinations of atomic classes. An impor-
tant point, following [9], is that those mappings may involve
auxiliary classes of helper ontologies. Those auxiliary classes
have a twofold usefulness: they serve for modeling overlaps

between classes of different peer ontologies ; they also serve
for reconciling classes of different ontologies by saying that
they are (possibly disjoint) subclasses of some class. The fea-
sibility and scalability of our approach is based on a propo-
sitional encoding which guarantees that there is a finite set
of maximal rewritings for queries posed to the PDMS, and
which characterizes them as prime implicants w.r.t a proposi-
tional theory.

The paper is organized as follows. Section 2 introduces
our setting through an illustrate example, while Section 3 pro-
vides the underlying formal definitions and the related query
answering problem, for which we distinguish certain answers
from potential answers. In Section 4, we show the central
role of rewritings to compute all the certain answers, and we
exhibit the propositional encoding which is the basis of the in-
cremental method described in Section 5. We conclude with
a short discussion in Section 6.

2 Illustrative example
Suppose that Figure 1 sketches class hierarchies forming
schemas (ontologies) of three distinct file servers storing
teaching documents.

CS Courses

Algo Archi DB

St DB DM

AI

KR

DL

Logic ProgLang

Prolog

St Prolog

Java

� �
Univ Courses

CS

undergraduate CS master CS postgraduate CS

St postgraduate CS

Maths

�����
Physics

�����

Faculty Courses

XX Courses

XX undergrad

St XX undergrad

XX master

St XX master

YY Courses

YY undergrad

St YY undergrad

YY master

St YY master

YY postgrad

St YY postgrad

Figure 1: Three class hierarchies for teaching documents

The stored data are indicated by extensional classes whose
name starts by St . For instance, St Prolog is a subclass of
Prolog indicating that the server CS Courses locally stores

courses on Prolog: their identifiers are the instances of the
class St Prolog.

The server CS Courses is structured according to the dif-
ferent domains and sub-domains of computer science. For
example, DM (standing for data mining) is declared as a sub-
class of both DB and AI, and disjoint from Prolog. Only
courses on Prolog and DB (denoted by the extensional classes
St Prolog and St DB) are stored within this server.

The University central server (Univ Courses) structures
the courses that it makes accessible according to their main
subjects and then their levels. Only postgraduate courses on
computer science are stored within this server.

Finally, the Faculty server (Faculty Courses) groups
teaching documents of Faculty members and hierarchically
structures them according to the names of the teachers, and
the levels of the corresponding courses. YY and XX have put
all their courses available on that server.

There exists several correspondences between those three
ontologies: Figure 2 shows possible logical mappings be-
tween ontologies of Figure 1.

��� �������
	 ��	
���������
���
�����	 ���
� � �!���
����	 ��	
��"�#
�$�� %'&��� ()
�*+$��
	,�.-0/)�213-�45�5 %76"��	 *8�9*:�;%'& %<6���	 *+�=*,�21���	 ���#�5�5 ��������	 �"	
��>���8?@	 6#�"/�
��
�)�A� B �#6�� �!���
����	 ��	
��"�#
�$�� %'&5�5 ()
�*�$+��	C��5,5 D�6#*+$+��	
��E�F��G��!/�6#��� �H ���
	IB
�D�JK�L5,5 D�6#*+$+��	
��)�!M�N

Figure 2: Logical mappings between ontologies of Figure 1

For instance, the first mapping expresses that the un-
dergraduate courses taught by XX are either undergraduate
courses about java or architecture. The fifth mapping says
that the common courses taught by YY at master and post-
graduate levels deal with AI or Logic. The last mapping using
an auxiliary class (Overlap1) states that there is an overlap-
ping between the classes YY postgrad and KR, in order to
say that part of the YY’s postgraduate courses taught (but not
necessary all of them) deal with knowledge representation.

A query is a logical composition of classes of a given ontol-
ogy, expressing which instances of which classes the user is
interested in. For example, the query O %<& %<6���	 *8�9*�P,Q!R�SUT2V!W ,
posed in terms of the ontology CS Courses, expresses that
the user searches for courses on artificial intelligence which
do no deal with data mining. The important point is that
the answers can be inferred from the instances of the stored
classes within the server CS Courses, or from the instances
of classes that are stored in the two other servers. The answers
of O %'& %76"��	 *8�9* that can be obtained locally (i.e., from the in-
stances of the stored classes of the server CS Courses) are
courses about Prolog (the instances of St Prolog). However,
there also exists other answers for the query, which are stored
in other servers, and which can be inferred from the map-
pings. In particular, the mapping: XYX Z\[@]�^#_�`Ea V2bcSdT2V!W ,
and the fact that it can be inferred from the ontology rooted
in CS Courses that DL is a subclass of AI, allow us to infer
that the instances of St XX master are also answers for the
query O %'& %<6���	 *8�=* .

All those answers are certain answers: they are guaranteed
to be in the answer set of the query. In some cases, in par-
ticular when there does not exist (enough) certain answers,

it may be useful to provide potential answers. Potential an-
swers are not guaranteed to belong to the answer set of the
original query but to an overlapping set. Consider for exam-
ple the mapping: eAf@_�`�g [�h�ijalkYk h�m,]#^#n�`8[po SrqAs . Since
KR is a subclass of AI, Overlap1 is a specialization of AI.
The instances of the class YY postgrad (stored in the exten-
sional class St YY postgrad), which is a generalization of
the specialization Overlap1 of the query AI, are considered
as potential answers to AI.

3 Problem definition
First, we define the distributed data model of the peer data
management systems (PDMS) that we deal with. Then, we
state the query answering problem that we consider, distin-
guishing certain from potential answers.

Ontologies: syntax and semantics The ontologies that we
deal with are very simple: they model hierarchies of inten-
tional classes in the form of inclusion and disjointness state-
ments between names of atomic classes. An inclusion state-
ment is of the form: tuawv . A disjointness statement is of
the form: t S vxazy .

For example, the ontology rooted in CS Courses in Fig-
ure 1 is defined in Figure 3.

?@	 6#��/�
����>�{%'& %<6���	 *8�9*|� B �#6Y�;%'& %<6���	 *+�=*/�6#��� �}�;%'& %<6���	 *+�=* ��G<�;%'& %<6���	 *8�9*-0~U�;%'& %<6���	 *8�=* ��	 ���#�<�;%'& %<6���	 *8�=*?@	 6�B 6#�Y�.?@	 6���/�
���� ?'	 6�B 6#���F��G?@	 6�B 6#�Y�./�6#��� � ��
��

K�.?@	 6#��/�
��
�-�4d�F��G -�4��;-0~M N!�F��G -0/E�.M�N-0/E�;/�6#��� � ��
��

��!?@	 6�B 6#���;�-�4��!?@	 6�B 6����{�

Figure 3: Statements defining the CS Courses ontology

The semantics is defined in terms of interpretations. An
interpretation � is a pair (�;� , � �) where �;� is a non-empty
set called the domain of interpretation of � , and ��� is an inter-
pretation function, which assigns a subset t�� of �;� to every
atomic class t . An interpretation � is a model of an ontology�

iff:
- for every inclusion t�a�v in

�
: t��L��vF� , and

- for every disjointness t S vxa�y in
�

: t��A��vF�\��� .
An ontology

�
is satisfiable iff it has a model.

Storage description: syntax and semantics The storage
description of a peer whose local schema is defined by the
ontology

�
is a set of declarations of extensional classes. The

declaration of an extensional class �>� t consists of:
- an inclusion statement relating �Y� t to one or more

classes of
�

,
- an extension, denoted �����>� t\� , which is a set of distinct

constants representing data identifiers, that are instances of
the �>� t .
The simplest inclusion statements are of the form: �>� t�a
t . They express that the corresponding peer locally stores
a subset of the class t . The general form of an inclusion
statement of an extensional class is: �>� t�arO , where O can

be a logical combination of class literals. A class literal is
either a class name of

�
or the negation of a class name of

�
.

Given an interpretation � , we extend its interpretation func-
tion to the extensional classes and to the constants appearing
in their extensions: each constant � is interpreted as an ele-
ment ��� of the domain of interpretation � � . The interpreta-
tion of a logical combination of class literals is inductively
defined as follows:

- � T t\�#� = �;� � t\�
- ��� S�� ��� = � � � � �
- ����� � ��� = � �	� � �

An interpretation � is a model of a storage description iff for
each assertional class defined by its extension ���=�Y� t\� , and
by the inclusion �Y� t�a�O :

- for each ��
d���=�>� t�� , �0��
 �>� tc� ,
- �>� t\�L��OL� .
Storage descriptions correspond to sound views in the gen-

eral setting of information integration defined in [5].

Mappings: syntax and semantics A mapping has the form
of an inclusion statement O�
 a O�� , where O�
 and O�� are
logical combinations of class literals involving intentional
classes only, coming from at least two different ontologies.

We distinguish overlap mappings, which are of the form��������� �����Ya�t��
 S������9S t��! such that t��
#" �<�7� " t��$ are inten-
tional classes of distinct ontologies, and

�����%��� �%�&� is a fresh
name of class. Overlap mappings serve for expressing that
there exists an overlap between classes of different ontolo-
gies. Their role for computing potential answers for queries
will be explained in Section 6.

Given an interpretation � , we extend its interpretation func-
tion to the classes

�����%�#� �%� � by assigning to them a non empty
subset of the domain of interpretation.

An interpretation � is a model of a set of mappings ' iff
for every mapping O�
\a�O�� in ' , OL�
 ��OL�� .

PDMS: schema and extension We denote by ((respec-
tively (�)) the union of the definitions of intentional classes
(respectively the union of the definitions of intentional and
extensional classes) of the distributed ontologies of a PDMS*

. Without loss of generality we assume that class names are
unique to each peer, and that the names of extensional classes
are distinct from those of intentional classes. The schema of
a PDMS is defined by () and by a set ' of mappings. It is
said satisfiable iff there exists a model of (+) and ' .

Given a storage description representing the distributed
data stored within

*
, the extension of

*
is the union � of

the extensions of the extensional classes in () . We will use
the notation

* �-,�() " ' " �/. to denote the three components
of a PDMS

*
.

The neighborhood graph accounts for the connection be-
tween the different peers within a given PDMS induced by
the mappings.

Definition 1 (Neighborhood graph) Let
*

be a PDMS. Its
neighborhood graph is a graph (V,E) where V is the set of
peers of

*
, and (01� , 032) is an edge of E if there exists a map-

ping involving classes of the ontologies of 04� and 032 .

The peer distance between two peers 0 and 0+5 of a PDMS*
is the length of the shortest path between 0 and 0�5 in the

neighborhood graph of
*

.

Query answering The queries that we consider are logi-
cal combinations of intentional class literals of a given peer
ontology. The following definition is the logical coun-
terpart of the database definition of certain answers [1; 5;
9].

Definition 2 (Certain answers) Let O be a query over a
PDMS

* �6,$(�) " ' " �/. . Let � be in � . � is a certain an-
swer of O iff ����
 OL� for every model � of (�)7�8'9��� .

We now define the notion of potential answers (which dis-
tinguishes from the notion of possible answers, as defined in
[5]). It relies on the notion of query generalization and spe-
cialization.

Definition 3 (Query generalization/specialization) Given
a PDMS

* �:,$(�) " ' " �/. , let O and O�5 be two logical
combinations of class literals of () . O�5 is a generalization
of O (and O is a specialization of O 5) iff () �;'<�>=pO@? is
satisfiable and (�) " ' " OBA � O�5 .
Definition 4 (Potential answers) Let O be a query over a
PDMS

* �C,�() " ' " �/. . Let � be in � . � is a potential
answer of O iff � is a certain answer of a generalization of O
or of one of its specializations.

Given a PDMS
*

and a query O , the query answering
problem that we are interested in has two variants: �ED'� find
all certain answers of O ; �GF � find potential answers of O .

In general, finding all certain answers is a critical issue [8].
In our setting however, we are in a case where all the certain
answers can be obtained using rewritings of the query (see
Section 4). Given a query O posed to some peer 0 , the im-
portant point is to be able to order the certain answers for O
that can be obtained from the other peers, according to their
proximity to 0 (see Section 5). Finding potential answers
can be useful if there is not (enough) certain answers. By
definition, potential answers may be numerous. The problem
is to focus on some kind of potential answers. We will briefly
discuss this point in Section 6.

4 Query answering using rewritings
We first define the notion of (maximal) conjunctive rewrit-
ing of a query in our setting. We then show how conjunctive
rewritings can be used to compute all the certain answers for
the query. Finally, we characterize the maximal conjunctive
rewritings of a query as prime implicants of the propositional
encoding of the query w.r.t the propositional theory encoding
the mappings and the ontologies.

Definition 5 (Conjunctive rewriting of a query) Let O be
a query. Let O+H be a conjunction of extensional classes. O�H
is a conjunctive rewriting of O iff O�H is a specialization of O .
It is maximal iff there does not exist a strict generalization of
O H which is a rewriting of O .

Evaluating conjunctive rewritings of a query O provides cer-
tain answers of O . The evaluation of conjunctive rewriting
O�H P �>� tI
 S;�����@S �Y� t�J is direct:

� � � � �=O�H ���z���=�Y� t�
C� � ����� �������>� t�J:� �
Most importantly, it has been shown in [6; 7] that when a
query has a finite number of maximal conjunctive rewritings,
then the complete set of its answers can be obtained (in poly-
nomial data complexity) as the union of the answer sets of its
rewritings. We go through a propositional encoding to show
that in our setting every query has a finite number of maximal
conjunctive rewritings.

Propositional encoding The propositional encoding
0 ��� �K��O�� of a query O is a propositional formula using the
names of atomic classes as propositional variables, which is
inductively defined as follows:

- 0 ��� �K�=t\� �zt , if t is an atomic class;
- 0 ��� �K� T t\� � T t , if t is an atomic class;
- 0 ��� �K��O+
 S O��'��� 0 ��� �K��O+
<���80 ��� �E�=O��'� ;
- 0 ��� �K��O
 ��O � ��� 0 ��� �K��O
 ���80 ��� �E�=O � � .

The propositional encoding of a PDMS
* � ,�(+) " ' " �/. is

the set of propositional formulas 0 ��� �K���@� obtained as follows
from each statement � in () and ' :

- 0 ��� �K�=t a�O����zt
	60 ��� �E�=O�� ;
- 0 ��� �K�=t S vxazy ��� T t�� T v ;
- 0 ��� �K��O+
�a�O��<��� 0 ��� �K��O+
7��	60 ��� �E�=O��@� .

The following proposition shows that propositional encoding
transfers the logical definitions and properties previously in-
troduced for classes. It also provides a propositional char-
acterization of maximal conjunctive rewritings of a query as
prime implicants w.r.t a theory [10].
Proposition 1 (Propositional transfer) Let

*
be a PDMS.

Let (�
�����
 � '�
�����
 be the propositional encoding of its
schema. Let � H be the set of names of its extensional classes.

-
*

’s schema is satisfiable iff (
�����
 ��'
�����
 is satisfiable.
- O�H is a maximal conjunctive rewriting of O iff 0 ��� �K��O+H7�

is a prime implicant of 0 ��� �K��O�� w.r.t the theory (�
�����
 �
'
�����
 among the implicants that are conjunctions of propo-
sitional variables of �&H .
As a result, we can use any SAT algorithm for checking sat-
isfiability of PDMS schemas. Most importantly, it gives us a
way to compute all the certain answers of a query by rewrit-
ing.

From now on, for simplicity purpose, we use the propo-
sitional notation for the queries, the ontologies, the map-
pings and the rewritings. We suppose that all the proposi-
tional formulas that we consider are in clausal form. We sup-
pose that PDMS satisfiability has been checked, and we focus
on the computation of the maximal rewritings of an atomic
query. Note that the maximal rewritings of a conjunctive
query can be obtained by combining the maximal rewritings
of its atomic conjuncts.

In the following section, we give the sketch of an anytime
and incremental method for computing maximal conjunctive
rewritings of atomic queries. It follows an order induced
by the neighborhood graph such that the maximal rewritings
(and thus the answers) involving peers close to the interro-
gated peer are obtained first.

5 An anytime rewriting algorithm
Proposition 1 characterizes maximal rewritings as conjunc-
tive prime implicants of the (propositional encoding of the)

query w.r.t the propositional theory encoding the ontologies
and the mappings of the PDMS. The following property
shows that the problem of finding prime implicants can be
reduced to that of finding prime implicates.

Proposition 2 (Connection prime implicants / implicates)
Let O be a query and � a propositional theory. The con-
junctive prime implicants of O w.r.t � are the negation of the
clausal prime implicates of T O w.r.t � .

We reuse a graph-based technique [2; 3] for computing
prime implicates within propositional theories partitioned
into sub-theories. A partitioned theory induces a graph called
the intersection graph: each node represents a sub-theory of
the partitioning ; two nodes are linked with an edge if they
share propositional variables ; an edge is labeled with these
shared variables.

The forward message-passing algorithm MP described
in [2] exploits the partitioning to provide an efficient
consequence-finding algorithm. Consequence finding is done
in parallel in each individual sub-theory using any complete
resolution strategy. The transfer of formulas between sub-
theories is controlled by the labels of the edges of the inter-
section graph: the logical consequences found within an indi-
vidual sub-theory are sent as messages to another individual
sub-theory (and are added to the set of its formulas) only if
they involve propositional variables that are shared between
those two sub-theories. Let us illustrate the message-passing
behavior of this algorithm on the intersection graph of Fig-
ure 4.

����� �! #"%$����� &' #")(�*"%$+ -,.$�*")(. -,+(�!,%$) #�!,)(
/ $ / (/10

"2$�34")(,.$536,+(

Figure 4: Example of a partitioning and its intersection graph

Suppose that you are interested in finding all the clausal
prime implicates using the variables 7�^ 8 , i.e., the prime im-
plicates that can be obtained within the sub-theory 9
 . The
algorithm starts sending messages from the most distant sub-
theory from 9@
 : 9;: . The formula T=<EJ � T=<�> is transmitted
from 9;: to 9�� . Within 9+� , it is inferred by application of
resolution rules the new formulas: TEQ J � T=< > , TEQ > � T=< J ,TEQ J � TEQ > . Now, only TEQ J � TEQ > is transmitted to the
sub-theory 9@
 , and we finally obtain the prime implicate:T 7�^ J � T 7�^ > .

In order to be complete, this forward message-passing al-
gorithm must apply to an intersection graph without cycle.
The point is that any intersection graph can be polynomially
transformed into a cycle-free graph with enlarged labels such
that applying the forward message-passing algorithm to this
acyclic graph is guaranteed to be complete. The BREAK-
CYCLES algorithm described in [2] performs the appropriate
transformation.

We describe our partitioning in Section 5.1. It is indepen-
dent of the queries and thus can be done at compile time. It
follows the natural partition of the ontologies over the dif-
ferent peers but it is also induced by the target prime im-
plicates: we group all the formulas involving names of ex-

tensional classes as propositional variables into a single sub-
theory called the warehouse. In Section 5.2 and Section 5.3
we sketch the way we have used the BREAK-CYCLES and
MP algorithms of [2] to obtain an anytime and incremental
algorithm for computing the clausal prime implicates of the
negation of an atomic query. We encapsulate the MP algo-
rithm [2] in an iterative loop: at the first step, MP is applied to
the cycle-free intersection graph of the partitioning restricted
to the warehouse and the sub-theory corresponding to the on-
tology of the queried peer ; each iteration takes into account
intersection graphs corresponding to the warehouse, the sub-
theory corresponding to the ontology of the queried peer as
well as the ontologies (and the related mappings) of peers
within an increasing peer distance to the queried peer. It is
important to note that this peer distance is not the distance
of the sub-theories within the intersection graph, but the dis-
tance of the corresponding peers within the PDMS neighbor-
hood graph. In order to avoid applying BREAK-CYCLES at
each iterative step of the prime implicates computation, we
break the cycles at compile time. At query time, we just
have to load the cycle-free intersection graphs correspond-
ing to the queried peer as input to the incremental forward
message-passing algorithm.

5.1 Our partitioning
It is guided by the natural distribution of the PDMS but
groups all the definitions of extensional classes together:

- we group in a sub-theory the formulas defining the inten-
tional classes of a same ontology;

- we group in a sub-theory the mapping formulas that are
associated with the same subset of ontologies 1;

- all the definitions of extensional classes in the ontologies
are grouped into an individual sub-theory: the warehouse.
Consider the PDMS , �
) � � �) � � :) " ' " �/. such that:

� $��� �L� H���� &�$ � �{�� (� � ~\� H	�
� &�$ ~c� ~ � ~���� H	�� 0� � %c� H	
�� &�$ %U�;%� � ~��!~ � �F� � %c�;~ �
The intersection graph resulting of its partitioning is given in
Figure 5.

�!��� " �"����� , -,����� � �� �*" ��2$

��,� #��, � #"

��� �� 0 ��� �, � �!,� ��)(, �!, � ��)(

A

AA,B

B,B’B’

B

B’

C

C

C

Figure 5: Intersection graph resulting from the partitioning

5.2 Breaking cycles
The following algorithm is applied at com-
pile time for each peer 0 of the PDMS.

1In the general case, a mapping may involve classes of more than
two distinct ontologies

Let � be the peer distance between � and the most distant peer
from � within the PDMS
For ����� to � ,

- let ��� be the intersection graph restricted to the warehouse,
the sub-theories encoding the ontologies of � and the on-
tologies (and the associated mappings) of the peers whose
peer distance from � is less than �

- apply BREAK-CYCLES to ���
The results �! " �<�7� " � J computed by this algorithm are the

cycle-free intersection graphs to which the forward message-
passing algorithm will be iteratively applied at query time if
0 is the interrogated peer. Figure 6 illustrates the successive
results �
 and � � obtained for the peer corresponding to

�
)
in the above PDMS (the removed edges for breaking cycles
are indicated by dotted lines).

�!�*� " "����� ,� #,�!��� �� �� �*" ��2$

�!,� #�!, � #"

�!,� ��)(, �!, � ��.(

A

AA,B

B,B’

B

�!��� " �"����� , -,����� � �� �*" ��2$

��,� #��, � #"

��� �� 0 ��� �, � �!,� ��)(, �!, � ��)(

A

AA,B,B’

B,B’B’

B

B’

B’,C

C

C

Figure 6: Cycle-free intersection graphs �1
 and � � for
�
)

5.3 Ordered computing of implicates
The following algorithm computes the clausal implicates of
the negation of an atomic query O posed to a given peer 0 2 .

Let ��"$#�� � #&%'%&%&#(��) be the successive cycle-free intersection
graphs computed for � at compile time (Section 5.2)
For ����� to � ,

- add *,+ to the sub-theory of ��� encoding the ontology of
�

- apply MP to ��� to compute the implicates of distance -.�
For example, consider that the query Q is posed to the peer

corresponding to the ontology
�
) in the above PDMS.

Figure 7 illustrates the result of our algorithm at step / �10 .

�!��� " " , �!��� ,� �, , ����� �� �� , �!" , �!��� " �*" ��2$, �*"A

Figure 7: Local implicates (within a peer distance of 0)

TEQ , which has been added to the sub-theory encoding�
) , is sent to the warehouse. A resolution is then possible
2We consider that the implicates of the theory alone have been

computed at compile time

within the warehouse, which produces the implicate T 7�^ Q :
its negation corresponds to the only rewriting that can be pro-
duced within the interrogated peer (peer distance of 0).

The application of MP to �/
 (first cycle-free graph in Fig-
ure 6) infers no new formula.

Figure 8 illustrates the result obtained at the last step
(/.� F) of our algorithm. It corresponds to the application of
MP to � � (the last cycle-free graph in Figure 6): the clausesT=< � T=< 5*� Q and T�� � < 5 are transmitted to the warehouse,
thus leading to the computation in the warehouse of the new
implicate T 7�^ < � T 7�^ � for TEQ . Its negation is the conjunc-
tive rewriting 7�^ < �;7�^ � , whose evaluation will produce the
certain answers obtainable within a peer distance of F .
�!�*� " #" , �!�*� , �, , �!��� � ���*" , �!�*� " , �!,� ��!, � #" ,���� #, � , ����� , ����� , -�!, � ,����� � -, � , ����� ,� ��!��� � , �����

�*" ��2$, �*"

�!,� ��!, � #"

��� �� 0 ��� �, � �!,� ��)(, �!, � ��.(

A

A,B,B’

B,B’

B’,CC

Figure 8: Implicates within a peer distance of F

6 Discussion
Existing information integration systems are centralized sys-
tems of mediation between users and distributed data, which
exploit mappings between a single mediated schema and
schemas of data sources. For scaling up to the Web, this
centralized approach of mediation is probably not flexible
enough, and distributed systems of mediation are more appro-
priate. The approach that we have presented in this paper is an
instance of the general PDMS architecture introduced in [9;
8], for which we guarantee decidability of query answering
independently of the topology of the PDMS.

We have sketched an incremental and anytime method to
compute and rank the certain answers for users’s queries.
It is based on the use of an existing graph-based technique
([2]) for reasoning in partitioned proposotional theories. For
space limitation, we have not presented the optimization of
the method described in Section 5.2 for breaking cycles which
enables to store for each peer a single cycle-free intersec-
tion graph �3J , instead of storing the successive cycle-free in-
tersection graphs �/
 " �<�7� " � J . This optimization requires an
adaptation of the BREAK-CYCLES algorithm described in
[2] to guarantee that the results obtained by the iterative for-
ward message-passing algorithm on restrictions of the single
cycle-free intersection graph that is stored at compile time
are the same as if it applied BREAK-CYCLE at each itera-
tive step. At query time, the method is anytime because it
can stop at each step and then provides the certain answers
that have been computed until this step. It is incremental in
the sense that the computation done in order to produce im-
plicates from some peers is reused to compute answers from
more distant peers. The scalability of the approach relies on

the propositional encoding: adding a new peer consists in up-
dating the propositional theory (and the resulting intersection
graph) by adding the logical formulas corresponding to the
new ontology and to the mappings between some new classes
and some semantically related existing classes in other on-
tologies.

As for potential answers (Definition 4) the problem is to
limit the generalizations (of the original query or of one of its
specializations) for which computing certain answers. Our
strategy, which we just have enough space to mention here, is
to focus on overlapping queries. An overlapping query of an
atomic query Q is a query Q�� such that there exists an overlap
mapping of the form: eAf@_�`�g [�h a Q J�S �7�7� Q�� S �<�7� Q�� S �<�7� ,
where Q�� is a subclass specializing Q . The point is that
overlapping queries and their peer distance to the original
query Q can be easily detected at query time: the produc-
tion of a unit clause T eAf'_,`=g [�h into a sub-theory (encoding a
set of mappings) results from a resolution between a clauseT eAf@_�`�g [�h � Q � with a literal TEQ � which is necessarily an im-
plicate of the negation of the atomic query. The overlapping
queries that can be found within that sub-theory are those Q �
such that T e f'_,`=g [�h � Q � is a formula of the sub-theory. Such
a formula necessarily exists in the sub-theory, as the result
of putting in clausal form the propositional encoding of the
corresponding overlap mapping.

References
[1] S. Abiteboul and O. M. Duschka. Complexity of an-

swering queries using materialized views. In Proceed-
ings of PODS, 1998.

[2] E. Amir and S. A. McIlraith. Partition-based logical
reasoning. In Proceedings of KR, 2000.

[3] E. Amir and S. A. McIlraith. Theorem proving with
structured theories. In Proceedings of IJCAI, 2001.

[4] T. Berners-Lee, J. Hendler, and O.Lassila. The semantic
web. Scientific American, 279, 2001.

[5] D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Y.
Vardi. Answering regular path queries using views. In
Proceedings of ICDE, 2000.

[6] F. Goasdoué. Réécriture de requêtes en termes de vues
dans CARIN et intégration d’informations. PhD thesis,
Université Paris Sud XI - Orsay, 2001.

[7] F. Goasdoué and M.-C. Rousset. Answering queries
using views: a krdb perspective for the semantic web.
Technical report, submitted for publication, 2003.

[8] A. Halevy, Z.Ives, D.Suciu, and I.Tatarinov. Schema
mediation in peer data management systems. In Pro-
ceedings of ICDE, 2003.

[9] J. Madhavan, P. Bernstein, P. Domingos, and A. Halevy.
Representing and reasoning about mappings between
domain models. In Proceedings of IJCAI, 2001.

[10] P. Marquis. Knowledge compilation using theory prime
implicates. In Proceedings of IJCAI, 1995.

