Computer Science > Human-Computer Interaction
[Submitted on 21 Sep 2022 (v1), last revised 7 Nov 2022 (this version, v2)]
Title:Quantifying attention via dwell time and engagement in a social media browsing environment
View PDFAbstract:Modern computational systems have an unprecedented ability to detect, leverage and influence human attention. Prior work identified user engagement and dwell time as two key metrics of attention in digital environments, but these metrics have yet to be integrated into a unified model that can advance the theory andpractice of digital attention. We draw on work from cognitive science, digital advertising, and AI to propose a two-stage model of attention for social media environments that disentangles engagement and dwell. In an online experiment, we show that attention operates differently in these two stages and find clear evidence of dissociation: when dwelling on posts (Stage 1), users attend more to sensational than credible content, but when deciding whether to engage with content (Stage 2), users attend more to credible than sensational content. These findings have implications for the design and development of computational systems that measure and model human attention, such as newsfeed algorithms on social media.
Submission history
From: Ziv Epstein [view email][v1] Wed, 21 Sep 2022 16:06:44 UTC (2,533 KB)
[v2] Mon, 7 Nov 2022 20:02:13 UTC (3,000 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.